CENTRAL EXTENSIONS AND ALMOST REPRESENTATIONS

MARIUS DADARLAT AND FORREST GLEBE

ABSTRACT. For a sequence of unital tracial C^* -algebras (A_n, τ_n) , we construct a canonical central extension of the unitary group $U(\ell^{\infty}(\mathbb{N}, A_n)/c_0(\mathbb{N}, A_n))$ by $Q(\mathbb{R}) = c_0(\mathbb{N}, \mathbb{R})/\mathbb{R}^{\infty}$, using de la Harpe-Skandalis pre-determinant. For an asymptotic group homomorphism $\rho_n : \Gamma \to U(A_n)$, the corresponding pullback of the canonical central extension gives a 2-cohomology class in $H^2(\Gamma, Q(\mathbb{R}))$ which obstructs the perturbation of (ρ_n) to a sequence of true homomorphisms of groups $\pi_n : \Gamma \to GL(A_n)$. The pairing of the obstruction class with elements of $H_2(\Gamma, \mathbb{Z})$ yields numerical invariants in $\tau_n * (K_0(A_n))$ that subsume the winding number invariants of Kazhdan, Exel and Loring. For generality, we allow bounded asymptotic homomorphisms to map the group Γ into the general linear group of any sequence of tracial unital Banach algebras. In that case, the obstruction class belongs to $H^2(\Gamma, Q(\mathbb{C}))$, where $Q(\mathbb{C}) = c_0(\mathbb{N}, \mathbb{C})/\mathbb{C}^{\infty}$. As an application, we show that 2-cohomology obstructs various stability properties under weaker assumptions than those found in existing literature. In particular, we show that the full group C^* -algebra $C^*(\Gamma)$ of a discrete group Γ is not C^* -stable if $H^2(\Gamma, \mathbb{R}) \neq 0$ and in fact, Γ is not stable in operator norm with respect to tracial von Neumann algebras.

1. INTRODUCTION

There are several known methods to construct almost representations of a discrete group Γ that are far from true representations in the operator norm. At their core, these constructions are tied to certain cohomological invariants of Γ . Voiculescu and Kazhdan devised almost representations, relying either implicitly [20] or explicitly [15] on nontrivial central extensions of Γ . Ioana, Spaas and Wiersma [14] used projective representations and 2-cohomology to prove the failure of lifting properties for full C^* -algebras of countable groups with (relative) property (T). Burger, Ozawa, and Thom in [3] built uniform almost representations that cannot be uniformly perturbed to true representations, using nonzero elements in the kernel of the comparison map $H_b^2(\Gamma, \mathbb{R}) \to H^2(\Gamma, \mathbb{R})$ between bounded and standard group cohomology.

As noted in the paper [7] of de Chiffre, Glebsky, Lubotzky, and Thom, it is known that the question of approximating asymptotic representations by true representations is related to a question about splitting group extensions. In both papers [7] and [13], the authors use controlled asymptotics to construct extensions with abelian kernels. Then, they use the vanishing of 2cohomology with abelian (nontrivial Γ -module) coefficients to improve the defects of asymptotic representations, eventually proving stability.

In this paper we abelianize the kernel of the extension associated with a sequence of asymptotic homomorphisms using the de la Harpe-Skandalis determinant. Due to the tracial property, we obtain in fact a central extension. We then use nonvanishing of 2-cohomology to show non-stability by this method.

Date: May 29, 2025.

M.D. was partially supported by NSF grant $\#\mathrm{DMS}\text{-}2247334$

F.G. was supported by a Ross-Lynn grant in the 2023-2024 academic year.

Specifically, for a 2-cocycle $\sigma \in Z^2(\Gamma, \mathbb{R})$, set $\omega_n = e^{2\pi i \sigma/n} \in Z^2(\Gamma, \mathbb{T})$, and consider the canonical sequence of unital maps $\rho_n : \Gamma \to U(L(\Gamma, \omega_n))$ to the unitary groups of twisted group von Neumann algebras $L(\Gamma, \omega_n)$. These maps factor through both the full and the reduced twisted C^* -algebras $C^*(\Gamma, \omega_n)$ and $C_r^*(\Gamma, \omega_n)$ and they constitute an asymptotic homomorphism. Indeed, since $\rho_n(s)\rho_n(t)\rho_n(st)^{-1} = e^{2\pi i \sigma(s,t)/n}\mathbf{1}_n$ we have that

$$\lim_{n \to \infty} \|\rho_n(s)\rho_n(t) - \rho_n(st)\| = 0, \quad \forall s, t \in \Gamma.$$

Moreover, if the 2-cocycle σ is a bounded function, then

$$\lim_{n \to \infty} \sup_{s,t \in \Gamma} \|\rho_n(s)\rho_n(t) - \rho_n(st)\| = 0.$$

Theorem 1.1. Let Γ be a discrete countable group. Let σ be a normalized 2-cocycle with $[\sigma] \in H^2(\Gamma, \mathbb{R}) \setminus \{0\}$. For the canonical sequence of maps $\rho_n : \Gamma \to U(L(\Gamma, e^{2\pi i \sigma/n}))$, there exists no sequence of group homomorphisms $\pi_n : \Gamma \to GL(L(\Gamma, e^{2\pi i \sigma/n}))$ such that $\lim_{n\to\infty} \|\rho_n(s) - \pi_n(s)\| = 0$, for all $s \in \Gamma$.

As a corollary, we obtain the following

Theorem 1.2. Let Γ be a discrete countable group.

- (1) If $H^2(\Gamma, \mathbb{R}) \neq 0$, then Γ is not local-to-local stable with respect the class of separable unital tracial C^{*}-algebras.
- (2) If the comparison map $J: H^2_b(\Gamma, \mathbb{R}) \to H^2(\Gamma, \mathbb{R})$ is nonzero, then Γ is not uniform-tolocal stable with respect the class of separable unital tracial C^* -algebras.

We refer the reader to Definition 5.1 for these notions of stability. The comparison map $J: H_b^2(\Gamma, \mathbb{R}) \to H^2(\Gamma, \mathbb{R})$ is known to be surjective for all hyperbolic groups, [18]. Thus from Theorem 1.2 we derive the following:

Corollary 1.3. Let Γ be a hyperbolic group. If $H^2(\Gamma, \mathbb{R}) \neq 0$, then Γ is not uniform-to-local stable with respect the class of unital tracial C^* -algebras.

Assuming furthermore that the twisted group C^* -algebras of Γ admit MF quotients, we derive nonstability properties of Γ with respect to unitary groups U(n), see Corollary 6.2 and

Theorem 1.4. If Γ is a countable discrete group and for some $[\sigma] \in H^2(\Gamma, \mathbb{R}) \setminus \{0\}$ there is a sequence $\theta_n \searrow 0$ so that for each n, the twisted full group C^* -algebra, $C^*(\Gamma, \sigma_{\theta_n})$ has a nonzero *MF* quotient, then Γ is not matricially stable.

Our approach is based on the construction of a canonical central extension

$$(1) 1 \longrightarrow Q(\mathbb{C}) \longrightarrow E \longrightarrow \operatorname{GL}(A) \longrightarrow 1$$

where $Q(\mathbb{C}) = c_0(\mathbb{N}, \mathbb{C})/c_{00}(\mathbb{N}, \mathbb{C})$ and where GL(A) is the group of invertible elements of the corona C^* -algebra $A = \ell^{\infty}(\mathbb{N}, A_n)/c_0(\mathbb{N}, A_n)$ for a given sequence of unital tracial C^* -algebras (A_n, τ_n) such that $\sup_n ||\tau_n|| < \infty$. For a group homomorphism $\rho : \Gamma \to \operatorname{GL}(A)$, the pullback of the extension (1) is a central extension whose cohomology class, denoted $[\rho] \in H^2(\Gamma, Q(\mathbb{C}))$, obstructs the lifting of ρ to a sequence a representations $\pi_n : \Gamma \to \operatorname{GL}(A_n)$. The construction of (1) is based on the de la Harpe-Skandalis (pre)determinant. For added generality, we allow A_n to be unital tracial Banach algebras. If A_n are C^* -algebras and one replaces $\operatorname{GL}(A)$ by the unitary group U(A), then one obtains a central extension as above with $Q(\mathbb{R}) = c_0(\mathbb{N}, \mathbb{R})/c_{00}(\mathbb{N}, \mathbb{R})$ in place of $Q(\mathbb{C})$. Furthermore we show that the class $[\rho] \in H^2(\Gamma, Q(\mathbb{R}))$ can be lifted to a class in $H^2(\Gamma, H)$ where

$$H := \frac{c_0(\mathbb{N}, \tau_{n*}(K_0(A_n)))}{c_{00}(\mathbb{N}, \tau_{n*}(K_0(A_n)))}.$$

This means that the components $\langle \rho_n, c \rangle$ of the Kronecker paring between $[\rho]$ and any 2-homology class $[c] \in H_2(\Gamma, \mathbb{Z})$ are eventually elements of $\tau_{n*}(K_0(A_n))$. We connect these components to push-forward images of elements of $K_0(\ell^1(\Gamma))$ under ρ_n by invoking an index theorem from [5], see Corollary 4.6.

While it was already known that the non-vanishing of $H^2(\Gamma, \mathbb{R})$ implies matricial nonstability for large classes of groups satisfying certain geometric conditions, see for example [9], [4], [5],[12],[11], [6], the viewpoint that we promote here leads to nonstability properties for general discrete groups with nonvanishing 2-cohomology.

The paper is organized as follows. Section 2 reviews the de la Harpe-Skandalis determinant and 2-(co)homology. Section 3 is devoted to the central extension (1) and the cohomology classes of its pullbacks arising from asymptotic homomorphisms. Section 4 discusses the connection with K-theory invariants associated an asymptotic homomorphisms. In Sections 5 and 6 we derive non-stability properties arising from nonvanishing of $H^2(\Gamma, \mathbb{R})$.

2. Preliminaries

Let A be a complex Banach algebra endowed with a continuous tracial linear map $\tau : A \to F$ to a complex Banach space F. Thus $\tau(xy) = \tau(yx)$ for all $x, y \in A$. The canonical extension of τ to the algebra $M_{\infty}(A)$ is denoted again by τ . If $F = \mathbb{C}$, then the map τ is called a trace and we say that A is a tracial Banach algebra.

If A has a unit, $GL_n(A)$ represents the group of invertible elements in $M_n(A)$, equipped with the topology induced by the norm. If A lacks a unit, let \widetilde{A} denote the algebra obtained by adjoining a unit, which becomes a Banach algebra under a suitable norm. In this case, $GL_n(A)$ refers to the topological subgroup of $GL_n(\widetilde{A})$ consisting of elements of the form 1 + a, where $a \in M_n(A)$. In all instances, $GL_{\infty}(A)$ denotes the inductive limit of $(GL_n(A))_{n\geq 1}$, with respect to the inclusions $a \mapsto \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$. This is a topological group, and its connected component is denoted by $GL_{\infty}^0(A)$.

Definition 2.1. Define $L_{\tau} : \{ u \in GL_{\infty}(A) : ||u - 1|| < 1 \} \to F$ by

$$L_{\tau}(u) = \frac{1}{2\pi i} \tau(\log(u))$$

where log is defined using a power series centered at 1, $\log(u) = -\sum_{n=1}^{\infty} (1-u)^n/n$.

Note that $\|\log(u)\| \le 2\|u-1\|$ if $\|u-1\| < 1/2$.

In order to prove certain properties of L_{τ} , it will be helpful to appeal to de la Harpe-Skandalis pre-determinant.

Definition 2.2 ([8]). Let $\xi : [0,1] \to \operatorname{GL}^0_{\infty}(A)$ be a piecewise-smooth, continuous function. The de la Harpe-Skandalis pre-determinant is defined by

$$\widetilde{\Delta}_{\tau}(\xi) = \frac{1}{2\pi i} \tau \left(\int_0^1 \dot{\xi}(t) \xi(t)^{-1} dt \right) \in F.$$

Proposition 2.3 ([8]). For paths in $GL^0_{\infty}(A)$, we have

- (a) If multiplication of paths is defined pointwise, $\widetilde{\Delta}_{\tau}(\xi \cdot \eta) = \widetilde{\Delta}_{\tau}(\xi) + \widetilde{\Delta}_{\tau}(\eta)$.
- (b) If $||\xi(t) 1|| < 1$ for all t, then $\widetilde{\Delta}_{\tau}(\xi) = \frac{1}{2\pi i} (\tau(\log(\xi(1)) \log(\xi(0)))).$
- (c) If ξ is homotopic to η with fixed endpoints, then $\widetilde{\Delta}_{\tau}(\xi) = \widetilde{\Delta}_{\tau}(\eta)$.
- (d) If $v \in \operatorname{GL}_{\infty}(A)$, then $\Delta_{\tau}(v\xi v^{-1}) = \Delta_{\tau}(\xi)$.
- (e) Let $p \in M_{\infty}(A)$ be an idempotent and let ξ_p be the loop $\xi_p(t) = (1-p) + e^{2\pi i t} p$, $t \in [0,1]$; then $\widetilde{\Delta}(\xi_p) = \tau(p)$.

For $u \in \operatorname{GL}_{\infty}(A)$ with ||u-1|| < 1, set $\xi_u(t) = (1-t)1 + tu$. Then by (b) above, it follows that

(2)
$$L_{\tau}(u) = \widetilde{\Delta}_{\tau}(\xi_u).$$

Proposition 2.4. Let A and $\tau : A \to F$ be as above. Then

- (1) If $||u_i 1|| < 1/4$, i = 1, 2, then $L_{\tau}(u_1 u_2) = L_{\tau}(u_1) + L_{\tau}(u_2)$.
- (2) For any $u, v \in GL_{\infty}(A)$ with ||u 1|| < 1, we have $L_{\tau}(u) = L_{\tau}(vuv^{-1})$.
- (3) If ||u-1|| < 1, then $L_{\tau}(u^{-1}) = -L_{\tau}(u)$.

Proof. (1) By the above discussion, it suffices to show that

$$\widetilde{\Delta}_{\tau}(\xi_{u_1u_2}) = \widetilde{\Delta}_{\tau}(\xi_{u_1}) + \widetilde{\Delta}_{\tau}(\xi_{u_2}).$$

By Proposition 2.3 (a), the right side is equal to $\widetilde{\Delta}_{\tau}(\xi_{u_1}\xi_{u_2})$. By Proposition 2.3 (c) it suffices to find a fixed-endpoint homotopy from $\xi_{u_1u_2}$ to $\xi_{u_1}\xi_{u_2}$. To do this, define

 $H(s,t) = s\xi_{u_1u_2}(t) + (1-s)\xi_{u_1}(t)\xi_{u_2}(t).$

One checks immediately that ||H(s,t) - 1|| < 1, so we are done.

(2) Note that

$$L_{\tau}(vuv^{-1}) = \widetilde{\Delta}_{\tau}(\xi_{vuv^{-1}}) = \widetilde{\Delta}_{\tau}(v\xi_uv^{-1}) = \widetilde{\Delta}_{\tau}(\xi_u) = L_{\tau}(u)$$

(3) If ||u - 1|| < 1, then

$$L_{\tau}(u^{-1}) = \widetilde{\Delta}_{\tau}(\xi_{u^{-1}}) = \widetilde{\Delta}_{\tau}(u^{-1} \cdot \xi_u(1-t)) = \widetilde{\Delta}_{\tau}(u^{-1}) + \widetilde{\Delta}_{\tau}(\xi_u(1-t)) = 0 - \widetilde{\Delta}_{\tau}(\xi_u) = -L_{\tau}(u)$$

Definition 2.5 ([8]). The de la Harpe-Skandalis determinant is the group homomorphism defined by the mapping

$$\Delta_{\tau} : \mathrm{GL}^0_{\infty}(A) \longrightarrow F/\tau_*(K_0(A))$$

which associates to an element u in the domain, the class modulo $\tau_*(K_0(A))$ of $\widetilde{\Delta}_{\tau}(\xi)$, where ξ is any piecewise differentiable path in $\operatorname{GL}^0_{\infty}(A)$ from 1 to u. If A is not unital, one extends τ to \tilde{A} by putting $\tau(1) = 0$.

Since the range of Δ_{τ} is an abelian group, Δ_{τ} vanishes on the commutator subgroup $[\operatorname{GL}^0_{\infty}(A), \operatorname{GL}^0_{\infty}(A)] = [\operatorname{GL}_{\infty}(A), \operatorname{GL}_{\infty}(A)]$. The equality of these commutator subgroups is a well-known consequence of Whitehead's lemma.

We will use homology and cohomology with coefficients in abelian groups Q viewed as trivial Γ -modules. The reader is referred to [2, Chapter II.3] for more background information. Let $C_k(\Gamma)$ consist of formal linear combinations of elements of Γ^k with coefficients in Q. We write a typical element of $C_2(\Gamma)$ as

$$\sum_{j=1}^{m} k_j [a_j | b_j]$$

with $a_j, b_j \in \Gamma$ and $k_j \in Q$. There are boundary maps $\partial_2 : C_2(\Gamma) \to C_1(\Gamma)$ defined by

$$\partial_2[a|b] = [a] - [ab] + [b]$$

and $\partial_3: C_3(\Gamma) \to C_2(\Gamma)$ defined by

$$\partial_3[a|b|c] = [b|c] - [ab|c] + [a|bc] - [a|b].$$

Then $H_2(\Gamma; Q) := \ker(\partial_2) / \operatorname{Im}(\partial_3)$. An element of $Z_2(\Gamma, Q) := \ker(\partial_2)$ is referred to as a 2-cycle and an element in $\operatorname{Im}(\partial_3)$ is referred to as a 2-boundary.

Let us recall now the definition of 2-cohomology $H^2(\Gamma, Q)$. A 2-cocycle $\sigma : \Gamma^2 \to Q$ is a function that satisfies the equation

(3)
$$\sigma(a,b) + \sigma(ab,c) = \sigma(a,bc) + \sigma(b,c), \text{ for all } a,b,c \in \Gamma.$$

The group of cocycles is denoted by $Z^2(\Gamma, Q)$. A 2-coboundary is a 2-cocycle that can be written in the form

$$\sigma(a,b) = \partial \gamma(a,b) = \gamma(a) - \gamma(ab) + \gamma(b)$$

for some function $\gamma : \Gamma \to Q$. $H^2(\Gamma; Q)$ is defined to be the group of 2-cocycles, mod the subgroup of 2-coboundaries. The group operation is pointwise addition. By replacing σ by $\sigma + \partial \gamma$, where $\gamma : \Gamma \to Q$ is defined by $\gamma(a) = -\sigma(e, a)$ for $a \in \Gamma$, one can obtain a 2-cocycle satisfying

$$\sigma(a, e) = \sigma(e, a) = 0.$$

A cocycle satisfying the above equation is called *normalized*.

The Kronecker pairing is the bilinear map $H^2(\Gamma; Q) \times H_2(\Gamma; \mathbb{Z}) \to Q$ defined by

$$\langle [\sigma], [c] \rangle = \sum_{j=1}^{m} k_j \sigma(a_j, b_j),$$

where $c = \sum_{j=1}^{m} k_j [a_j | b_j] \in Z_2(\Gamma, \mathbb{Z})$. By the universal coefficient theorem, if Q is divisible, then the Kronecker pairing induces an isomorphism $H^2(\Gamma; Q) \cong \text{Hom}(H_2(\Gamma, \mathbb{Z}), Q)$.

By a classic result in algebra [2], the second cohomology group $H^2(\Gamma, Q)$ classifies all central extensions of Γ by Q. Given a central extension,

$$0 \to Q \stackrel{\jmath}{\longrightarrow} E \stackrel{q}{\longrightarrow} \Gamma \to 1$$

we can associate to it a normalized 2-cocycle σ by choosing a unital set theoretic section γ of q and define $\sigma(a,b) = j^{-1}(\gamma(a)\gamma(b)\gamma(ab)^{-1})$. Conversely, if a normalized 2-cocycle σ is given, one constructs a central extension where the set $E = Q \times \Gamma$ is endowed with multiplication $(x,a) \cdot (y,b) = (x+y+\sigma(a,b),ab)$, and j(x) = (x,1), q(x,a) = a, $x, y \in Q$ and $a, b \in \Gamma$. We also consider the section $\gamma : \Gamma \to E$, $\gamma(a) = (0,a)$. Then $\gamma(a)\gamma(b)\gamma(ab)^{-1} = (\sigma(a,b),1) = j(\sigma(a,b))$.

3. CANONICAL CENTRAL EXTENSIONS

Let $(A_n)_n$ be a sequence of unital Banach algebras. Consider the Banach algebra

$$A = \ell^{\infty}(\mathbb{N}, A_n) = \{(a_n)_n \in \prod A_n : \sup_n ||a_n|| < \infty\}$$

and its two-sided ideals

$$J = c_0(\mathbb{N}, A_n) = \{(a_n)_n \in \prod A_n : \lim_n \|a_n\| = 0\}.$$

 $J_0 = c_{00}(\mathbb{N}, A_n) = \{(a_n)_n \in \prod A_n : \exists k \text{ such that } a_n = 0 \text{ for } n \ge k\}.$

 $J_0 \subset J$ and J is closed in A. The unit of A_n is denoted by 1_n . Consider the following groups (we will adjoin the unit of A to J in the definitions of GL(J) and $GL(J_0)$):

$$GL(A) \cong P = \{ (u_n)_n \in \prod_{n=1}^{\infty} GL(A_n) : \sup_n ||u_n|| < \infty \text{ and } \sup_n ||u_n^{-1}|| < \infty \},\$$

$$GL(J) \cong P_1 = \{ (u_n)_n \in P : ||u_n - 1_n|| \to 0 \},\$$

$$GL(J_0) \cong P_0 = \bigoplus_{n=1}^{\infty} GL(A_n) = \{ (u_n)_n \in P_1 : \exists k \text{ such that } u_n = 1_n \text{ for } n \ge k \}$$

The inclusions of normal subgroups $P_0 \subset P_1 \subset P$ give an exact sequence of groups

(4)
$$1 \to \operatorname{GL}(J)/\operatorname{GL}(J_0) \to \operatorname{GL}(A)/\operatorname{GL}(J_0) \xrightarrow{\nu} \operatorname{GL}(A/J) \to 1$$

(5) or equivalently
$$1 \to P_1/P_0 \to P/P_0 \xrightarrow{\nu} P/P_1 \to 1$$

We will abuse notation and write elements of P/P_0 as $(u_n)_n$ with the understanding that finitely many coordinates u_n are neither specified nor determined.

Suppose now that each Banach algebra A_n admits a trace τ_n such that $\sup_n ||\tau_n|| < \infty$. Then we define a continuous tracial linear map

$$\tau: A \to \ell^{\infty}(\mathbb{N}, \mathbb{C}), \quad (a_n)_n \mapsto (\tau_n(a_n))_n.$$

Note that $\tau(J) \subset c_0(\mathbb{N}, \mathbb{C})$. We use the map L_{τ} from Definition 2.1 to construct a push-out of the extension (5) to a central extension. The group P_1/P_0 has a P/P_0 action given by $w \cdot u = wuw^{-1}$ with $w \in P/P_0$ and $u \in P_1/P_0$. We view the group

$$Q(\mathbb{C}) := c_0(\mathbb{N}, \mathbb{C}) / c_{00}(\mathbb{N}, \mathbb{C})$$

as a trivial P/P_0 -module.

Lemma 3.1. The map $L_{\tau} : \{u \in \mathrm{GL}^0(A) : ||u - 1|| < 1\} \to \ell^{\infty}(\mathbb{N}, \mathbb{C})$ from Definition 2.1 induces a P/P_0 -equivariant group homomorphism $L : P_1/P_0 \to Q(\mathbb{C})$ such that

(6)
$$L\left(\left(u_{n}\right)_{n}\right) = \left(\frac{1}{2\pi i}\tau_{n}\left(\log u_{n}\right)\right)_{n}.$$

Proof. Note that for any $\varepsilon > 0$, each coset $[u] \in \operatorname{GL}(J)/\operatorname{GL}(J_0)$ contains elements $u \in \operatorname{GL}^0(J)$ with $||u-1|| < \varepsilon$. Define $L[u] := L_{\tau}(u) + c_{00}(\mathbb{N}, \mathbb{C}) \in Q(\mathbb{C})$. $L_{\tau}(u) \in c_0(\mathbb{N}, \mathbb{C})$ since $|\tau_n(\log u_n)| \le 2||\tau_n|| ||u_n - 1||$ if $||u_n - 1|| < 1/2$. Proposition 2.4, (1)-(2) and the functorial properties of $\widetilde{\Delta}_{\tau}$ imply the desired properties.

Using L, we consider the push-out of the extension (5) described by the diagram:

$$1 \longrightarrow P_1/P_0 \longrightarrow P/P_0 \longrightarrow P/P_1 \longrightarrow 1$$
$$\downarrow^L \qquad \qquad \downarrow^{\bar{L}} \qquad \qquad \parallel$$
$$1 \longrightarrow Q(\mathbb{C}) \longrightarrow E \xrightarrow{\nu} P/P_1 \longrightarrow 1$$

Here $E \cong (Q(\mathbb{C}) \times P/P_0) / \{(-L(u), u) : u \in P_1/P_0\}, \overline{L}(w) = (0, w) \text{ and } \nu(r, w) = w.$

Since $Q(\mathbb{C})$ is a trivial P/P_0 -module, it is also a trivial *E*-module, so that the push-out is central extension.

Definition 3.2. For a sequence of tracial Banach algebras (A_n, τ_n) with $\sup_n ||\tau_n|| < \infty$,

(7) $1 \longrightarrow Q(\mathbb{C}) \longrightarrow E \longrightarrow P/P_1 \longrightarrow 1$

where $P/P_1 \cong GL(\ell^{\infty}(\mathbb{N}, A_n)/c_0(\mathbb{N}, A_n))$, is the central extension canonically associated to (A_n, τ_n) . The corresponding 2-cohomology class is denoted by $[E] \in H^2(P/P_1, Q(\mathbb{C}))$.

Remark 3.3. Let Γ be a discrete group. By general Banach algebra theory one verifies that the following conditions are equivalent for a sequence of unital maps $(\rho_n)_n$:

$$\rho_n: \Gamma \to GL(A_n)$$

- (1) $\lim_{n\to\infty} \|\rho_n(a)\rho_n(b) \rho_n(ab)\| = 0$ and $\sup_n ||\rho_n(a)|| < \infty, a, b \in \Gamma.$
- (2) $\lim_{n\to\infty} \|\rho_n(a)\rho_n(b)\rho_n(ab)^{-1} 1_n\| = 0$ and $\sup_n ||\rho_n(a)|| < \infty, a, b \in \Gamma.$
- (3) $\lim_{n\to\infty} \|\rho_n(a)\rho_n(b) \rho_n(ab)\| = 0$ and $\sup_n(||\rho_n(a)|| + ||\rho_n(a)^{-1}||) < \infty, a, b \in \Gamma.$

Thus, we can view the sequence $(\rho_n)_n$ as a unital map $\rho: \Gamma \to P$ with the property that the composition

$$\Gamma \xrightarrow{\rho} P \xrightarrow{\nu} P/P_1$$

defines a group homomorphism $\dot{\rho} = \nu \circ \rho : \Gamma \to P/P_1$. We construct the pull-back of the extension (7) as described in diagram below,

where $E_{\rho} = \{(e, a) \in E \times \Gamma : \nu(e) = \dot{\rho}(a)\}$ and $\nu'(e, a) = a$. The isomorphism class of the central extension

(8)
$$1 \to Q(\mathbb{C}) \to E_{\rho} \to \Gamma \to 1$$

depends solely on $\dot{\rho}$. From this, it follows that if $(\rho_n)_n$ and $(\varphi_n)_n$ are two sequences of unital maps as in Remark 3.3 with the additional condition that $||\rho_n(a)\varphi_n(a)^{-1} - 1|| \to 0$, then $\dot{\rho} = \dot{\varphi}$ and hence the extension associated to each sequence is the same. In particular, observe that if there is a sequence of representations $\pi_n : \Gamma \to GL(A_n)$ such that

(9)
$$\left\|\rho_n(a)\pi_n(a)^{-1}-1\right\| \to 0, \text{ for all } a \in \Gamma,$$

this will induce a group homomorphism $\pi : \Gamma \to P/P_0 \xrightarrow{\bar{L}} E$, which in turn will produce a splitting $s : \Gamma \to E_\rho$ of the extension (8), given by $s(a) = (\pi(a), a), a \in \Gamma$. Note that $s(a) \in E_\rho$ since $\rho(a)\pi(a)^{-1} \in P_1/P_0$ by condition (9).

It follows by construction, that the central extension (8) is associated to the 2-cocycle

(10)
$$\omega(a,b) = (\omega_n(a,b))_n = \left(\frac{1}{2\pi i}\tau_n\left(\log\left(\rho_n(a)\rho_n(b)\rho_n(ab)^{-1}\right)\right)\right) = L(\rho(a)\rho(b)\rho(ab)^{-1}).$$

Notation 3.4. The 2-cohomology class of the extension (8) is the class of 2-cocycle ω and is denoted by $[\rho] \in H^2(\Gamma, Q(\mathbb{C}))$. Evidently, we have $[\rho] = \dot{\rho}^*[E]$.

By Remark 3.3, condition (9) is equivalent to $\|\rho_n(a) - \pi_n(a)\| \to 0$, $a \in \Gamma$. The above discussion proves the following theorem:

Theorem 3.5. Let (A_n, τ_n) be a sequence of tracial Banach algebras with $\sup_n ||\tau_n|| < \infty$. Any sequence of unital maps $\rho_n : \Gamma \to \operatorname{GL}(A_n)$ satisfying $||\rho_n(a)\rho_n(b) - \rho_n(ab)|| \to 0$ and $\sup_n ||\rho_n(a)|| < \infty$ for all $a, b \in \Gamma$, defines a 2-cocycle $\omega \in Z^2(\Gamma, Q(\mathbb{C}))$ given by equation (10). If there exists a sequence of group homomorphisms $\pi_n : \Gamma \to \operatorname{GL}(A_n)$ so that $||\rho_n(a) - \pi_n(a)|| \to 0$, then ω is cohomologous to 0, i.e. $[\rho] = 0$ in $H^2(\Gamma, Q(\mathbb{C}))$.

One can investigate the nontriviality of $[\rho]$ by pairing it with 2-cycles. Note that if

(11)
$$c = \sum_{j=1}^{m} k_j [a_j | b_j] \in Z_2(\Gamma, \mathbb{Z}),$$

then

(12)
$$\langle [\rho], [c] \rangle = L\left(\prod_{j=1}^{m} \left(\rho(a_j)\rho(b_j)\rho(a_jb_j)^{-1}\right)^{k_j}\right).$$

Corollary 3.6. Let (A_n, τ_n) and (ρ_n) be as in Theorem 3.5. Assume furthermore that there is a sequence of 2-cocycles $\sigma_n \in Z^2(\Gamma, \mathbb{R})$ such that $\rho_n(a)\rho_n(b)\rho_n(ab)^{-1} = e^{2\pi i \sigma_n(a,b)} \mathbf{1}_n$ and $\sigma_n(a,b) \to 0$ for all $a, b \in \Gamma$. Then $[\rho]$ is represented by the 2-cocycle $\omega \in Z^2(\Gamma, Q(\mathbb{C})), \omega(a,b) =$ $(\sigma_n(a,b)\tau_n(\mathbf{1}_n))_n$. In particular if there is $c \in Z_2(\Gamma, \mathbb{Z})$ such that for infinitely many $n, \langle \sigma_n, c \rangle \neq 0$ and $\tau_n(\mathbf{1}_n) \neq 0$, then there exists no sequence of group homomorphisms $\pi_n : \Gamma \to \operatorname{GL}(A_n)$ so that $||\rho_n(a) - \pi_n(a)|| \to 0$, for all $a \in \Gamma$.

Proof. By Theorem 3.5, the class $[\rho] \in H^2(\Gamma, Q(\mathbb{C}))$ is given by a 2-cocycle ω with components

$$\omega_n(a,b) = \frac{1}{2\pi i} \tau_n \left(\log \left(\rho_n(a) \rho_n(b) \rho_n(ab)^{-1} \right) \right)_n = \frac{1}{2\pi i} \tau_n \left(\log e^{2\pi i \sigma_n(a,b)} \right) = \sigma_n(a,b) \tau(1_n).$$

The pairing $H^2(\Gamma, Q(\mathbb{C})) \times H_2(\Gamma, \mathbb{Z}) \to Q(\mathbb{C})$ yields

$$\langle [\rho], [c] \rangle = (\langle \sigma_n, c \rangle \tau_n(1_n))_n \neq 0$$

and hence $[\rho] \neq 0$ in $H^2(\Gamma, Q(\mathbb{C}))$.

The class $[\rho]$ satisfies the following invariance property.

Proposition 3.7. Suppose that $\phi_n : (A_n, \tau_n) \to (A'_n, \tau'_n)$ is a sequence of contractive unital homomorphisms of tracial Banach algebras as above, such that $\tau'_n \circ \phi_n = \tau_n$. Define $\rho'_n : A_n \to A'_n$ by $\rho'_n = \phi_n \circ \rho_n$. Then $[\rho'] = [\rho] \in H^2(\Gamma, Q(\mathbb{C}))$.

In particular, if we establish that the sequence $(\rho_n)_n$ is not perturbable to a sequence of homomorphisms by verifying that $[\rho] \neq 0$, then the same property holds for the sequence $(\rho'_n)_n$ even though A'_n might be significantly larger than A_n , for example a finite von Neumann algebra completion of A_n , or significantly smaller than A_n , for example a finite dimensional quotient of A_n .

Proof. By functoriality of the holomorphic calculus, since $\rho'_n = \phi_n \circ \rho_n$, we have

$$\tau'_n \left(\log \left(\rho'_n(a) \rho'_n(b) \rho'_n(ab)^{-1} \right) \right) = (\tau'_n \circ \phi_n) \left(\log \left(\rho_n(a) \rho_n(b) \rho_n(ab)^{-1} \right) \right).$$

The desired conclusion follows now from (10).

4. K-THEORY

In this section we connect the 2-cohomology class $[\rho]$ to K-theory invariants, see Proposition 4.2 and Corollary 4.6. These properties are not used for the non-stability results in the next two sections.

Let $\rho_n : \Gamma \to U(A_n)$ be an asymptotically multiplicative sequence of unital maps that satisfies the conditions from Remark 3.3, where A_n are tracial unital C^* -algebras.

Hopf's formula expresses the second homology of Γ as

$$H_2(\Gamma, \mathbb{Z}) = \frac{R \cap [F, F]}{[R, F]}$$

in terms of a free presentation $1 \to R \to F \longrightarrow \Gamma \to 1$. Each element $x \in H_2(\Gamma, \mathbb{Z})$ can be represented by a product of commutators $\prod_{i=1}^{g} [a_i, b_i]$ with $a_i, b_i \in F$, for some integer $g \geq 1$, such that $\prod_{i=1}^{g} [\bar{a}_i, \bar{b}_i] = 1$, where \bar{a}_i and \bar{b}_i are the images in Γ of a_i and b_i . There is an isomorphism $\varphi : \frac{R \cap [F,F]}{[R,F]} \to H_2(\Gamma,\mathbb{Z})$ from the Hopf's realization of $H_2(\Gamma,\mathbb{Z})$ to

the the same group defined via the bar-resolution. By [2, chapter II.5 Exercise 4], if $r \in H_2(\Gamma, \mathbb{Z})$ is represented by $\prod_{i=1}^{g} [a_i, b_i]$ in the Hopf formula, then a 2-cycle representative for the class of $\varphi(r)$ is the element $\sum_{i=1}^{g} d_i$, where

(13)
$$d_{i} = [I_{i-1}|\bar{a}_{i}] + [I_{i-1}\bar{a}_{i}|\bar{b}_{i}] - [I_{i-1}\bar{a}_{i}\bar{b}_{i}\bar{a}_{i}^{-1}|\bar{a}_{i}] - [I_{i}|\bar{b}_{i}]$$

and $I_i = [\bar{a}_1, b_1] \cdots [\bar{a}_i, b_i].$

Proposition 4.1. Let $r \in H_2(\Gamma, \mathbb{Z})$ be represented by $\prod_{i=1}^g [a_i, b_i]$ in the Hopf formula. Then

(14)
$$\langle [\rho], [\varphi(r)] \rangle = L\left(\prod_{i=1}^{g} [\rho(\bar{a}_i), \rho(\bar{b}_i)]\right)$$

Proof. Let $[\varphi(r)] = \sum_{i=1}^{g} [d_i]$ with d_i as in (13). We compute $\langle [\rho], [d_i] \rangle = L(\rho(I_{i-1})\rho(\bar{a}_i)\rho(I_{i-1}\bar{a}_i)^{-1}) + L(\rho(I_{i-1}\bar{a}_i)\rho(\bar{b}_i)\rho(I_{i-1}\bar{a}_i\bar{b}_i)^{-1})$ + $L(\rho(I_{i-1}\bar{a}_i\bar{b}_i)\rho(\bar{a}_i)^{-1}\rho(I_{i-1}\bar{a}_i\bar{b}_i\bar{a}_i^{-1})^{-1}) + L(\rho(I_i\bar{b}_i)\rho(\bar{b}_i)^{-1}\rho(I_i)^{-1})$ $=L(\rho(I_{i-1})\rho(\bar{a}_i)\rho(\bar{b}_i)\rho(\bar{a}_i)^{-1}\rho(I_i\bar{b}_i)^{-1}\rho(I_i\bar{b}_i)\rho(\bar{b}_i)^{-1}\rho(I_i)^{-1})$ $= L(\rho(I_{i-1})[\rho(\bar{a}_i), \rho(\bar{b}_i)]\rho(I_i)^{-1}).$

Consequently,

$$\langle [\rho], [\varphi(r)] \rangle = \sum_{i=1}^{g} L(\rho(I_{i-1})[\rho(\bar{a}_i), \rho(\bar{b}_i)]\rho(I_i)^{-1}) = L\left(\rho(I_1)\left(\prod_{i=1}^{g} [\rho(\bar{a}_i), \rho(\bar{b}_i)]\right)\rho(I_g)^{-1}\right).$$

ce $I_g = I_1 = 1$, we obtain the desired conclusion. \Box

Since $I_g = I_1 = 1$, we obtain the desired conclusion.

Consider the groups

$$\ell^{\infty}(\mathbb{N}, \tau_{n*}(K_0(A_n)) = \{(x_n)_n \in \ell^{\infty}(\mathbb{N}, \mathbb{C}) : x_n \in \tau_{n*}(K_0(A_n)), \ \forall n \in \mathbb{N}\}.$$

$$c_0(\mathbb{N}, \tau_{n*}(K_0(A_n)) = \{(x_n)_n \in c_0(\mathbb{N}, \mathbb{C}) : x_n \in \tau_{n*}(K_0(A_n)), \ \forall n \in \mathbb{N}\}.$$

$$c_{00}(\mathbb{N}, \tau_{n*}(K_0(A_n)) = \{(x_n)_n \in c_{00}(\mathbb{N}, \mathbb{C}) : x_n \in \tau_{n*}(K_0(A_n)), \ \forall n \in \mathbb{N}\}.$$

Consider the following subgroup H of $Q(\mathbb{C}) = c_0(\mathbb{N}, \mathbb{C})/c_{00}(\mathbb{N}, \mathbb{C})$ and the corresponding quotient group

$$H := \frac{c_0(\mathbb{N}, \tau_{n*}(K_0(A_n)))}{c_{00}(\mathbb{N}, \tau_{n*}(K_0(A_n)))}, \quad Q(\mathbb{C})/H \subset \frac{\ell^{\infty}(\mathbb{N}, \mathbb{C}/\tau_{n*}(K_0(A_n)))}{c_{00}(\mathbb{N}, \mathbb{C}/\tau_{n*}(K_0(A_n)))}.$$

Let $q: Q(\mathbb{C}) \to Q(\mathbb{C})/H$ be the quotient map. Equation (6) shows that the components of the map $\Delta := q \circ L: P_1/P_0 \to Q(\mathbb{C})/H$ can be expressed as:

$$\Delta(\mathbf{u}) = (\Delta_{\tau_n}(u_n))_n$$

Proposition 4.2. If $c \in Z_2(\Gamma, \mathbb{Z})$, then $\langle [\rho], [c] \rangle \in H$.

Proof. By Proposition 4.1, we may take $c = \varphi(r)$ with r a commutator and we have

(15)
$$q(\langle [\rho], [\varphi(r)] \rangle) = q \circ L\left(\prod_{i=1}^{g} [\rho(\bar{a}_i), \rho(\bar{b}_i)]\right) = \Delta\left(\prod_{i=1}^{g} [\rho(\bar{a}_i), \rho(\bar{b}_i)]\right) = 0$$

since each Δ_{τ_n} vanishes on the commutator subgroup $[\operatorname{GL}_{\infty}(A_n), \operatorname{GL}_{\infty}(A_n)].$

Corollary 4.3. $[\rho]$ belongs to the image of the map $H^2(\Gamma, H) \to H^2(\Gamma, Q(\mathbb{C}))$.

Proof. Since the sequence

$$H^2(\Gamma,H) \to H^2(\Gamma,Q(\mathbb{C})) \xrightarrow{q_*} H^2(\Gamma,Q(\mathbb{C})/H)),$$

is exact in the middle and both $Q(\mathbb{C})$ and $Q(\mathbb{C})/H$ are divisible groups, using the universal coefficient theorem, it suffices to show that the image of $[\rho]$ in $H^2(\Gamma, Q(\mathbb{C})/H)$) pairs trivially with any 2-cycle $c \in Z_2(\Gamma, \mathbb{Z})$. But this is exactly what we have verified in equation (15).

Remark 4.4. As a consequence of Proposition 4.2, we see that if c is a 2-cycle as in (11), then for all sufficiently large n:

$$\sum_{j=1}^{m} \frac{1}{2\pi i} k_j \tau_n \left(\log \left(\rho_n(a_j) \rho_n(b_j) \rho_n(a_j b_j)^{-1} \right) \right) = \tau_{n*}(y_n) \quad \text{for some} \quad y_n \in K_0(A_n).$$

It is the natural to inquire how $[c] \in H_2(G, \mathbb{Z})$ is related $y \in K_0(A_n)$. Assuming that A_n are C^* -algebras, we shall explain this by invoking an index formula from [5], which we review below.

Let $\beta^{\Gamma} : H_2(\Gamma, \mathbb{Z}) \cong H_2(B\Gamma, \mathbb{Z}) \to RK_0(B\Gamma)$ be the (rationally injective) homomorphism studied in [1], [17] and let $\alpha^{\Gamma} : H_2(\Gamma, \mathbb{Z}) \to K_0(\ell^1(\Gamma))$ be the composition $\alpha^{\Gamma} = \mu_1^{\Gamma} \circ \beta^{\Gamma}$ where $\mu_1^{\Gamma} : RK_0(B\Gamma) \to K_0(\ell^1(\Gamma))$ is the ℓ^1 -version of the assembly map of Lafforgue [16]. The linear extension $\rho : \ell^1(\Gamma) \to M_n(\mathbb{C})$ of a sufficiently multiplicative unital map $\rho : \Gamma \to U(n)$ satisfies the following:

Theorem 4.5 ([5]). Let $x \in H_2(\Gamma, \mathbb{Z})$ be represented by a product of commutators $\prod_{i=1}^{g} [a_i, b_i]$ with $a_i, b_i \in F$ and $\prod_{i=1}^{g} [\bar{a}_i, \bar{b}_i] = 1$. There exist a finite set $S \subset \Gamma$ and $\varepsilon > 0$ such that if (A, τ) is a tracial C^* -algebra and if $\rho : \Gamma \to U(A)$ is a unital map with $\|\rho(st) - \rho(s)\rho(t)\| < \varepsilon$ for all $s, t \in S$, then

(16)
$$\tau_*(\rho_{\sharp}(\alpha^{\Gamma}(x))) = \frac{1}{2\pi i} \tau\left(\log\left(\prod_{i=1}^g [\rho(\bar{a}_i), \rho(\bar{b}_i)]\right)\right).$$

Here, if we write $\alpha^{\Gamma}(x) = [p_0] - [p_1]$, where p_i are projections in matrices over $\ell^1(\Gamma)$, then $\rho_{\sharp}(\alpha^{\Gamma}(x)) = \rho_{\sharp}(p_0) - \rho_{\sharp}(p_1)$, where $\rho_{\sharp}(p_i) \in K_0(A)$ is the K-theory class of the perturbation of $(\mathrm{id} \otimes \rho)(p_i)$ to a projection via analytic functional calculus.

From Theorem 4.5 we see that if $c = \sum_{j=1}^{m} k_j [a_j | b_j] \in Z_2(\Gamma, \mathbb{Z})$, and if $x = \varphi^{-1}(c)$ is the corresponding element in the Hopf description of $H^2(\Gamma, \mathbb{Z})$, then for all sufficiently large n,

$$\tau_{n*}(\rho_{n\sharp}(\alpha^{\Gamma}(x))) = \sum_{j=1}^{m} \frac{1}{2\pi i} k_j \tau_n \left(\log \left(\rho_n(a_j) \rho_n(b_j) \rho_n(a_j b_j)^{-1} \right) \right).$$

Let $A = \ell^{\infty}(\mathbb{N}, A_n)$, $J = c_0(\mathbb{N}, A_n)$ and $\tau : A \to \ell^{\infty}(\mathbb{N}, \mathbb{C})$ be as in Section 3. Then we have an induced maps

$$\dot{\rho}_*: K_0(\ell^1(\Gamma)) \to K_0(A/J) \text{ and } \tau_*: K_0(A/J) \to \ell^\infty(\mathbb{N}, \mathbb{C})/c_{00}(\mathbb{N}, C).$$

Corollary 4.6. For any $c \in Z_2(\Gamma, \mathbb{Z})$, let $x = \varphi^{-1}(c)$ be the corresponding element in the Hopf description of $H_2(\Gamma, \mathbb{Z})$. Then

(17)
$$\tau_*(\dot{\rho}_*(\alpha^{\Gamma}(x)) = \langle [\rho], [c] \rangle.$$

5. C*-Algebra non-stability for groups with nontrivial 2-cohomology

Definition 5.1. Let Γ be a countable discrete group and let \mathcal{B} be a class of unital C^* -algebras.

(a) Γ is called local-to-local \mathcal{B} -stable if for any sequence of unital maps $\{\rho_n : \Gamma \to U(B_n)\}$ with $B_n \in \mathcal{B}$ and

(18)
$$\lim_{n \to \infty} \|\rho_n(st) - \rho_n(s)\rho_n(t)\| = 0, \text{ for all } s, t \in \Gamma,$$

there exists a sequence of homomorphisms $\{\pi_n : \Gamma \to U(B_n)\}$ such that

(19)
$$\lim_{n \to \infty} \|\rho_n(s) - \pi_n(s)\| = 0, \text{ for all } s \in \Gamma.$$

(b) Γ is called uniform-to-local \mathcal{B} -stable if for any sequence of unital maps $\{\rho_n : \Gamma \to U(B_n)\}$ that satisfies

(20)
$$\lim_{n \to \infty} \left(\sup_{s,t \in \Gamma} \|\rho_n(st) - \rho_n(s)\rho_n(t)\| \right) = 0,$$

there exists a sequence of homomorphisms $\{\pi_n : \Gamma \to U(B_n)\}$ satisfying (19).

Remark 5.2. Local-to-local \mathcal{B} -stability is equivalent to asking that for any finite set $F \subset \Gamma$ and any $\varepsilon > 0$, there exist a finite set $S \subset \Gamma$ and $\delta > 0$ with the property that for any unital map $\rho : \Gamma \to U(B), B \in \mathcal{B}$, with $\|\rho(s)\rho(t) - \rho(s)\| < \delta$ for all $s, t \in S$, there is a representation $\pi : \Gamma \to U(B)$ such that $\|\rho(s) - \pi(s)\| < \varepsilon$ for all $s \in F$. Uniform-to-local stability admits a characterization in the same vein. A map ρ as above is called an (S, δ) -representation.

Let Q be an abelian group with trivial Γ -action. If Q is a subgroup of \mathbb{R} (such as \mathbb{Z} , \mathbb{Q} or \mathbb{R}), we consider the bounded cohomology group $H_b^2(\Gamma, Q)$, which defined similarly to $H^2(\Gamma, Q)$, except that all cocycles and coboundaries are required to be bounded functions $\Gamma^k \to Q \subset \mathbb{R}$. There is an obvious canonical comparison map $J: H_b^2(\Gamma, Q) \to H^2(\Gamma, Q)$.

Notation 5.3. (Projective representations associated to 2-cocycles.) Let $\sigma \in Z^2(\Gamma, \mathbb{R})$ be a normalized 2-cocycle and let $0 \to \mathbb{R} \to E \xrightarrow{q} \Gamma \to 1$ be its associated extension; see preliminaries for a construction. For each $\theta \in [0, 1]$, we have a character $\mathbb{R} \to \mathbb{T}$, $r \mapsto e^{2\pi i \theta r}$ and the

corresponding 2-cocycle $\sigma_{\theta} \in Z^2(\Gamma, \mathbb{T}), \sigma_{\theta}(s,t) = e^{2\pi i \theta \sigma(s,t)}$. Consider the twisted full group C^* -algebra, $C^*(\Gamma, \sigma_{\theta})$ and its quotient map onto the reduced twisted group C^* -algebra, $p : C^*(\Gamma, \sigma_{\theta}) \to C^*_r(\Gamma, \sigma_{\theta}),$ [19]. By construction, there is a unital map $\rho_{\theta} : \Gamma \to C^*(\Gamma, \sigma_{\theta})$ that satisfies the equation

(21)
$$\rho_{\theta}(s)\rho_{\theta}(st)^{-1} = e^{2\pi i\theta\sigma(s,t)}, \ s,t \in \Gamma.$$

The map $\bar{\rho}_{\theta} := p \circ \rho_{\theta} : \Gamma \to C_r^*(\Gamma, \sigma_{\theta})$ coincides with the composition of the induced representation $\operatorname{Ind}_Q^E(\omega_{\theta})$ with the section γ and in fact $\bar{\rho}_{\theta} : \Gamma \to U(C_r^*(\Gamma, \sigma_{\theta})) \subset U(\ell^2(\Gamma))$, is given by $\bar{\rho}_{\theta}(s)\delta_t = \sigma_{\theta}(s, t)\delta_{st}$. There is a canonical tracial state $\tau : C_r^*(\Gamma, \sigma_{\theta}) \to \mathbb{C}$ induced by vector state $\tau(a) = \langle a\delta_e, \delta_e \rangle$. This induces a tracial state on $C^*(\Gamma, \sigma_{\theta})$. The corresponding twisted von Neumann algebra denoted $L(G, \sigma_{\theta})$, is the weak closure of $C_r^*(\Gamma, \sigma_{\theta})$.

Choose a sequence $\theta_n \searrow 0$ together with a sequence of unital homomorphisms $\pi_n : C^*(\Gamma, \sigma_{\theta_n}) \to A_n$ to tracial C^* -algebras (A_n, τ_n) with $\tau_n(1_n) = 1$. For any choice of (θ_n) , there exist such C^* -algebras A_n and corresponding maps (π_n) . Indeed, one may choose $A_n = C_r^*(\Gamma, \sigma_{\theta_n})$ or $A_n = L(\Gamma, \sigma_{\theta_n})$. Subsequently, we will discuss examples where A_n are matricial C^* -algebras $M_{k(n)}$. The sequence $\rho_n := \pi_n \circ \rho_{\theta_n} : \Gamma \to U(A_n)$ satisfies the conditions

(22)
$$\rho_n(s)\rho_n(t)\rho_n(st)^{-1} = e^{2\pi i\theta_n\sigma(s,t)}\mathbf{1}_n \text{ and } \lim_{n \to \infty} \|\rho_n(s)\rho_n(t) - \rho_n(st)\| = 0, \quad \forall s, t \in \Gamma.$$

Proposition 5.4. If $\rho = (\rho_n)_n$ is a sequence of projective representations as in 5.3, then $[\rho]$ is the image of $[\sigma]$ under the injective map $q_* : H^2(\Gamma, \mathbb{R}) \to H^2(\Gamma, Q(\mathbb{R}))$ induced by the homomorphism $q : \mathbb{R} \to Q(\mathbb{R}), r \mapsto (\theta_n r)_n$.

Proof. By Corollary 3.6, $[\rho] \in H^2(\Gamma, Q(\mathbb{R}))$ is represented by the cocycle $(\theta_n \sigma)_n$. Let us verify that q_* is injective. Suppose $[\sigma] \neq 0$. By the universal coefficient theorem, $H^2(\Gamma, \mathbb{R}) \cong$ $\operatorname{Hom}(H_2(\Gamma, \mathbb{Z}), \mathbb{R})$, and hence there is a 2-cocycle $c \in Z_2(\Gamma, \mathbb{Z})$ with nontrivial Kronecker pairing $\langle \sigma, c \rangle \neq 0$. Then $\langle q_*(\sigma), c \rangle = (\theta_n \langle \sigma, c \rangle)_n \neq 0$.

The following is Theorem 1.2 from the introduction. We prove it simultaneously with Theorem 1.1.

Theorem 5.5. Let Γ be a discrete countable group.

- (1) If $H^2(\Gamma, \mathbb{R}) \neq 0$, then Γ is not local-to-local stable with respect the class of separable unital tracial C^{*}-algebras.
- (2) If the comparison map $J : H^2_b(\Gamma, \mathbb{R}) \to H^2(\Gamma, \mathbb{R})$ is nonzero, then Γ is not uniform-tolocal stable with respect the class of separable unital tracial C^* -algebras.

Proof. Throughout the proof we take either $A_n = C_r^*(\Gamma, \sigma_{\theta_n})$ or $A_n = L(\Gamma, \sigma_{\theta_n})$. The later case yields the proof for Theorem 1.1. (1) Let $\sigma \in Z^2(\Gamma, \mathbb{R})$ be a normalized 2-cocycle with $[\sigma] \neq 0$. Let $\rho = (\rho_n)_n$ be a sequence of projective representations associated to σ as in 5.3. For example we may choose $\theta_n = 1/n$. Then $[\rho] = q_*[\sigma] \neq 0$ by Proposition 5.4. By Theorem 3.5 there exists no sequence of group homomorphisms $\pi_n : \Gamma \to \operatorname{GL}(A_n)$ such that $\|\pi_n(s) - \rho_n(s)\| \to 0$, for all $s \in \Gamma$.

(2) We are using notation and arguments from the proof of (1) above. If the comparison map is nonzero, then there is 2-cocycle σ such that $\sup_{s,t\in\Gamma} |\sigma(s,t)| < \infty$ and $[\sigma] \neq 0$ in $H^2(\Gamma, \mathbb{R})$. In this case equation $\rho_n(s)\rho_n(t)\rho_n(st)^{-1} = e^{2\pi i \theta_n \sigma(s,t)} \mathbf{1}_n$ implies that

$$\lim_{n \to \infty} \sup_{s,t \in \Gamma} \|\rho_n(s)\rho_n(t) - \rho_n(st)\| = 0.$$

The same argument as in the proof of (1) shows that there exists no sequence of group homomorphisms $\pi_n : \Gamma \to \operatorname{GL}(A_n)$ such that $\|\pi_n(s) - \rho_n(s)\| \to 0$, for all $s \in \Gamma$.

6. MATRIX NON-STABILITY

Matrix stability refers to stability with respect to the class $\mathcal{B} = \{M_n(\mathbb{C}) : n \ge 1\}$. In section we discuss two applications to matrix stability.

Following [12], if Λ is a countable discrete group we say $x \in H^2(\Lambda; \mathbb{Z})$ of finite type if it is given by a central extension

(23)
$$0 \longrightarrow \mathbb{Z} \xrightarrow{\iota} E \xrightarrow{q} \Lambda \longrightarrow 1.$$

such that E has a sequence of finite index subgroups $\{E_k\}_{k\in\mathbb{N}}$ so that $\iota(\mathbb{Z})\cap\bigcap_k E_k = \{e\}$. If E is residually finite, then x is of finite type. It was shown in [12] that for a finitely generated nilpotent group Λ , all the elements of $H^2(\Lambda;\mathbb{Z})$ are of finite type.

Lemma 6.1. If $\varphi : \Gamma \to \Lambda$ is a group homomorphism and $y \in H^2(\Lambda, \mathbb{Z})$ is of finite type, then so is $\varphi^*(y) \in H^2(\Gamma, \mathbb{Z})$.

Proof. Representing x as a central extension as in (23), then, as explained in [2, chapter IV.3 Exercise 1], $\varphi^*(x)$ corresponds to a central extension as in the diagram

If (E_k) is a family of finite index subgroups of E so that $\iota(\mathbb{Z}) \cap (\bigcap_k E_k) = \{e\}$, then $(\widetilde{\varphi}^{-1}(E_k))$ is a family of finite index subgroups of \widetilde{E} and $\widetilde{\iota}(\mathbb{Z}) \cap (\bigcap_k \widetilde{\varphi}^{-1}(E_k)) = \{e\}$.

For $1 \leq p < \infty$, the unnormalized Schatten *p*-norm on $M_n(\mathbb{C})$ is $||M||_p = \text{Tr}(|M|^p)^{1/p}$. We can extend this to $p = \infty$ by defining the Schatten ∞ -norm to be the operator norm. Stability in unnormalized Schatten *p*-norm is defined in the same way one defines matricial stability but with the operator norm replaced by the *p*-norm. Of particular interest is the unnormalized 2-norm, also called the Frobenius norm. We analogously define uniform-to-local stability in the unnormalized Schatten *p*-norm, similar to uniform-to-local matricial stability, but with the operator norm replaced by the unnormalized Schatten *p*-norm.

Corollary 6.2.

- (1) Let Γ be a finitely generated group such that $H^2(\Gamma; \mathbb{Z})$ has a finite type element x of infinite order. Then Γ is not local-to-local (matricially) stable. If we furthermore assume that Γ is hyperbolic, then Γ is not uniform-to-local (matricially) stable.
- (2) Suppose that Γ is a hyperbolic group, with $\beta, \psi \in H^1(\Gamma, \mathbb{Z})$ so that $\beta \smile \psi \in H^2(\Gamma, \mathbb{Z})$ is non-torsion. Let $1 . Then <math>\Gamma$ is not uniform-to-local stable in the unnormalized Schatten p-norm.

Proof. (1) We prove only the second part of (1). The first part is proved by a similar argument in [12] and in fact it is generalized by Theorem 6.4. Represent x by a central extension as in (23). Since the comparison map $J : H_b^2(\Gamma, \mathbb{R}) \to H^2(\Gamma, \mathbb{R})$ is surjective, so is the map $J : H_b^2(\Gamma, \mathbb{Z}) \to H^2(\Gamma, \mathbb{Z})$, [10, ch.2]. Consequently, we may arrange that this extension is constructed from a bounded 2-cocycle σ , $|\sigma(s,t)| \leq M$ for all $s, t \in \Gamma$. In particular, we have a section $\gamma: \Gamma \to E$ of q such that $\gamma(s)\gamma(t)\gamma(st)^{-1} = \iota(\sigma(s,t))$. Since the extension that represents x is of finite type, as shown in [12], there is a sequence of finite dimensional representations $\phi_n: E \to U(k_n), k_n \to \infty$ such that

$$\phi_n(\iota(1)) = e^{2\pi i \theta_n}$$
 for some $\theta_n \searrow 0$.

Consider the sequence of unital maps $\rho_n := \Phi_n \circ \gamma : \Gamma \to U(k_n)$. They satisfy

$$\rho_n(s)\rho_n(t)\rho_n(st)^{-1} = e^{2\pi i\theta_n\sigma(s,t)} \quad \text{and hence } \lim_{n \to \infty} \left(\sup_{s,t \in \Gamma} \|\rho_n(st) - \rho_n(s)\rho_n(t)\| \right) = 0$$

Since $\langle [\rho], [c] \rangle = (\theta_n \tau_n(1_n) \langle \sigma, c \rangle)_n \neq 0$, by the same calculation as in the proof of Proposition 5.4, one cannot perturb (ρ_n) to a sequence of representations.

(2) Now suppose that $x \in H^2(\Gamma; \mathbb{Z})$ can be written as $\alpha \smile \beta$. Here since $H^1(\Gamma, \mathbb{Z}) \cong$ Hom (Γ, \mathbb{Z}) we can view α and β as homomorphisms from Γ to \mathbb{Z} . Define $\varphi : \Gamma \to \mathbb{Z}^2$ by $\varphi(s) = (\alpha(s), \beta(s))$. Note note that $H^1(\mathbb{Z}^2, \mathbb{Z}) \cong$ Hom $(\mathbb{Z}^2, \mathbb{Z})$ is generated by the two canonical projections from \mathbb{Z}^2 to \mathbb{Z} denoted π_1 and π_2 , and $H^2(\mathbb{Z}^2, \mathbb{Z})$ is generated by $\pi_1 \smile \pi_2$. It follows that $\varphi^*(\pi_1 \smile \pi_2) = \varphi^*(\pi_1) \smile \varphi^*(\pi_2) = \alpha \smile \beta = x$.

By [2, chapter IV.3 Exercise 1] there is a commutative diagram

Here \mathbb{H}_3 is the discrete Heisenberg group, generated by a, b, z with the relations ba = abz, za = az, and zb = bz.

Pick a set-theoretic section $\gamma: \Gamma \to E$ corresponding to a normalized bounded 2-cocycle σ . Set $\lambda_n = e^{2\pi i/n}$ and let ψ_n the representation of \mathbb{H}_3 ([15], [20]) defined by

$$\psi_n(a) = \begin{pmatrix} 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ & & & \cdots & \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}, \ \psi_n(b) = \begin{pmatrix} \lambda_n & 0 & 0 & 0 & 0 \\ 0 & \lambda_n^2 & 0 & 0 & 0 \\ 0 & 0 & \lambda_n^3 & \cdot & 0 \\ & & & \cdots & \\ 0 & 0 & 0 & \cdots & \lambda_n^n \end{pmatrix}, \ \psi_n(z) = \lambda_n \mathbf{1}_n.$$

Then for $\rho_n = \psi_n \circ \tilde{\varphi} \circ \gamma$ we have $\rho_n(s)\rho_n(t)\rho_n(st)^{-1} = e^{2\pi i \sigma(s,t)/n}$. It follows that

$$||\rho_n(s)\rho_n(t) - \rho_n(st)||_p \le ||\rho_n(s)\rho_n(t) - \rho_n(st)||n^{1/p} \le \frac{2\pi|\sigma(s,t)|}{n}n^{1/p}$$

and this converges to zero uniformly in s and t. The rest of the proof is identical to the proof of (1).

Remark 6.3. Corollary 6.2 reproves a result of Kazhdan [15]. Indeed, if Γ_g is a surface group of genus $g \ge 2$, then the generator x of $H^2(\Gamma_g, \mathbb{Z})$ is of finite type. This is seen by applying Lemma 6.1 with $\Lambda = \mathbb{Z}^2$ and y the generator of $H^2(\mathbb{Z}^2, \mathbb{Z})$ corresponding to the central extension

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{H}_3 \longrightarrow \mathbb{Z}^2 \longrightarrow 0.$$

It is of finite type since the Heisenberg group \mathbb{H}_3 is residually finite.

The following is Theorem 1.4 from the introduction.

Theorem 6.4. If Γ is a countable discrete group and for some $[\sigma] \in H^2(\Gamma, \mathbb{R}) \setminus \{0\}$ there is a sequence $\theta_n \searrow 0$ so that for each n, the twisted full group C^* -algebra, $C^*(\Gamma, \sigma_{\theta_n})$ has a nonzero *MF* quotient, then Γ is not matricially stable.

Proof. Seeking a contradiction, suppose that Γ is matricially stable. Write Γ as the union of an increasing sequence of finite sets F_n and let $\varepsilon_n = 1/n$. By matricial stability, there is an increasing sequence of finite sets (S_n) and a sequence $0 < \delta_n \searrow 0$ such that for any (S_n, δ_n) -representation $\rho_n : \Gamma \to U(k_n)$ there is a true representation $\pi_n : \Gamma \to U(k_n)$ such that $\|\rho_n(s) - \pi_n(s)\| < \varepsilon_n$ for all $s \in F_n$.

By assumption, for each n there is a unital homomorphism $C^*(\Gamma, \sigma_{\theta_n}) \to A_n$ where A_n is a C^* -algebra of the form

$$A_n = \frac{\prod M_{k_n(i)}}{\oplus M_{k_n(i)}}$$

for which we fix a tracial state. Consider the family $\mathcal{B} := \{A_n : n \ge 1\}$. As shown in the first part of the proof of Theorem 5.5, since $\theta_n \searrow 0$, we can find a sequence (D_n) of C^* -algebras in \mathcal{B} together with a sequence of unital $(S_n, \frac{1}{2}\delta_n)$ -representations $\rho_n : \Gamma \to U(D_n)$ for which there is no sequence of representations $\pi_n : \Gamma \to U(D_n)$ such that $\|\rho_n(s) - \pi_n(s)\| \to 0$ for all $s \in \Gamma$. Write $D_n = P_n/Q_n$ where

$$P_n = \prod M_{k_n(i)}$$
 and $Q_n = \bigoplus M_{k_n(i)}$.

Let $q_n : P_n \to D_n$ be the quotient map. It is routine to find a sequence of unital (S_n, δ_n) representations $\rho'_n : \Gamma \to U(P_n)$ such that $q_n \circ \rho'_n = \rho_n$. By our choice of (S_n, δ_n) , it follows that
there is a sequence of representations $\pi'_n : \Gamma \to U(P_n)$ such that $\|\rho'_n(s) - \pi'_n(s)\| < \varepsilon_n$ for all $s \in F_n$. Thus if we set $\pi_n := q_n \circ \pi'_n$, then (π_n) is a sequence of representations $\pi_n : \Gamma \to U(D_n)$ such that $\|\rho_n(s) - \pi_n(s)\| \to 0$ for all $s \in \Gamma$. This contradicts our choice of (ρ_n) .

For a more direct (but somewhat more technical) alternate proof of Theorem 6.4 one can proceed as follows. Consider the sequence (ρ_n) defined in (22) where A_n are MF-algebras. There is a 2-cocycle $c \in Z_2(\Gamma, \mathbb{Z})$ with nontrivial Kronecker pairing $\langle \sigma, c \rangle \neq 0$. As seen earlier, the pairing $H^2(\Gamma, Q(\mathbb{C})) \times H_2(\Gamma, \mathbb{Z}) \to Q(\mathbb{C})$ yields

$$\langle [\rho], [c] \rangle = (\theta_n \tau_n(1_n) \langle \sigma, c \rangle)_n \neq 0.$$

Since A_n is MF, for each $n \ge 1$ there is a sequence of unital maps $\{\rho_{n,i} : \Gamma \to U(m_{n,i})\}_i$ such that for all $n \ge 1$,

$$\lim_{i} \|\rho_{n,i}(s)\rho_{n,i}(t)\rho_{n,i}(st)^{-1} - e^{2\pi i\theta_n \sigma(s,t)} 1\| = 0, \text{ for all } s, t \in \Gamma.$$

We shall use the fact that for any unital Banach algebra A, if $u, v \in A$ with ||u - 1|| < 1/2 and ||v - 1|| < 1/2, then $||\log u - \log v|| < 2||u - v||$. Since the support of c as in (11) is finite, we can find a fast increasing sequence (i_n) such that for each n, if we define $\rho'_n = \rho_{n,i_n}$, and λ_n is the n^{th} component of $\langle [\rho'], [c] \rangle$, namely

$$\lambda_n = \sum_{j=1}^m k_j \frac{1}{2\pi i} \tau_n \left(\log \left(\rho_{n,i_n}(a_j) \rho_{n,i_n}(b_j) \rho_{n,i_n}(a_j b_j)^{-1} \right) \right),$$

then $|\lambda_n - \theta_n \tau_n(1_n) \langle \sigma, c \rangle| < \frac{1}{2} \theta_n \tau_n(1_n) |\langle \sigma, c \rangle|$ and hence $\lambda_n \neq 0$. We conclude the proof by applying Theorem 3.5 to ρ' .

MARIUS DADARLAT AND FORREST GLEBE

References

- H. Bettaieb, M. Matthey, and A. Valette. Unbounded symmetric operators in K-homology and the Baum-Connes conjecture. J. Funct. Anal., 229(1):184–237, 2005. 10
- K. S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. 4, 5, 9, 13, 14
- [3] M. Burger, N. Ozawa, and A. Thom. On Ulam stability. Israel J. Math., 193(1):109–129, 2013. 1
- [4] M. Dadarlat. Obstructions to matricial stability of discrete groups and almost flat K-theory. Adv. Math., 384:Paper No. 107722, 29, 2021. 3
- [5] M. Dadarlat. Quasi-representations of groups and two-homology. Comm. Math. Phys., 393(1):267– 277, 2022. 3, 10
- [6] M. Dadarlat. Non-stable groups. to appear in Münster J. Math., arXiv:2304.04645 [math.OA], 2023.
 3
- [7] M. De Chiffre, L. Glebsky, A. Lubotzky, and A. Thom. Stability, cohomology vanishing, and nonapproximable groups. *Forum Math. Sigma*, 8:e18, 2020. 1
- [8] P. de la Harpe and G. Skandalis. Produits finis de commutateurs dans les C*-algèbres. Ann. Inst. Fourier (Grenoble), 34(4):169–202, 1984. 3, 4
- [9] S. Eilers, T. Shulman, and A. P. W. Sørensen. C*-stability of discrete groups. Adv. Math., 373:107324, 41, 2020. 3
- [10] R. Frigerio. Bounded cohomology of discrete groups, volume 227 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2017. 13
- [11] F. Glebe. Frobenius non-stability of nilpotent groups. Adv. Math., 428:Paper No. 109129, 21, 2023.
 3
- [12] F. Glebe. A constructive proof that many groups with non-torsion 2-cohomology are not matricially stable. *Groups, Geometry, and Dynamics*, 2024. 3, 13, 14
- [13] L. Glebsky, A. Lubotzky, N. Monod, and B. Rangarajan. Asymptotic Cohomology and Uniform Stability for Lattices in Semisimple Groups. arXiv:2301.00476 [math.GR], 2022. 1
- [14] A. Ioana, P. Spaas, and M. Wiersma. Cohomological obstructions to lifting properties for full group C*-algebras. https://arxiv.org/abs/2006.01874 [math.OA], 2020. 1
- [15] D. Kazhdan. On ε-representations. Israel J. Math., 43(4):315–323, 1982. 1, 14
- [16] V. Lafforgue. K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes. Invent. Math., 149(1):1–95, 2002. 10
- [17] M. Matthey. Mapping the homology of a group to the K-theory of its C*-algebra. Illinois J. Math., 46(3):953–977, 2002.
- [18] I. Mineyev. Straightening and bounded cohomology of hyperbolic groups. Geom. Funct. Anal., 11(4):807–839, 2001.
- [19] J. A. Packer and I. Raeburn. On the structure of twisted group C*-algebras. Trans. Amer. Math. Soc., 334(2):685–718, 1992. 12
- [20] D. Voiculescu. Asymptotically commuting finite rank unitary operators without commuting approximats. Acta Sci. Math. (Szeged), 45:429–431, 1983. 1, 14

MD: DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907, USA

FG: Department of Mathematical Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA