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Abstract. We study the existence of quasi-representations of discrete

groups G into unitary groups U(n) that induce prescribed partial maps

K0(C∗(G)) → Z on the K-theory of the group C*-algebra of G. We give

conditions for a discrete group G under which the K-theory group of the

classifying space BG consists entirely of almost flat classes.

1. Introduction

The notions of almost flat bundle and group quasi-representation were

introduced by Connes, Moscovici and Gromov [4] as tools for proving the

Novikov conjecture for large classes of groups. The first example of a topo-

logically nontrivial quasi-representation is due to Voiculescu for G = Z2,

[27]. In this paper we use known results on the Novikov and the Baum-

Connes conjectures to derive the existence of topologically nontrivial quasi-

representations of certain discrete group G, as well as the existence of non-

trivial almost flat bundles on the classifying space BG, by employing the

concept of quasidiagonality.

A discrete completely positive asymptotic representation of a C*-algebra

A consists of a sequence {πn : A→Mk(n)(C)}n of unital completely positive

maps such that limn→∞ ‖πn(aa′) − πn(a)πn(a′)‖ = 0 for all a, a′ ∈ A. The

sequence {πn}n induces a unital ∗-homomorphism

A→
∏
n

Mk(n)(C)/
∑
n

Mk(n)(C)

and hence a group homomorphism K0(A) →
∏
n Z/

∑
n Z. This gives a

canonical way to push forward an element x ∈ K0(A) to a sequence of

integers (πn ](x)), which is well-defined up to tail equivalence; two sequences

are tail equivalent, (yn) ≡ (zn), if there is m such that xn = yn for all n ≥ m.

In the first part of the paper we study the existence of discrete asymptotic

representations of group C*-algebras that interpolate on K-theory a given
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group homomorphism h : K0(C
∗(G)) → Z. We rely heavily on results of

Kasparov, Higson, Yu, Skandalis and Tu [15], [12], [30], [24], [16], [26]. For

illustration, we have the following:

Theorem 1.1. Let G be a countable, discrete, torsion free group with the

Haagerup property. Suppose that C∗(G) is residually finite dimensional.

Then, for any group homomorphism h : K0(C
∗(G))→ Z there is a discrete

completely positive asymptotic representation {πn : C∗(G) → Mk(n)(C)}n
such that πn ](x) ≡ h(x) for all x ∈ K0(I(G)).

Here I(G) is the kernel of the trivial representation ι : C∗(G) → C. By

contrast, any finite dimensional unitary representation of G induces the zero

map on K0(I(G)). The groups with the Haagerup property are characterized

by the requirement that there exists a sequence of normalized continuous

positive-definite functions which vanish at infinity on G and converge to 1

uniformly on finite subsets of G. The conclusion of Theorem 1.1 also holds

if G is an increasing union of residually finite amenable groups, see Theo-

rem 3.4. The class of groups considered in Theorem 1.1 contains all count-

able, torsion free, amenable, residually finite groups (also the maximally

periodic groups) and the surface groups [17]. Moreover, this class is closed

under direct products and free products (see [10], [3]). If we impose a weaker

condition, namely that C∗(G) is quasidiagonal, then in general we need two

asymptotic representations in order to interpolate h, see Theorem 3.3. The-

orem 1.1 remains true if we replace the assumption that G has the Haagerup

property by the requirements that G is uniformly embeddable in a Hilbert

space and that the assembly map µ : RK0(BG)→ K0(C
∗(G)) is surjective.

Let us recall that Hilbert space uniform embeddability of G implies that µ

is split injective, as proven by Yu [30] if the classifying space BG is finite

and by Skandalis, Yu and Tu [24] in the general case. We will also use a

strengthening of this result by Tu [26] who showed that G has a gamma

element. In conjunction with a theorem of Kasparov [15] this guarantees

the surjectivity of the dual assembly map ν : K0(C∗(G)) → RK0(BG) for

countable, discrete, torsion free groups which are uniformly embeddable in

a Hilbert space.

The notion of almost flat K-theory class was introduced in [4] as a tool for

proving the Novikov conjecture. In the second part of the paper we pursue

a reverse direction. Namely, we use known results on the Baum-Connes

and the Novikov conjectures to derive the existence of almost flat K-theory

classes by employing the concept of quasidiagonality.

Theorem 1.2. Let G be a countable, discrete, torsion free group which is

uniformly embeddable in a Hilbert space. Suppose that the classifying space
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BG is a finite simplicial complex and that the full group C*-algebra C∗(G)

is quasidiagonal. Then all the elements of K0(BG) are almost flat.

The class of groups considered in Theorem 1.2 is closed under free prod-

ucts, by [1] and [2]. If G can be written as a union of amenable residually

finite groups (as is the case if G is a linear amenable group), then C∗(G) is

quasidiagonal. It is an outstanding open question if all discrete amenable

groups have quasidiagonal C*-algebras [29].

Voiculescu has asked in [29] if there are invariants of a topological nature

which can be used to describe the obstruction that a C*-algebra be quasidi-

agonal. One can view Theorem 1.2 as further evidence towards a topological

nature of quasidiagonality, since it shows that the existence of non-almost

flat classes in K0(BG) represents an obstruction for the quasidiagonality of

C∗(G).

The fundamental connection between deformations of C*-algebras and

K-theory was discovered by Connes and Higson [5]. They introduced the

concept of asymptotic homomorphism of C*-algebras which formalizes the

intuitive idea of deformations of C*-algebras. An asymptotic homomor-

phism is a family of maps ϕt : A → B, t ∈ [0,∞) such that for each a ∈ A
the map t → ϕt(a) is continuous and bounded and the family (ϕt)t∈[0,∞)

satisfies asymptotically the axioms of ∗-homomorphisms. There is a natural

notion of homotopy for asymptotic homomorphisms. E-theory is defined as

homotopy classes of asymptotic homomorphisms from the suspension of A

to the stable suspension of B, E(A,B) = [[C0(R) ⊗ A,C0(R) ⊗ B ⊗ K]].

The introduction of the suspension and of the compact operators K yields

an abelian group structure on E(A,B). Connes and Higson showed that

E-theory defines the universal half-exact C*-stable homotopy functor on

separable C*-algebras. In particular the KK-theory of Kasparov factors

through E-theory. A similar construction based on completely positive as-

ymptotic homomorphisms gives a realization of KK-theory itself as shown

by Larsen and Thomsen [13].

While E-theory gives in general maps of suspensions of C*-algebras it is

often desirable to have interesting deformations of unsuspended C*-algebras.

In joint work with Loring [8], [6], we proved a suspension theorem for com-

mutative C*-algebras A = C0(X\x0), where X is a compact connected space

and x0 ∈ X is a base point. Specifically, we showed that the reduced K-

homology group K̃0(X) = K0(X,x0) is isomorphic to the homotopy classes

of asymptotic homomorphisms [[C0(X \ x0),K]]. One can replace the com-

pact operators K by ∪∞n=1Mn(C) and conclude that the reduced K-homology

of X classifies the deformations of C0(X) into matrices. The case of X = T2
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played an important role in the history of the subject. Indeed, Voiculescu

[28] exhibited pairs of almost commuting unitaries u, v ∈ U(n) whose prop-

erties reflect the non-triviality of H2(T2,Z). One can view such a pair as

associated to a quasi-representation of C∗(Z2) ∼= C(T2). If the commuta-

tor ‖uv − vu‖ is sufficiently small, then there is an induced pushforward of

the Bott class that represents the obstruction for perturbing u, v to a pair

of commuting unitaries, [28], [9]. It is therefore quite natural to investigate

deformations of C*-algebras associated to non-commutative groups. In view

of Theorem 1.1 we propose the following:

Conjecture. If G is a discrete, countable, torsion free, amenable group,

then the natural map [[I(G),K]]→ KK(I(G),K) ∼= K0(I(G)) is an isomor-

phism of groups.

This is verified if G is commutative. Indeed, I(G) ∼= C0(Ĝ \ x0) and Ĝ is

connected since G is torsion free, so that we can apply the suspension result

of [6].

Manuilov, Mishchenko and their co-authors have studied various aspects

and applications of quasi-representations and asymptotic representations of

discrete groups. The paper [18] is a very interesting survey of their contribu-

tions. The notion of quasi-representation of a group is used in the literature

in several non-equivalent contexts, to mean several different things, see [22].

2. Quasi-representations and K-theory

Definition 2.1. Let A and B be unital C*-algebras. Let F ⊂ A be a finite

set and let ε > 0. A unital completely positive map ϕ : A → B is called

an (F, ε)-homomorphism if ‖ϕ(aa′) − ϕ(a)ϕ(a′)‖ < ε for all a, a′ ∈ F. If

B is the C*-algebra of bounded linear operators on a Hilbert space, then we

say that ϕ is an (F, ε)-representation of A. We will use the term quasi-

representation to refer to an (F, ε)-representation where F and ε are not

necessarily specified.

An important method for turning K-theoretical invariants of A into nu-

merical invariants is to use quasi-representations to pushforward projections

in matrices over A to scalar projections. Consider a finite set of projec-

tions P ⊂ Mm(A). We say that (P, F, ε) is a K0-triple if for any (F, ε)-

homomorphism ϕ : A→ B and p ∈ P, the element b = (idm⊗ϕ)(p) satisfies

‖b2− b‖ < 1/4 and hence the spectrum of b is contained in [0, 1/2)∪ (1/2, 1].

We denote by q the projection χ(b), where χ is the characteristic function

of the interval (1/2, 1]. It is not hard to show that for any finite set of

projections P there exist a finite set F ⊂ A and ε > 0 such that (P, F, ε)
is a K0-triple. If (P, F, ε) is a K0-triple, then any (F, ε)-homomorphism
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ϕ : A → B induces a map ϕ] : P → K0(B) defined by ϕ](p) = [q]. Let

Proj(A) denote the set of all projections in matrices over A. It is convenient

to extend ϕ] to Proj(A) by setting ϕ](p) = 0 if b = (idm ⊗ ϕ)(p) does not

satisfy ‖b2− b‖ < 1/4. If ϕ were a ∗-homomorphism, then ϕ would induce a

map ϕ∗ : K0(A)→ K0(B). Intuitively, one may think of ϕ] as a substitute

for ϕ∗.

Two sequences (an) and (bn) are called tail-equivalent if there is n0 such

that an = bn for n ≥ n0. Tail-equivalence is denoted by (an) ≡ (bn) or even

an ≡ bn, abusing the notation.

We will also work with discrete completely positive asymptotic morphisms

(ϕn)n. They consists of a sequence of contractive completely positive maps

ϕn : A→ Bn with limn→∞ ‖ϕn(aa′)−ϕn(a)ϕn(a′)‖ = 0 for all a, a′ ∈ A. If in

addition each Bn is a matricial algebra Bn = Mk(n)(C), then we call (ϕn)n
a discrete asymptotic representation of A. A discrete completely positive

asymptotic morphism (ϕn)n induces a sequence of maps ϕn ] : Proj(A) →
K0(Bn). Note that if p, q ∈ Proj(A) have the same class in K0(A), then

ϕn ](p) ≡ ϕn ](q).
For any x ∈ K0(A), we fix projections p, q ∈ Proj(A) such that x = [p]−[q]

and set ϕn ](x) = ϕn ](p)−ϕn ](q) ∈ K0(Bn). The sequence (ϕn ](x)) depends

on the particular projections that we use to represent x but only up to tail-

equivalence. While in general the maps ϕn ] : K0(A) → K0(Bn) are not

group homomorphisms, the sequence (ϕn ](x)) does satisfy (ϕn ](x + y)) ≡
(ϕn ](x) + ϕn ](y)) for all x, y ∈ K0(A).

A subset B ⊂ L(H) is called quasidiagonal if there is an increasing se-

quence (pn) of finite rank projections in L(H) which converges strongly to

1H and such that limn→∞ ‖[b, pn]‖ = 0 for all b ∈ B. B is block-diagonal,

if there is a sequence (pn) as above such that [b, pn] = 0 for all b ∈ B

and n ≥ 1. Let A be a separable C*-algebra. Let us recall that the el-

ements of KK(A,C) can be represented by Cuntz pairs, i.e. by pair of

∗-representations ϕ,ψ : A → L(H), such that ϕ(a) − ψ(a) ∈ K(H), for all

a ∈ A.

Definition 2.2. Let A be a separable C*-algebra. An element α ∈ KK(A,C)

is called quasidiagonal if it can be represented by a Cuntz pair (ϕ,ψ) : A→
L(H) with the property that the set ψ(A) ⊂ L(H) is quasidiagonal. In this

case let us note that the set ϕ(A) ⊂ L(H) must be also quasidiagonal. Sim-

ilarly, we say that α is residually finite dimensional if it can be represented

by a Cuntz pair with the property that the set ψ(A) is block-diagonal. We

denote by KKqd(A,C) the subset of KK(A,C) consisting of quasidiagonal
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classes and by KKrfd(A,C) the subset of KK(A,C) consisting of residu-

ally finite dimensional classes. It is clear that KKrfd(A,C) ⊂ KKqd(A,C),

that KKqd(A,C) is a subgroup of KK(A,C) and that KKrfd(A,C) is a

subsemigroup.

We say that A is K-quasidiagonal if KKqd(A,C) = KK(A,C) and that

A is K-residually finite dimensional if KKrfd(A,C) = KK(A,C).

Remark 2.3. Let A be a separable C*-algebra. It was pointed out by Skan-

dalis [23] that for any given faithful ∗-representation π : A → L(H) such

that π(A) ∩K(H) = {0}, one can represent all the elements of KK(A,C)

by Cuntz pairs where the second map is fixed and equal to π. It follows that a

separable quasidiagonal C*-algebra is K-quasidiagonal and a separable resid-

ually finite dimensional C*-algebra is K-residually finite dimensional. More

generally, if A is homotopically dominated by B and B is K-quasidiagonal

or K-residually finite dimensional then so is A. Let us note that the Cuntz

algebra O2 is K-residually finite dimensional while it is not quasidiagonal.

The following lemma and proposition are borrowed from [7]. For the sake

of completeness, we review briefly some of the arguments from their proofs.

Let B be a unital C*-algebra and let E be a right Hilbert B-module. If

e, f ∈ LB(E) are projections such that e − f ∈ KB(E), we denote by [e, f ]

the corresponding element of KK(C, B) ∼= K0(B).

Lemma 2.4. Let B be a unital C*-algebra and let E be a right Hilbert B-

module. Let e, f ∈ LB(E) and h ∈ KB(E) be projections such that e− f ∈
KB(E), and ‖eh−he‖ ≤ 1/9, ‖fh−hf‖ ≤ 1/9, ‖(1−h)(e−f)(1−h)‖ ≤ 1/9.

Then

Sp(heh) ∪ Sp(hfh) ⊂ [0, 1/2) ∪ (1/2, 1],

[e, f ] = [χ(heh), χ(hfh)] ∈ KK(C, B) ∼= K0(B).

Proof. One shows that if e′, f ′ ∈ LB(E) are projections such that e′ − f ′ ∈
KB(E) and ‖e−e′‖ < 1/2, ‖f−f ′‖ < 1/2, then [e, f ] = [e′, f ′]. This is proved

using the homotopy (χ(et), χ(ft)) where et = (1−t)e+te′, ft = (1−t)f+tf ′,

0 ≤ t ≤ 1. Then one applies this observation to conclude that

[e, f ] = [χ(x)+χ(x′), χ(y)+χ(y′)] = [χ(x)+χ(x′), χ(y)+χ(x′)] = [χ(x), χ(y)],

where x = heh, x′ = (1− h)e(1− h), y = hfh, y′ = (1− h)f(1− h). �

Let A,B be separable C*-algebras. An element α ∈ KK(A,C) induces a

group homomorphism α∗ : K0(A⊗B)→ K0(B) via the cup product

KK(C, A⊗B)×KK(A,C)→ KK(C, B), (x, α) 7→ x ◦ (α⊗ 1B).

Here we work with the maximal tensor product.
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Proposition 2.5. Let A be a separable unital C*-algebra and α ∈ KKqd(A,C).

There exist two discrete asymptotic representations (ϕn)n and (ψn)n con-

sisting of unital completely positive maps ϕn : A → Mk(n)(C) and ψn :

A → Mr(n)(C) such that for any separable unital C*-algebra B, the map

α∗ : K0(A⊗B)→ K0(B) has the property that

α∗(x) ≡ (ϕn ⊗ idB)](x)− (ψn ⊗ idB)](x),

for all x ∈ K0(A⊗B). If α ∈ KKrfd(A,C) then all ψn can be chosen to be

∗-representations.

Proof. Represent α by a Cuntz pair ϕ,ψ : A → L(H) with ϕ(a) − ψ(a) ∈
K(H), for all a ∈ A, and such that the set ψ(A) is quasidiagonal. Therefore

there is an increasing approximate unit (pn)n of K(H) consisting of projec-

tions such that (pn)n commutes asymptotically with both ϕ(A) and ψ(A).

Let us define contractive completely positive maps ϕn, ψn : A→ L(pnH) by

ϕn(a) := pnϕ(a)pn and ψn(a) := pnψ(a)pn. Without any loss of generality

we may assume that x is the class of a projection e ∈ A⊗B. It follows from

the definition of the Kasparov product that

α∗(x) = [(ϕ⊗ idB)(e), (ψ ⊗ idB)(e)] ∈ KK(C, B).

On the other hand, the sequence of projections pn ⊗ 1B ∈ K(H)⊗ B com-

mutes asymptotically with both projections (ϕ ⊗ idB)(e) and (ψ ⊗ idB)(e)

and moreover

lim
n→∞

‖pn ⊗ 1B
(
(ϕ⊗ idB)(e)− (ψ ⊗ idB)(e)

)
pn ⊗ 1B‖ = 0,

since the sequence (pn⊗ 1B)n forms an approximative unit of K(H)⊗B. It

follows now from Lemma 2.4 that for all sufficiently large n

[(ϕ⊗ idB)(e), (ψ ⊗ idB)(e)] = (ϕn ⊗ idB)](e)− (ψn ⊗ idB)](e).

It is standard to perturb ϕn and ψn to completely positive maps such

that ϕn(1) and ψn(1) are projections. Finally, let us note that ψn is a

∗-homomorphism if pn commutes with ψ. �

3. Asymptotic representations of group C*-algebras

We use the following notation for the Kasparov product:

KK(A,B)×KK(B,C)→ KK(A,C), (y, x) 7→ y ◦ x.

In the case of the pairing Ki(B) ×Ki(B) → Z we will also write 〈y, x〉 for

y ◦ x. We are mostly interested in the map

(1) Ki(C∗(G))→ Hom(Ki(C
∗(G)),Z),
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induced by the pairing above for B = C∗(G). If G has the Haagerup prop-

erty, then it was shown in [25] that C∗(G) is KK-equivalent with a com-

mutative C*-algebra and hence the map (1) is surjective. Assuming that G

is a countable, discrete, torsion free group that is uniformly embeddable in

a Hilbert space, we are going to verify that the map (1) is split surjective

whenever the assembly map µ : RKi(BG)→ Ki(C
∗(G)) is surjective.

Following Kasparov [15], for a locally compact, σ-compact, Hausdorff

space X and C0(X)-algebras A and B we consider the representable K-

homology groups RKi(X), the representable K-theory groups RKi(X) and

the bivariant theory RKKi(X;A,B). If Y is compact, then RKi(Y ) =

KKi(C(Y ),C) and RKi(Y ) = KKi(C, C(Y )). Suppose now that X is lo-

cally compact, σ-compact and Hausdorff. Then

RKi(X) ∼= lim−→
Y⊂X

RKi(Y ) = lim−→
Y⊂X

KKi(C(Y ),C)

where Y runs over the compact subsets of X. Kasparov [15, Prop. 2.20] has

shown that

RKi(X) ∼= RKKi(X;C0(X), C0(X)).

Moreover, if Y ⊂ X is a compact set, then the restriction map RKi(X) →
RKi(Y ) corresponds to the map

RKKi(X;C0(X), C0(X))→ RKKi(Y ;C(Y ), C(Y )) ∼= KKi(C, C(Y )).

It is useful to introduce the group

LKi(X) = lim←−
Y⊂X

RKi(Y ),

where Y runs over the compact subsets of X. If X is written as the union

of an increasing sequence (Yn)n of compact subspaces, then as explained in

the proof of Lemma 3.4 from [16], there is a Milnor lim←−
1 exact sequence:

0→ lim←−
1RKi+1(Yn)→ RKi(X)→ lim←−RK

i(Yn)→ 0.

The morphismRKi(X)→ Hom(RKi(X),Z) induced by the pairingRKi(X)×
RKi(X)→ Z factors through the morphism

lim←−RK
i(Yn) =LKi(X)→ Hom(RKi(X),Z) = Hom(lim−→RKi(Yn),Z)

∼= lim←−Hom(RKi(Yn),Z)

given by the projective limit of the morphismsRKi(Yn)→ Hom(RKi(Yn),Z).

If X is a locally finite separable CW-complex then there is a Universal

Coefficient Theorem [16, Lemma 3.4]:

(2) 0→ Ext(RKi+1(X),Z)→ RKi(X)→ Hom(RKi(X),Z)→ 0.
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In particular, it follows that the map LKi(X) → Hom(RKi(X),Z) is sur-

jective.

Let us recall the construction of the assembly map µ : RKi(BG) →
Ki(C

∗(G)) and of the dual map ν : Ki(C∗(G)) → RKi(BG) as given in

[15]. Kasparov considers a natural element

βG ∈ RKK(BG;C0(BG), C0(BG)⊗ C∗(G))

(which we denote here by ` as it corresponds to Mischenko’s ”line bundle”

on BG). If G is a discrete countable group then it is known [15, §6] that

EG and BG can be realized as locally finite separable CW-complexes. Write

BG as the union of an increasing sequence (Yn)n of finite CW-subcomplexes.

Let `n be the image of ` in

RKK(Yn;C(Yn), C(Yn)⊗ C∗(G)) ∼= KK(C, C(Yn)⊗ C∗(G))

under the restriction map induced by the inclusion Yn ⊂ BG.

The map µn : RKi(Yn)→ Ki(C
∗(G)) is defined as the cap product by `n:

KK(C, C(Yn)⊗ C∗(G))×KKi(C(Yn),C)→ KKi(C, C∗(G))

(`n, z) 7→ µn(z) = `n ◦ (z ⊗ 1).

The assembly map µ : RKi(BG)→ Ki(C
∗(G)) is the inductive limit homo-

morphism µ := lim−→µn. The homomorphism ν : Ki(C∗(G)) → RKi(BG) is

defined as the cap product by `:

RKK(BG;C0(BG), C0(BG)⊗ C∗(G))×KKi(C
∗(G),C)

−→ RKKi(BG;C0(BG), C0(BG))

(`, x) 7→ ν(x) = ` ◦ (1⊗ x).

Let νn : Ki(C∗(G)) → RKi(Yn) be obtained by composing ν with the

restriction map RKi(BG)→ RKi(Yn). Noting that νn is also given by the

cap product by `n, Kasparov has shown that

νn(x) ◦ z = µn(z) ◦ x

for all x ∈ Ki(C∗(G)) and z ∈ RKi(Yn), [15, Lemma 6.2]. The assembly map

induces a homomorphism µ∗ : Hom(Ki(C
∗(G)),Z) → Hom(RKi(BG),Z).

Since

Hom(RKi(BG),Z) ∼= Hom(lim−→RKi(Yn),Z) ∼= lim←−Hom(RKi(Yn),Z)

and since the equalities νn(x) ◦ z = x ◦ µn(z) are compatible with the maps

induced by the inclusions Yn ⊂ Yn+1, we obtain that the following diagram
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is commutative

(3) Ki(C∗(G))

ν
��

// Hom(Ki(C
∗(G)),Z)

µ∗

��
RKi(BG) // // Hom(RKi(BG),Z)

where the horizontal arrows correspond to natural pairings of K-theory with

K-homology. The map RKi(BG)→ Hom(RKi(BG),Z) is surjective by (2).

In view of the previous discussion, by combining results of Kasparov [15]

and Tu [26], one derives the following.

Theorem 3.1. Let G be a countable, discrete, torsion free group. Suppose

that G is uniformly embeddable in a Hilbert space. Then for any group

homomorphism h : Ki(C
∗(G)) → Z there is x ∈ Ki(C∗(G)) such that

h(µ(z)) = 〈µ(z), x〉 for all z ∈ RKi(BG).

Proof. For a discrete group G which admits a uniform embedding into a

Hilbert space it was shown in [26, Thm. 3.3] that G has a γ-element. Since

G is torsion free, we can take BG = BG. If G has a γ-element, it follows by

Theorem 6.5 and Lemma. 6.2 of [15] that the dual map ν : KKi(C
∗(G),C)→

RKi(BG) is split surjective. Therefore, in the diagram above, the composite

map Ki(C∗(G)) → Hom(RKi(BG),Z), x 7→ 〈ν(x), ·〉 is surjective. This

shows that if h : Ki(C
∗(G)) → Z is a group homomorphism, then µ∗(h) =

h ◦ µ = 〈ν(x), ·〉 for some x ∈ Ki(C∗(G)). Since the diagram above is

commutative, we obtain that h ◦ µ = 〈ν(x), ·〉 = 〈µ(·), x〉. �

The following proposition is more or less known; for example, it is implic-

itly contained in [11]. Let ι be the trivial representation of G, ι(s) = 1 for

all s ∈ G.

Proposition 3.2. Let µ : RK0(BG) → K0(C
∗(G)) be the assembly map.

Then for any unital finite dimensional representation π : C∗(G)→Mm(C),

π∗ ◦ µ = m · ι∗ ◦ µ.

Proof. Write BG as the union of an increasing sequence (Yn)n of finite

CW-subcomplexes. Let z ∈ RK0(Yn) for some n ≥ 1 and let x = [π] ∈
K0(C∗(G)). The equality νn(x) ◦ z = µn(z) ◦ x becomes 〈νn(x), z〉 =

π∗(µn(z)). The Chern character makes the following commutative:

RK0(Yn)×RK0(Yn)

ch∗×ch∗
��

// Z� _

��
Heven(Yn,Q)×Heven(Yn,Q) // Q
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Thus 〈ch∗(νn(x)), ch∗(z)〉 = π∗(µn(z)). Since x is the class of a unital finite

dimensional representation π : C∗(G) → Mn(C), it follows that νn(x) is

simply the class of the flat complex vector bundle [V ] = π∗(`n) over Yn. On

the other hand, if V is a flat vector bundle, then ch∗(V ) = rank(V ) = m =

dim(π) by [14]. Therefore, for any unital m-dimensional representation π,

π∗(µn(z)) = m · 〈1, ch∗(z)〉. By applying the same formula for the trivial

representation ι : C∗(G)→ C, we get ι∗(µn(z)) = 〈1, ch∗(z)〉. It follows that

π∗(µn(z)) = m · ι∗(µn(z)). �

Recall that we denote by I(G) the kernel of the trivial representation

ι : C∗(G) → C. Since the extension 0 → I(G) → C∗(G) → C → 0 is split,

K0(C
∗(G)) ∼= K0(I(G))⊕ Z.

Theorem 3.3. Let G be a countable, discrete, torsion free group that is

uniformly embeddable in a Hilbert space. Let h : K0(C
∗(G))→ Z be a group

homomorphism.

(i) If C∗(G) is K-quasidiagonal, then there exist two discrete completely

positive asymptotic representations {πn : C∗(G) → Mk(n)(C)}n and {γn :

C∗(G)→Mr(n)(C)}n such that πn ](x)−γn ](x) ≡ h(x) for all x ∈ µ(RK0(BG)).

(ii) If C∗(G) is K-residually finite dimensional, then there is a discrete

completely positive asymptotic representation {πn : C∗(G) → Mk(n)(C)}n
such that πn ](x) ≡ h(x) for all x ∈ K0(I(G)) ∩ µ(K0(BG)).

Proof. Part (i) follows from Theorem 3.1 and Proposition 2.5 for A = C∗(G)

and B = C. For part (ii) we observe that if γn is a ∗-representation, then

γ∗ = 0 on K0(I(G)) by Proposition 3.2. �

Theorem 3.4. Let G be a countable, discrete, torsion free group. Suppose

that G satisfies either one of the conditions (a) or (b) below.

(a) G has the Haagerup property and C∗(G) is K-residually finite dimen-

sional.

(b) G is an increasing union of residually finite, amenable groups.

Then, for any group homomorphism h : K0(C
∗(G)) → Z there is a dis-

crete completely positive asymptotic representation {πn : C∗(G)→Mk(n)(C)}n
such that πn ](x) ≡ h(x) for all x ∈ K0(I(G)).

Proof. Recall that the assembly map is an isomorphism for groups with

the Haagerup property by a result of Higson and Kasparov [12], and that

these groups are also embeddable in a Hilbert space. Thus, if G satisfies

(a), then the conclusion follows from Theorem 3.3(ii). Suppose now that G

satisfies (b). Thus G =
⋃
iGi where Gi are residually finite, amenable

groups and Gi ⊂ Gi+1. Then C∗(G) =
⋃
iC
∗(Gi) and K0(C

∗(G)) ∼=
lim−→K0(C

∗(Gi)). Similarly, I(G) =
⋃
i I(Gi) and K0(I(G)) = lim−→K0(I(Gi)).
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Let θi : K0(C
∗(Gi)) → K0(C

∗(G)) be the map induced by the inclusion

C∗(Gi) ⊂ C∗(G). Let h be given as in the statement of the theorem. By the

first part of the theorem, for each i, there is a discrete completely positive

asymptotic representation (π
(i)
n )n of C∗(Gi) such that π

(i)
n ](x) ≡ h(θi(x)) for

all x ∈ K0(I(Gi)). By Arveson’s extension theorem, each π
(i)
n extends to

a unital completely positive map π̄
(i)
n on C∗(G). Since C∗(G) is separable,

K0(I(G)) is countable and K0(I(G)) = lim−→K0(I(Gi)), it follows that there

is a sequence of natural numbers r(1) < r(2) < . . . such that (π̄
(i)
r(i))i is a

discrete completely positive asymptotic representation of C∗(G) such that

π̄
(i)
r(i), ](x) ≡ h(x) for all x ∈ K0(I(G)). �

4. Almost flat K-theory classes

In this section we use the dual assembly to derive the existence of almost

flat K-theory classes on the classifying space BG if the group C*-algebra

of G is quasidiagonal. It is convenient to work with an adaptation of the

notion of almost flatness to simplicial complexes, see [19].

Definition 4.1. Let Y be a compact Hausdorff space and let (Ui)i∈I be a

fixed finite open cover of Y . A complex vector bundle E ∈ Vectm(Y ) is

called ε-flat if is represented by a cocycle vij : Ui ∩ Uj → U(m) such that

‖vij(y) − vij(y′)‖ < ε for all y, y′ ∈ Ui ∩ Uj and all i, j ∈ I. A K-theory

class α ∈ K0(Y ) is called almost flat if for any ε > 0 there are ε-flat vector

bundles E,F such that α = [E]− [F ]. This property does not depend on the

cover (Ui)i∈I .

Remark 4.2. The set of all almost flat elements of K0(Y ) form a subring

denoted by K0
af (Y ). If f : Z → Y is a continuous map, then f∗(K0

af (Y )) ⊂
K0
af (Z).

The following proposition gives a method for producing ε-flat vector bun-

dles. Let Y be a finite simplicial complex with universal cover Ỹ and

fundamental group G. Consider the flat line-bundle ` with fiber C∗(G),

Ỹ ×G C∗(G) → Y , where G ⊂ C∗(G) acts diagonally, and let P be the

corresponding projection in Mm(C) ⊗ C(Y ) ⊗ C∗(G). Consider a discrete

asymptotic representation {ϕn : C∗(G)→Mk(n)(C)}n and set Fn = (idm ⊗
idC(Y ) ⊗ ϕn)(P ). Since ‖F 2

n − Fn‖ → 0 as n → ∞, En := χ(Fn) is a

projection in Mmk(n)(C(Y )) such that ‖En − Fn‖ → 0 as n→∞.

Proposition 4.3. For any ε > 0 there is n0 > 0 such that for any n ≥ n0
there is an ε-flat vector bundle on Y which is isomorphic to the vector bundle

given by the idempotent En.
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Proof. We rely on a construction and results of Phillips and Stone from

[20, 21], see also [18]. A simplicial complex is locally ordered by giving a

partial ordering o of its vertices in which the vertices of each simplex are

totally ordered. The first barycentric subdivision of any simplicial complex

has a natural local ordering [21, §1.4]. Thus we may assume that Y is

endowed with a fixed local ordering o. Let Y have vertices I = {1, 2, ...,m}.
We denote by Y k the set of k-simplices of Y . Given r ≥ 1, a U(r)-valued

lattice gauge field u on the simplicial complex Y is a function that assigns

to each 1-simplex 〈i, j〉 of Y an element uij ∈ U(r) subject to the condition

that uji = u−1ij , see [21, Def. 3.2]. Consider the cover of Y by dual cells

(Vi)i∈I [21, A.1].

Phillips and Stone show that for a fixed locally ordered finite simpli-

cial complex Y as above there is a function h : [0,+∞) → [0, 1] with

limt→∞ h(t) = 0 and which has the following property. Let u be a U(r)-

valued lattice gauge field on Y for some r ≥ 1. Suppose that

(4) ‖uijujk − uik‖ ≤ δ

for all 2-simplices 〈i, j, k〉 (with vertices so o-ordered). Then there is a

cocycle vij : Vi ∩ Vj → U(r), 〈i, j〉 ∈ Y 1, such that

sup
x∈Vi∩Vj

‖vij(x)− uij‖ < h(δ).

The functions vij(x) are constructed by an iterative process, based on the

skeleton of Y . At each stage of the construction one takes affine combina-

tions of functions defined at a previous stage, starting with the constant

matrices uij . It follows that for each i ∈ I, there exists a fixed small open

tubular neighborhood Ui of Vi which is affinely homotopic to Vi, such that

the cover (Ui)i∈I has the following property. For any U(r)-valued lattice

gauge field u on Y that satisfies (4), there is a cocycle vij : Ui ∩Uj → U(r),

〈i, j〉 ∈ Y 1 such that

sup
x∈Ui∩Uj

‖vij(x)− uij‖ < 2h(δ).

We are going to use the asymptotic representation (ϕn)n as follows. Using

trivializations of ` to Ui one obtains group elements sij ∈ G for 〈i, j〉 ∈ Y 1

giving a constant cocycle on Ui ∩Uj that represents `, so that s−1ij = sji and

sij · sjk = sik whenever 〈i, j, k〉 ∈ Y 2.

If (χi)i∈I are positive continuous functions with χi supported in Ui and

such that
∑

i∈I χ
2
i = 1, then ` is represented by an idempotent

P =
∑
i,j∈I

eij ⊗ χiχj ⊗ sij ∈Mm(C)⊗ C(Y )⊗ C∗(G).



14 MARIUS DADARLAT

Here m = |I| and (eij) is the canonical matrix unit of Mm(C). It follows that

for all n sufficiently large, (idm⊗ idC(Y )⊗ϕn)](P ) is given by the class of a

projection En with ‖En − Fn‖ < 1/2, where Fn = (idm ⊗ idC(Y ) ⊗ ϕn)(P ).

Fn =
∑
i,j∈I

eij ⊗ χiχj ⊗ ϕn(sij) ∈Mm(C)⊗ C(Y )⊗Mk(n)(C).

For v ∈ GLk(C) we denote by w(v) the unitary v(v∗v)−1/2. Fix n suffi-

ciently large so that ϕn(sij) ∈ GLk(n)(C). For each ordered edge 〈i, j〉 ∈ Y 1

we set uij = w(ϕn(sij)) and uji = u−1ij . This will define a U(k(n))-valued

lattice gauge field on the ordered simplicial complex Y . Fix ε > 0 such that

4m2ε < 1/2 and choose δ > 0 such that h(δ) < ε/2. Since (ϕn)n is an

asymptotic representation, there is n0 > 0 such that if n ≥ n0 then

(5) ‖ϕn(sij)− uij‖ < ε/2

for all 〈i, j〉 ∈ Y 1 and ‖uijujk − uik‖ ≤ δ for all 2-simplices 〈i, j, k〉. By

the result of Phillips and Stone quoted above, there exists a cocycle vij :

Ui ∩ Uj → U(k(n)) such that

(6) ‖vij(x)− uij‖ < h(δ) < ε/2

for all x ∈ Ui∩Uj . It follows that ‖vij(x)−vij(x′)‖ < ε for all x, x′ ∈ Ui∩Uj
and all i, j ∈ I and hence the idempotent

en(x) =
∑
i,j∈I

eij ⊗ χi(x)χj(x)vij(x), x ∈ Y

gives an ε-flat vector bundle on Y . From (5) and (6) we have

(7) ‖vij(x)− ϕn(sij)‖ < ε

for all x ∈ Ui∩Uj and 〈i, j〉 ∈ Y 1 . Using (7) we see that ‖en−Fn‖ ≤ 2m2ε <

1/2 and hence ‖en−En‖ ≤ ‖en−Fn‖+‖En−Fn‖ < 1. It follows that En =

wenw
−1 for some invertible element w. This shows that the isomorphism

class of the vector bundle given the idempotent En is represented by an

ε-flat vector bundle since we have seen that en has that property. �

Let Y be a finite simplicial complex with universal cover Ỹ and fundamen-

tal group G and let ` be the corresponding flat line-bundle with fiber C∗(G).

Recall that the Kasparov product K0(C(Y ) ⊗ C∗(G)) ×KK(C∗(G),C) →
K0(Y ) induces a map ν : KK(C∗(G),C)→ K0(Y ), ν(α) = [`] ◦ (α⊗ 1).

Corollary 4.4. ν(KKqd(C
∗(G),C)) ⊂ K0

af (Y ).

Proof. This follows from Propositions 2.5 and 4.3. �
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Theorem 4.5. Let G be a countable, discrete, torsion free group which is

uniformly embeddable in a Hilbert space. Suppose that the classifying space

BG is a finite simplicial complex and that the full group C*-algebra C∗(G)

is K-quasidiagonal. Then all the elements of K0(BG) are almost flat.

Proof. We have seen in the proof of Theorem 3.1 that under the present

assumptions on G, the dual assembly map ν : KK(C∗(G),C) → K0(BG)

is surjective. Since C∗(G) is K-quasidiagonal by hypothesis (this holds for

instance if C∗(G) is quasidiagonal as observed in Remark 2.3), we have that

KK(C∗(G),C) = KKqd(C
∗(G),C). The result follows now from Corol-

lary 4.4. �

From Theorem 4.5 one can derive potential obstructions to quasidiago-

nality of group C*-algebras.

Remark 4.6. Let G be a countable, discrete, torsion free group which is

uniformly embeddable in a Hilbert space and such that the classifying space

BG is a finite simplicial complex. If not all elements of K0(BG) are almost

flat, then C∗(G) is not quasidiagonal.
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