Purdue University, Spring 2021 Instructor: Marius Dadarlat

MA265 Linear Algebra — Exam 1

Date: March 3, Spring 2021

Name:
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PUID:

e All answers must be justified and you must show all your work in order to get credit.

e The exam is open book. Each students should work independently, Academic integrity

is strictly observed.
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1. Find all the numbers x for which the vector [ T ] belongs to the subspace of R? [10pt]
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2. Consider the matrix A =

2 0
0 —1 |. Let S be the subspace [10pt]
00 O

of R3 consisting of those vectors x such that A*x = 0. Find a basis of S.
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3. If two matrices B and C' have inverses B1:{_13 1} and C’lz{i :1))}, [10pt]
and A = BC, compute A~
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5. Let A be a 4 x 5 matrix. Which of the following statements are true and which are false?  [10pt]
Indicate clearly your answers. For this question you do not need to include explanations
for your answers.

A. Tt is possible that the rank of A is 3.
B. It is possible that the null space of A has dimension 1.
C. It is possible that Ax = 0 has only one solution, the trivial solution.

D. It is possible that there exists two linearly independent vectors u and v in R such
that Au= Av = 0.

E. It is possible that the columns of A are linearly independent.
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6. Let [10pt]
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The determinant of A is a polynomial in z. What is the coefficient of z1° in this
polynomial? No use of computer software is allowed for computing this determinant.

Hint: you don’t need to compute all the terms of det(A) in order to answer the question.
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7. Let A be an invertible 5 x 5-matrix such that 24% = —AT. Compute det(A).
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8. Consider the vectors [10pt]

[ <[

Let A be a 3 x 4 matrix such that Au =0, Av = 0 and Aw = k. What are the possible
values of the rank of A?

oS O O
OO = O
O~ O O

cank (A + dem (Nullx]) = 4

—_—
oLtm@/ulQ&»l)?/L nne U, Vv Nul @)

que line arl wis pet

o ut -

— — 2
Thue  rank (&) = ¢ - o Q\f\ﬂl@r/) 2 4-2=<

O van¥ (ﬁ'/ & 7
S A @=lk 0 —) vl M Z! @

= 2
® & = (anle (+/ = ( o vawnl [A'/

Boft  caeel octuwr

gt 4:[3



9. Consider a linear system whose augmented matrix can be reduced via row operations to

the echelon form
10 -2 | a
01 a | a—3
00 a>*-9 | a—3

a (e
(i) For which values of a will the system have no solution? 2t 2
(ii) For which values of a will the system have a unique solution? 2

(iii) For which values of a will the system have infinitely many solutions?
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