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Let X, Y be compact, connected, metrisable spaces with base points x,, yo and let
A" denote the compact operators. It is shown that Cyo(X\x,)® " is asymp-
totically homotopic (or shape equivalent) to Co(Y\yo) ® X if and only if X and
Y have isomorphic K-groups. Similar results are obtained for certain inductive
limits of nuclear C*-algebras.

Let &/ denote the category whose objects are all the separable C*-algebras and
whose set of morphisms from A4 to B, denoted [[A, B]], consists of homotopy
classes of asymptotic morphisms. The construction of this category is due to
Connes and Higson [CH], who defined a bivariant homology theory
E(A, B) =[[SA4, SB® o ]] and have shown how to define the intersection prod-
uct for arbitrary extensions of separable C*-algebras. If 4 is K-nuclear then
E-theory agrees with Kasparov’s bivariant K-theory [K].

On the other hand the asymptotic homotopy category of appears to be the
“right” framework for the homotopy theory of separable C*-algebras. This point of
view is supported by results in [H; CH; D; CH1; CK; D1]. For instance we have
shown in [D1] that asymptotic homotopy is equivalent to a strong shape theory
and hence is intimately related to the shape theories of [EK 1] and {B] which were
intended as homotopy theories for noncommutative singular spaces. In particular
it turned out that two separable C*-algebras are shape equivalent if and only if they
are asymptotically homotopic i.e. isomorphic in .o/, The isomorphism class in &/ of
a separable C*-algebra A is called the asymptotic homotopy type of A.

In this note we exhibit large classes of (projectionless) stable, nuclear C*-
algebras whose asymptotic homotopy type is determined by K-theoretical data
(Theorem 6). This is done via a suspension isomorphism

[[4,B®X*]] - [[S4,SB®A']]

which, by the main result in [DL] holds whenever [[id,]] is invertible in
[[4, A® X]]. We show in the paper that among A for which this isomorphism
holds true are the inductive limits of direct sums of C*-algebras of the form
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Co(X\xq, D) where X is a connected polyhedron, x, a point in X and D is any
separable C*-algebra. The technique employed in the proof is based on the
approximation of asymptotic morphisms by homotopies of *-homomorphisms.

For C*-algebras A, B let Hom(4, B) denote the space of x-homomorphisms
from A to B equipped with the topology of pointwise convergence. The path
components of Hom(4, B) correspond to the homotopy classes of *-homomor-
phisms denoted by {4, B]. Let ¥ denote the C*-algebra of compact operators
acting on an infinite dimensional separable Hilbert space. [4, B ® 2] has a natu-
ral structure of abelian semigroup with addition induced by the direct sum of
x-homomorphisms and unit given by the class of the null homomorphism (see
Theorem 3.1 in [R]).

Lemma 1 Let A, B be C*-algebras and let n, € Hom(A, B® X"). Suppose that [1,]
is an invertible element of the semigroup [A, B® ). Then the map

F:Hom(A,B® oA') - Hom(4, B® A4 @ M,),
F(y) =y @1y is a homotopy equivalence.

Proof. Let#jo € Hom(A, B® X ) such that o @ #, is homotopic to 0. Let 8, be an
isomorphism of 4" ® M, onto X and set § =idp ® 6,. Then the map

G:Hom(4, B® X ® M,) > Hom(4, B& X")
given by G(¢) = 0(¢ @ 1,) is a homotopy inverse of F. First we compute
GF(y)=G(y@no) =06°(y@no @) -

Thus GoF is homotopic to the map y — 9o(y ®0 @ 0) which in its turn is
homotopic to the identity map of Hom(A, B ® '), as in the proof of Theorem 3.1
a)in [R] or Lemma 1.3.11 in [JT], where a slightly weaker result is stated. Next we
compute

FG(@)=F(0°(¢ Do) = (0°(0 @10))®no
=(0@idpg.x)°(¢ oD no) -
It follows that F <G is homotopic to the map
o (0@idpgx ) (¢p@P0D0)=0(p@0)DO

which is homotopic to the identity map of Hom(A, BQ ¥ ® M,) by the same
argument as above.,

Corollary 2 Let A, B, no and F be as in Lemma 1. For any base point y, €
Hom(A4, B® X’), F induces an isomorphism of fundamental groups

Fy:n(Hom(4, B® X'), o) — n; (Hom(4, BO A" @ M), yo D 10) -

Proof. f f:X —Y is a homotopy equivalence then for any x,¢€X,
feim (X, x0) = 7, (Y, f(xo)) is an isomorphism of groups. [

As with *-homomorphisms, the homotopy classes of asymptotic morphisms
[[4, B, ® 2#']] form an abelian semigroup. The main technical result of this note is
the following.
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Theorem 3 Let A be a C*-algebra that is the inductive limit of a sequence (A,) of
separable C*-algebras. Suppose that [id 4] is invertible in [ A,, A, ® KA ] for each n.
Then [[id (1] is invertible in [[4, A ® X" ]].

Proof. For any C*-algebra D there are natural isomorphisms [D,D® X'] =
(DA, DR A ]and [[D,D®H]] = [[D®H,D® #]] induced by tensor-
ization with o¢". Therefore we may assume that each 4, is stable. We are going to
produce an asymptotic morphism ¢@,: 4 — A4 such that [[¢,]]1+ [[id,]] =0 in
[[4, A1]. By hypothesis there are f, € Hom(4,, 4,) suchthat[ f,] + [id4,] = Oin
[A4,, A, ] The idea of the proof is to assemble the *-homomorphisms f, along with
properly chosen connecting homotopies into a strong shape map (4,) — (4,). Via
the homotopy inductive limit functor of [D1] this strong shape map gives rise to an
inverse of [[id,]] in [[4, A]]. Corollary 2 will be used to eliminate certain
topological obstructions that may appear in the process.

For stable C*-algebras B, C, D the multiplication [B, C]x[C,D] - [B, D]
is bilinear., Thus if [id;] is invertible in [B, B] then [B, C] is a group. Let
Pn+1n:An = An+, denote the connecting maps in the inductive system (A4,). We
compute

[pn+1nf;|] + [pn+1n] = [pn+ln]([ﬁl] + [ldAn]) =0

[faov1Pnrind + [Pastnl = (Lfasrr ] + (14, DIPr+1a1 =0

We find that

[pn+1nf;|] = [f;l+1pn+1n]
since [A,, A,.1] is a group. Therefore for any n there is a homotopy h, e
HOH](A,,, An+1 [07 1]), hn = (h:l)te[o,l] SUCh that hl(l) = pn+1nf;l and h: =

Jnt1Put 1n-
In the terminology of [D1] the sequences (f,) and (h,) form a strong map of

inductive systems (f,, h,):(4,) - (4,). There is a natural notion of homotopy for
such maps and there is a homotopy inductive limit functor L from the homotopy
classes of strong maps to the homotopy classes of asymptotic morphisms (see
section 1 and 2 in [D1]). It is obvious from the definition that the functor L is
compatible with direct sums i.e.

LISy )@ (f4, b0)]1] = LLLf2, k1] + LLLSW, B3 1T

Thus all we have to prove is that the strong map (4,) — (4, ® M, ) consisting of
*-homomorphisms

f;,@idA”:An —> A,,@Mz
and homotopies
h:@pn+ln:An g An+1 ®M2

is homotopic to the null strong map (0, 0). Indeed this will imply
L[[f», k1] + [[id41] = LL[ fo, k1] + LL[id4, Pa+1a1]
= L[ ®idy, b @ Pa+1a1]
=L[[0,0]]=0.
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To conclude the proof we produce a homotopy of strong maps from
(fos ) @ (id 4, Pu+14) to (0, 0). This homotopy denoted by (v,, y4,) is a strong map
(4,) = (4,® M, [0, 1]) consisting of *~-homomorphisms

Ve An = An®M2 [O, 1], Vp = (V:)se[o, 11
and two-homotopies
tn: Ay = Apet @ M0, 11x[0, 1], gty = (U5 ®)r, 500, 13

such that for all 7, s € [0, 1] and all n:

”:,O = (pn+1n ®idM2)Vf,

wt =V i Parin

b * =y ® P 1n

Pt =0.
This is done as follows. For any n we take (v;)sep0,1; to be any continuous path
in Hom(A,,A4,®M,) from f,@id,, to 0. We regard u, as a map
i, [0, 1] x [0, 1] - Hom(4,, A,+1 ® M,) whose values on the boundary of the
unit square are prescribed by the above equations. One can fill the square
by a continuous function g, if and only if the loop in Hom(A4,, A,+1 ® M;)
given by the boundary conditions corresponds to the zero element of
7, (Hom(A,, A, ® M), u2°). Using Corollary -2 for

F:(HOI’II(A", An+1 )3 Pn+ lnfn) - (HOlTl(A,,, An+1 ® MZ), Pn+ 1nf;1 @ Pr+ 1n) »

F(y) =y ®pn+1s, we replace h (if necessaiy) by another path with the same
endpoints such that the corresponding obstruction vanishes and we can fill the
square. This completes the proof. [J

Let A, B be separable C*-algebras. By Theorem 4.3 in [DL] if [[id,]] is
invertible in [[4, A® £ ]] then [[A, B® #']] = E(A, B). In conjunction with
Theorem 3 this gives the following.

Theorem 4 Let A be the inductive limit of a sequence (4,) of separable C*-algebras
such that [id,,] is invertible in [A,, A, ® X'] for each n. Then for any separable
C*-algebra B the suspension map

[[4,B®4]] - [[SA SB®H]]=E(4, B)
is an isomorphism.

Corollary 5 Let X be a compact, connected, metrisable space and let x, € X. For any
separable C*-algebra B

[[Co(X\x0), B® #']] = KK(Co(X\xo), B) .

Proof. By Theorem 10.1 p. 284 in [ES] (X, x,) can be written as the projective limit
of a sequence of polyhedra (X,, x,). An inspection of the proof shows that if X is
connected then all X, can be chosen connected. If ¥ is a connected polyhedron then
[Co(Y\¥o), Co(Y\yo)® '] is a group by Proposition 3.1.3 in [DN]. Therefore
we may apply Theorem 4 with 4 = Co(X\x,) and 4, = Co(X,\x,). For nuclear
A, E(A4, B) is isomorphic to KK (4, B) [CH]. O
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For spaces X having the homotopy type of a finite, connected CW-complex,
Corollary 5 was proven in [DL]. It is clear that Corollary 5 does not hold true for
the two-point space X = {0, 1}. This shows that it is necessary to assume that X is
connected.

"Theorem 6 Let A, B be C*-algebras that are inductive limits of direct sums of
C*-algebras of the form Co(X\xq,D) for connected polyhedra X, x,e X and
separable nuclear C*-algebras D. The following are equivalent

(i) A is KK-equivalent to B.

(i) A ® A" is asymptotically homotopic to B® ¥

(iii) A ® A" is shape equivalent to BQ X".

If A and B belong to the category af “nice” nuclear C*-algebras introduced in

[RS] then the above conditions are equivalent to

(iv) K, (4) = K, (B) as Z/2-graded groups.

Proof. (ii) <> (iii) by Theorem 3.9 in [D1].
For “nice” A, B (i) < (iv) by [RS].

(i) < (ii). Since A4, B are nuclear C*-algebras, KK (4, B) is isomorphic to E(4, B)
by an isomorphism that preserves the multiplicative structure. Therefore A is
KK-equivalent to B if and only if SA® J is asymptotically homotopic to
SB® . Since A® ¢ and B® 4 satisfy the hypotheses of Theorem 4, this
happens if and only if A ® & is asymptotically equivalent to B X~. O

Remark 7 Let X, Y be compact, connected, metrisable space. Then Cy(X\x) is
shape equivalent to Co(Y\y,) if and only if (X, x,) is shape equivalent to (¥, yg)
[MS, EK1, B]. Tensoring with the compact operators we get a completely different
situation. Indeed, by Theorem 6, Co(X\Xxo)® X is shape equivalent to
Co(Y\yo)® X if and only if K*(X) = K*(Y) as Z/2-graded groups. Recall that
a functor that preserves the inductive limits is called continuous. It was shown in
[D1] that any homotopic, continuous functor on the category of separable C*-
algebras factors through the category /. Hence if X and Y have isomorphic
K-groups then such a functor cannot distinguish Co(X\xe)® #  from
Co(Y\yo)® A". However these C*-algebras need not be homotopy equivalent.
Indeed their homotopy type is essentially determined by the connective K-theory
groups of their spectra rather than by the K-groups. (see [D2; D3]). In particular
this shows that there are no continuous extensions of connective K-theory to the
category of separable C*-algebras.
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