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Let X be a finite dimensional compact metrizable space. Let A be a separable continuous field C∗-algebra over X with all

fibers isomorphic to the same stable Kirchberg algebra D. We show that if D has finitely generated K-theory and it satisfies

the Universal Coefficient Theorem in KK-theory, then there exists a dense open subset U of X such that the ideal A(U) is

locally trivial. The assumptions that the space X is finite dimensional and that the K-theory of the fiber is finitely generated

are both necessary.

1 Introduction

Continuous field C∗-algebras play the role of bundles of C∗-algebras (in the sense of topology) as explained

in [1]. Continuous field C∗-algebras appear naturally since any separable C∗-algebra A with Hausdorff

primitive spectrum X has a canonical continuous field structure over X with fibers the primitive quotients

of A [5]. The bundle structure that underlies a continuous field C∗-algebra is typically not locally trivial

even if all fibers are mutually isomorphic, see [4, Example 8.4].

A point x ∈ X is called singular for A if A(U) is nontrivial (i.e. A(U) is not isomorphic to C0(U)⊗D for

some C∗-algebra D) for any open set U that contains x. The singular points of A form a closed subspace of

X . If all points of X are singular for A we say that A is nowhere locally trivial.

An example of a unital continuous field C∗-algebra A over the unit interval with mutually isomorphic

fibers and such that A⊗K is nowhere locally trivial was constructed in [4]. In that example, all the fibers

A(x) of A are isomorphic to the same Kirchberg algebra D with K0(D) ∼= Z∞ and K1(D) = 0. We will argue

below that the complexity of the continuous field A ultimately reflects the property of the K-theory of

the fiber of not being finitely generated. On the other extreme, even if the K-theory of the fiber vanishes,

a field can be nowhere locally trivial if the base space is infinite dimensional. Indeed, a unital separable
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continuous field C∗-algebra A over the Hilbert cube was constructed in [3] with the property that all fibers

are isomorphic to the Cuntz algebra O2, but nevertheless A⊗K is nowhere locally trivial. The structure of

continuous field C∗-algebras with Kirchberg algebras as fibers over a finite dimensional space was studied

by the second named author in [2] and [3]. In the present paper we use results from those articles to prove

the following result on local triviality.

Theorem 1.1. Let X be a finite dimensional metrizable compact space, and let D be a stable Kirchberg

algebra that satisfies the UCT and such that K∗(D) is finitely generated. Let A be a separable continuous

field C∗-algebra over X such that A(x) ∼= D for all x ∈ X . Then there exists a dense open subset U of X such

that A(U) is locally trivial.

Recall that a C∗-algebra satisfies the Universal Coefficient Theorem in KK-theory (abbreviated UCT)

if and only if it is KK-equivalent to a commutative C∗-algebra [11]. The two examples that we reviewed

earlier show that both assumptions, that the space X is finite dimensional and that the K-theory of the fiber

is finitely generated, are necessary.

We show in Example 3.7 that the conclusion of Theorem 1.1 cannot be strengthen. Indeed, given a

nowhere dense closed subset F of a compact metrizable space X and any stable Kirchberg C∗-algebra D

with nontrivial K-theory, we construct a continuous field C∗-algebra A over X with all fibers isomorphic to

D, and such that the set of singular points of A coincides with F .

2 Preliminaries

In this section, we recall a number of concepts and results that we use in the proof of the main theorem.

2.1 C0(X)-algebras and Continuous Fields

Let X be a locally compact Hausdorff space. A C0(X)-algebra is a C∗-algebra A endowed with a ∗-

homomorphism θ from C0(X) to the center Z(M(A)) of the multiplier algebra M(A) of A such that C0(X)A

is dense in A; see [6]. If U ⊂ X is an open set, A(U) = C0(U)A is a closed ideal of A. If Y ⊆ X is a closed

set, the restriction of A = A(X) to Y , denoted A(Y ), is the quotient of A by the ideal A(X \ Y ). The quotient

map is denoted by πY : A(X)→ A(Y ). If Y reduces to a point x, we write A(x) for A({x}) and πx for π{x}.

The C∗-algebra A(x) is called the fiber of A at x. The image πx(a) ∈ A(x) of a ∈ A is denoted by a(x). The

following lemma collects some basic properties of C0(X)-algebras, see [2].

Lemma 2.1. Let A be a C0(X)-algebra and let B ⊂ A be a C0(X)-subalgebra. Let a ∈ A and let Y be a closed

subset of X . Then:

(1) The map x 7→ ‖a(x)‖ is upper semicontinuous.

(2) ‖πY (a)‖ = sup{‖πx(a)‖ | x ∈ Y }.
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(3) If a(x) ∈ πx(B) for all x ∈ X , then a ∈ B.

(4) The restriction of πx : A→ A(x) to B induces an isomorphism B(x) ∼= πx(B) for all x ∈ X .

A C0(X)-algebra such that the map x 7→ ‖a(x)‖ is continuous for all a ∈ A is called a continuous C0(X)-

algebra or a continuous field C∗-algebra. A C∗-algebra A is a continuous C0(X)-algebra if and only if A is the

C∗-algebra of continuous sections of a continuous fields of C∗-algebras over X in the sense of [5].

2.2 Semiprojectivity

A separable C∗-algebra D is semiprojective if for any C∗-algebra A and any increasing sequence of two-sided

closed ideals (Jn) of A with J =
⋃
n Jn, the natural map lim−→Hom(D,A/Jn)→ Hom(D,A/J) induced by

πn : A/Jn → A/J is surjective. If we weaken this condition and require only that the above map has dense

range, where Hom(D,A/J) is given the point-norm topology, then D is called weakly semiprojective.

The following is a generalization of a result of Loring [8, Thm. 19.1.3]; it is proved along the same

general lines.

Proposition 2.2. Let D be a separable weakly semiprojective C∗-algebra. For any finite set F ⊂ D and

any ε > 0 there exists a finite set G ⊂ D and δ > 0 such that for any inclusion of C∗-algebras B ⊂ A

and any ∗-homomorphism ϕ : D → A with ϕ(G) ⊂δ B, there is a ∗-homomorphism ψ : D → B such that

‖ϕ(c)− ψ(c)‖ < ε for all c ∈ F . If in addition K∗(D) is finitely generated, then we can choose G and δ such

that we also have K∗(ψ) = K∗(ϕ).

Remarks 2.3. By work of Neubüser [9], H. Lin [7] and Spielberg [13], a Kirchberg algebra D satisfying the

UCT and having finitely generated K-theory groups is weakly semiprojective. It is shown in [2, Prop. 3.11]

that if a Kirchberg algebra D is weakly semiprojective, then so is its stabilization D = D ⊗K.

The following result gives necessary and sufficient K-theory conditions for triviality of continuous

fields whose fibers are Kirchberg algebras. See also [3] for other generalizations.

Theorem 2.4 ([2]). Let X be a finite dimensional compact metrizable space. Let A be a separable continuous

field over X whose fibers are stable Kirchberg algebras satisfying the UCT. Let D be a stable Kirchberg

algebra that satisfies the UCT and such that K∗(D) is finitely generated. Then A is isomorphic to C0(X)⊗D

if and only if there is σ : K∗(D)→ K∗(A) such that σx : K∗(D)→ K∗(A(x)) is bijective for all x ∈ X .

2.3 Approximation of Continuous Fields

In this subsection, we state a corollary of a result on the structure of continuous fields proved in [2, Thm. 4.6].

In this, the property of weak semiprojectivity is used to approximate a continuous field A by continuous
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fields Ak given by n-pullbacks of trivial continuous fields. We shall use this construction several times in

the sequel.

First, we recall the notion of pullback for C∗-algebras. The pullback of a diagram

A
π // C oo

γ
B

is the C∗-algebra

E = {(a, b) ∈ A⊕B | π(a) = γ(b)}.

We are going to use pullbacks in the context of continuous field C∗-algebras.

Definition 2.5. Let X be a metrizable compact space, and let D be a C∗-algebra. Suppose that X =

Z0 ∪ Z1 ∪ . . . ∪ Zn, where {Zj}nj=0 are closed subsets, and write Yi = Z0 ∪ Z1 ∪ . . . ∪ Zi. The notion of an

n-pullback of trivial continuous fields with fiber D over X is defined inductively by the following data. We are

given continuous fields Ei over Yi with fibers isomorphic to D and fiberwise injective morphisms of fields

γi+1 : C(Yi ∩ Zi+1)⊗D → Ei(Yi ∩ Zi+1), i ∈ {1, . . . , n− 1}, with the following properties:

(i) E0 = C(Y0)⊗D = C(Z0)⊗D.

(ii) E1 is the field over Y1 = Y0 ∪ Z1 defined by the pullback of the diagram (where π = πY0∩Z1)

E0(Y0)
π // E0(Y0 ∩ Z1) oo

γ1◦π
C(Z1)⊗D.

(iii) In general, Ei+1 is the field over Yi+1 = Yi ∪ Zi+1 defined as the pullback of the diagram

Ei(Yi)
π // Ei(Yi ∩ Zi+1) oo

γi+1◦π
C(Zi+1)⊗D

where π = πYi∩Zi+1
. We call the continuous field E = En(Yn) = En(X) an n-pullback (of trivial fields).

Observe that all its fibers are isomorphic to D.

Remark 2.6. (a) If E is an n-pullback of trivial continuous fields with fiber D over X , then Ei is an i-

pullback and Ei(Zi) ∼= C(Zi)⊗D for all i = 0, 1, ..., n.

(b) If V ⊂ X is a closed set such that V ∩ (Zi+1 ∪ . . . ∪ Zn) = ∅, then E(V ) ∼= Ei(V ). If in addition V ⊂ Zi,

then it follows that E(V ) ∼= Ei(V ) ∼= C(V )⊗D.

Notation. We denote by Dn(X) the class of continuous fields with fibers isomorphic to D which are n-

pullbacks of trivial fields in the sense of Definition 2.5 and which have the additional property that the

spaces Zi that appear in their representation as n-pullbacks are finite unions of closed subsets of X of the
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form U(x, r), where U(x, r) = {y ∈ X : d(y, x) < r} is the open ball of center x and radius r for a fixed metric

d for the topology of X .

Definition 2.7. LetA be a C∗-algebra. We say that a sequence of C∗-subalgebras {An} is exhaustive if for any

finite subset F ⊂ A, any ε > 0 and any n0, there exists n ≥ n0 such that F ⊂ε An. In the case of continuous

fields we will require that An are C0(X)-subalgebras of A.

The condition F ⊂ε B means that for each a ∈ F there is b ∈ B such that ‖a− b‖ < ε. The following is a

corollary of a result from [2]. We shall use it to approximate a continuous field A by exhaustive sequences

consisting of n-pullbacks of trivial continuous fields.

Theorem 2.8. ([2, Thm. 4.6]) Let D be a stable Kirchberg algebra that satisfies the UCT. Suppose that K∗(D)

is finitely generated. Let X a be finite dimensional compact metrizable space and let A be a separable

continuous field over X such that all its fibers are isomorphic to D. For any finite set F ⊂ A and any ε > 0,

there exists B ∈ Dn(X) with n ≤ dim(X) and a fiberwise injective C(X)-linear ∗-homomorphism η : B → A

such that F ⊂ε η(B).

Theorem 4.6 of [2] does not state that the sets Zi that give the n-pullback structure of B are finite unions

of closures of open balls. However, this additional condition will be satisfied if in the proof of [2, Thm. 4.6]

on page 1866 one chooses the closed sets Uik to be finite unions of sets of the form U(x, r).

2.4 A simple algebraic lemma

The following elementary lemma collects some useful properties of finitely generated abelian groups. It is

singled out in this subsection because it will be used repeatedly in the sequel, sometimes without further

reference. A proof is included for completeness.

Lemma 2.9. Let G be a finitely generated abelian group.

(i) If G is finite, then a map α : G→ G is bijective if and only if α is injective if and only if α is surjective.

(ii) Any surjective homomorphism η : G→ G is bijective.

(iii) In a commutative diagram of group homomorphisms

G
γ

//

α
  

G>>

β

G,

if α is not bijective, then γ is not bijective.
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Proof. (i) This is obvious. (ii) Since G is a finitely generated abelian group, G ∼= Zk ⊕ T where k ≥ 0 and T

is a finite torsion group. To prove the statement, consider the following commutative diagram

0 // T //

β

��

G //

η

��

Zk //

α
��

0

0 // T // G // Zk // 0.

One can represent η as

 α 0

γ β

, where γ : Zk → T . Note that α is surjective (and hence bijective)

since η is surjective. By the five lemma, β is surjective and so it must be bijective by (i). Applying the five

lemma again, we see that η is bijective.

(iii) If γ were bijective, β would be surjective and hence bijective by (ii). Since α is not bijective, this is a

contradiction.

3 Local triviality

In this section we prove our main result, Theorem 1.1. The main technical result of the paper is the following.

Theorem 3.1. Let X be a finite dimensional metrizable compact space, and let D be a stable Kirchberg

algebra that satisfies the UCT and such that K∗(D) is finitely generated. Let A be a separable continuous

field C∗-algebra over X such that A(x) ∼= D for all x ∈ X . Then there exists a closed subset V of X with

non-empty interior such that A(V ) ∼= C(V )⊗D.

To prove this, we need several lemmas.

Lemma 3.2. Let φ : A→ B be a ∗-homomorphism of trivial fields over a compact metrizable space X

with all the fibers isomorphic to D. Suppose that there is x ∈ X such that K∗(φx) : K∗(A(x))→ K∗(B(x))

is not bijective. If K∗(D) is finitely generated, then there exists a neighborhood V of x such that K∗(φv) :

K∗(A(v))→ K∗(B(v)) is not bijective for any v ∈ V .

Proof. We can view φ as being given by a continuous map φ̃ : X → Hom(D,D) defined by φ̃(x) = (φx : d 7→

φ(1⊗ d)(x) = φx(d)), where Hom(D,D) is equipped with the point-norm topology. Since K∗(D) is finitely

generated, the map Hom(D,D)→ Hom(K∗(D),K∗(D)) is locally constant. This concludes the proof.

Lemma 3.3. Let X be a metrizable compact space and let A be a continuous field in the class Dn(X). Then

for any open set U ⊂ X and x ∈ U, there is an open set V such that x ∈ V ⊂ U and A(V ) ∼= C(V )⊗D.

Proof. We use the notation from Definition 2.5 withA in place ofE. Let i ∈ {0, 1, ..., n} be the largest number

with the property that x ∈ Zi. Set Xi =
⋃n
i=i+1 Zi if i < n and Xn = ∅. Then dist(x,Xi) > 0 since Xi is a

closed set. Let W be an open ball centered at x such that W ⊂ U and W ∩Xi = ∅. By the definition ofDn(X),
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there exist z ∈ Zi and r > 0 such that x ∈ U(z, r) ⊂ Zi. Since x ∈W ∩ U(z, r) and W is open, there must be a

sequence zn ∈W ∩ U(z, r) which converges to x. Setting V =W ∩ U(z, r), we have that x ∈ V ⊂W ⊂ U and

V ∩Xi = ∅. Because V ⊂ U(z, r) ⊂ Zi, it follows that A(V ) is trivial by Remark 2.6(b).

Lemma 3.4. Let D be a stable Kirchberg algebra such that K∗(D) is finitely generated. Let {Dn} be an

exhaustive sequence for D with inclusion maps φn : Dn ↪→ D. Suppose that K∗(Dn) ∼= K∗(D) for all n ≥ 1.

Then, there exists n1 < n2 < . . . < nk < . . . such that K∗(φnk
) is bijective for all k.

Proof. For the sake of simplicity, we give the proof only for K0. Let K0(D) be generated by classes

of projections ei ∈ D, i = 1, . . . , r. Since {Dn} is exhaustive, there exist n1 < n2 < . . . < nk < . . . such that

dist(ei,Dnk
) < 1 for i = 1, . . . , r and k ≥ 1. By functional calculus, it follows immediately that the maps

K0(φnk
) : K0(Dnk

)→ K0(D) are surjective. Then they must be bijective by Lemma 2.9.

Let us recall that a continuous field A over X is nowhere trivial if there is no open subset V 6= ∅ of X

such that A(V ) ∼= C0(V )⊗D for some C∗-algebra D.

Lemma 3.5. LetX be a finite dimensional metrizable compact space, and letD be a stable Kirchberg algebra

that satisfies the UCT and such that K∗(D) is finitely generated. Let A be a separable continuous field C∗-

algebra over X with all fibers isomorphic to D. Let B ∈ Dn(X) be such that there exists a C(X)-linear and

fiberwise injective ∗-homomorphism φ : B → A. If A is nowhere trivial, then for any nonempty set U ⊂ X

there exists an open nonempty set W such that W ⊂ U, B(W ) is trivial and for all v ∈W, K∗(φv) is not

bijective.

Proof. By Lemma 3.3 there is an open set V 6= ∅ such that V ⊂ U and B(V ) ∼= C(V )⊗D. After replacing

X by V and U by V and restricting both B and A to V we may assume without any loss of generality

that B = C(X)⊗D. By Theorem 2.8, there is an exhaustive sequence {φk : Ak → A} such that Ak ∈ Dlk(X)

with lk ≤ dim(X). Let us regard D as the subalgebra of constant functions of B = C(X)⊗D and denote

by j the corresponding inclusion map. Applying Proposition 2.2 for the weakly semiprojective C∗-algebra

D and the map φ ◦ j, after passing to a subsequence of (Ak)k, if necessary, we construct a sequence of ∗-

homomorphisms ψ0
k : D → Ak such that their canonical C(X)-linear extension ψk : B → Ak form a sequence

of diagrams

B
φ

//

ψk   

A>>

φk

Ak ,

satisfying that ‖φkψk(b)− φ(b)‖ → 0 for all b ∈ B, as k →∞. Since K∗(D) is finitely generated and satisfies

the UCT, we can moreover arrange that [φk ◦ ψk ◦ j] = [φ ◦ j] ∈ KK(D, A) for all k ≥ 1. This follows from [2,

Prop. 3.14 and Thm. 3.12]. In additition, since there is an isomorphism KKX(C(X,D), A) ∼= KK(D, A), it
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follows that [φk ◦ ψk] = [φ] ∈ KKX(B,A) and hence

[(φk)v ◦ (ψk)v] = [φv] ∈ KK(B(v), A(v)) (1)

for all points v ∈ X and k ≥ 1, see [10].

Since A is nowhere trivial, it follows from Theorem 2.4 that there exists x ∈ U such that K∗(φx) is not

bijective. By applying Lemma 3.4 to the exhaustive sequence {(φk)x : Ak(x)→ A(x)} we find a k, which we

now fix, such that K∗((φk)x) is bijective. It follows that K∗((ψk)x) is not bijective for this fixed k.

Let V be the open set given by Lemma 3.3 applied to Ak, U and x. Then x ∈ V ⊂ U and Ak(V ) ∼=

C(V )⊗D. Restricting the diagram above to V , we obtain a diagram

B(V )
φ

//

ψk ##

A(V )
;;

φk

Ak(V )

where both B(V ) and Ak(V ) are trivial and K∗((φk)v) ◦K∗((ψk)v) = K∗(φv) for all v ∈ V as a consequence

of (1). Since K∗((ψk)x) is not bijective, by Lemma 3.2 there is r > 0 such that K∗((ψk)v) is not bijective for all

v ∈ V ∩ U(X, r). Let W be an open ball whose closure is contained in V ∩ U(x, r) ⊂ U . It follows by Lemma

2.9 (iii) that K∗(φv) is not bijective for any v ∈W .

Proof of Theorem 3.1. By Theorem 2.8, there is an exhaustive sequence {Ak}k, such that Ak ∈ Dlk(X), lk ≤

dim(X) and that the maps φk : Ak → A are C(X)-linear and fiberwise injective ∗-homomorphisms for all k.

Seeking a contradiction suppose for each open set V 6= ∅, A(V ) � C(V )⊗D.

Apply Lemma 3.5 to φ1 : A1 → A to find an open set V1 6= ∅ such that K∗((φ1)v) is not bijective for all

v ∈ V 1. Next, apply Lemma 3.5 again for φ2 : A2(V 1)→ A(V 1) and V1 to find a nonempty open set V2 such

that V 2 ⊂ V1 and K∗((φ2)v) is not bijective for all v ∈ V 2. Using the same procedure inductively, one finds a

sequence of open sets {Vk}k with Vk ⊃ V k+1, such that K∗((φk)v) is not bijective for all v ∈ V k and k ≥ 1.

Choose x ∈
⋂∞
k=1 V k and note that {Ak(x)}k is an exhaustive sequence for A(x) such that none of the

maps K∗((φk)x) : K∗(Ak(x))→ K∗(A(x)) are bijective. By Lemma 3.4 this implies that K∗(A(x)) � K∗(D),

and this is a contradiction.

Proof of Theorem 1.1. Let U be the family of all open subsets U of X such that A(U) is trivial. Since X is

compact metrizable, we can find a sequence {Un}n in U whose union is equal to the union of all elements

of U . If we set U∞ =
⋃
n Un, then U∞ is dense in X by Theorem 3.1. Since A(U∞) = lim−→n

{A(U1 ∪ · · · ∪ Un)} =

lim−→n
{A(U1) + · · ·+A(Un)}, we see immediately that A(U∞) is locally trivial. Indeed the ideal A(U∞)(Un) of

A(U∞) determined by the open set Un is equal to A(Un) ∼= C0(Un)⊗D.
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Corollary 3.6. Fix n ∈ N ∪ {∞}. Let X be a finite dimensional compact metrizable space and A be a

continuous field over X such that A(x) ∼= On ⊗K for all x ∈ X . Then there exists a closed subset V of X

with nonempty interior such that A(V ) ∼= C(V )⊗On ⊗K.

The following example shows that the conclusion of Theorem 1.1 is in a certain sense optimal. Indeed,

given a nowhere dense closed subset F of any compact metrizable space X and a stable Kirchberg C∗-

algebra D with nontrivial K-theory, we construct a continuous field C∗-algebra A over X with all fibers

isomorphic to D, and such that the set of singular points of A coincides with F . It is worth mentioning that

the Lebesgue measure of a nowhere dense closed subset of [0, 1]n can be any nonnegative number < 1.

Example 3.7. Let F be a closed nowhere dense subset of X and set U = X \ F . Let D be a stable Kirchberg

algebra with K∗(D) 6= 0. Fix an injective ∗-homomorphism γ : D → D which factors through O2. It follows

that K∗(γ) = 0. Define a continuous field C∗-algebra over X by

A = {f ∈ C(X)⊗D | f(x) ∈ γ(D), ∀x ∈ F}.

It is clear that A(U) ∼= C0(U)⊗D. We show that F is the set of singular points of A. Let z ∈ F and let W be

an open neighborhood of z. We will show that A(W ) � C0(W )⊗D. To this purpose we verify that if V is a

compact neighborhood of z such that V ⊂W then A(V ) is not trivial.

Let us observe that

A(V ) = {f ∈ C(V )⊗D | f(x) ∈ γ(D), ∀x ∈ V ∩ F}.

We will assume that K0(D) 6= 0. The case K1(D) 6= 0 is similar. By Lemma 2.1(4) applied to the inclusion

A ⊂ C(X)⊗D, the projection maps onto fibers πx : A→ A(x) can be identified with the evaluation maps

f 7→ f(x). Thus πx(A) = D if x ∈ U and πx(A) = γ(D) if x ∈ F . Seeking a contradiction, let us assume

that A(V ) is trivial. Then we can find a ∗-homomorphism φ : D → A(V ) such that πx ◦ φ : D → A(x) is

a ∗-isomorphism for all x in V. In particular πz ◦ φ : D
∼=−→ γ(D) = A(z). Let e ∈ D be a projection such

that [e] 6= 0 in K0(D). Then there is a projection p0 ∈ D such that πz(φ(e)) = γ(p0) and so [γ(p0)] 6= 0 in

K0(γ(D)) = K0(A(z)). Let p ∈ A(V ) be the constant projection equal to γ(p0). By Lemma 2.1(1) there is a

closed neighborhood V0 of z that is contained in V such that ‖πx(φ(e))− πx(p)‖ < 1 for all x ∈ V0. Since F has

empty interior, there is a point y ∈ V0 \ F . Then ‖πy(φ(e))− πy(p)‖ < 1 and so ‖πy(φ(e))− γ(p0)‖ < 1. This

implies that [πy(φ(e))] = [γ(p0)] = 0 inK0(D) = K0(A(y)). On the other hand since πy ◦ φ is a ∗-isomorphism,

we must have K0(πy ◦ φ)([e]) 6= 0 since [e] 6= 0. We reached a contradiction and this completes the proof.
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[9] B. Neubüser, Semiprojektivität und Realisierungen von rein unendlichen C∗-Algebren, PhD thesis, Univer-

sität Münster, 2000, Preprintreihe des SFB 478- Geometrische Strukturen in der Mathematik; Heft 118.

[10] R. Meyer and R. Nest, C∗-algebras over topological spaces: the bootstrap class, Münster J. Math., 2 (2009),

215-252.
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