GROUP QUASI-REPRESENTATIONS AND ALMOST FLAT
BUNDLES

MARIUS DADARLAT

ABSTRACT. We study the existence of quasi-representations of discrete
groups G into unitary groups U(n) that induce prescribed partial maps
Ko(C*(G)) — Z on the K-theory of the group C*-algebra of G. We give
conditions for a discrete group G under which the K-theory group of the
classifying space BG consists entirely of almost flat classes.

1. INTRODUCTION

The notions of almost flat bundle and group quasi-representation were
introduced by Connes, Moscovici and Gromov [4] as tools for proving the
Novikov conjecture for large classes of groups. The first example of a topo-
logically nontrivial quasi-representation is due to Voiculescu for G = Z2,
[27]. In this paper we use known results on the Novikov and the Baum-
Connes conjectures to derive the existence of topologically nontrivial quasi-
representations of certain discrete group G, as well as the existence of non-
trivial almost flat bundles on the classifying space BG, by employing the
concept of quasidiagonality.

A discrete completely positive asymptotic representation of a C*-algebra
A consists of a sequence {my, : A — My, ,)(C)},, of unital completely positive
maps such that lim,,_,« ||7,(ad’) — m,(a)m,(a’)]| = 0 for all a,a’ € A. The
sequence {7y}, induces a unital *-homomorphism

and hence a group homomorphism Ko(A) — [[,Z/>_,7Z. This gives a
canonical way to push forward an element x € Ky(A) to a sequence of
integers (7, 4(x)), which is well-defined up to tail equivalence; two sequences
are tail equivalent, (y,) = (z5), if there is m such that x,, = y, for all n > m.

In the first part of the paper we study the existence of discrete asymptotic
representations of group C*-algebras that interpolate on K-theory a given
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group homomorphism h : Ko(C*(G)) — Z. We rely heavily on results of
Kasparov, Higson, Yu, Skandalis and Tu [15], [12], [30], [24], [16], [26]. For
illustration, we have the following:

Theorem 1.1. Let G be a countable, discrete, torsion free group with the
Haagerup property. Suppose that C*(G) is residually finite dimensional.
Then, for any group homomorphism h : Ko(C*(G)) — 7Z there is a discrete
completely positive asymptotic representation {m, : C*(G) — M) (C)}n
such that m,4(x) = h(zx) for all x € Ko(I(G)).

Here I(G) is the kernel of the trivial representation ¢ : C*(G) — C. By
contrast, any finite dimensional unitary representation of G induces the zero
map on Ko(I(G)). The groups with the Haagerup property are characterized
by the requirement that there exists a sequence of normalized continuous
positive-definite functions which vanish at infinity on G and converge to 1
uniformly on finite subsets of G. The conclusion of Theorem 1.1 also holds
if G is an increasing union of residually finite amenable groups, see Theo-
rem 3.4. The class of groups considered in Theorem 1.1 contains all count-
able, torsion free, amenable, residually finite groups (also the maximally
periodic groups) and the surface groups [17]. Moreover, this class is closed
under direct products and free products (see [10], [3]). If we impose a weaker
condition, namely that C*(G) is quasidiagonal, then in general we need two
asymptotic representations in order to interpolate h, see Theorem 3.3. The-
orem 1.1 remains true if we replace the assumption that G has the Haagerup
property by the requirements that G is uniformly embeddable in a Hilbert
space and that the assembly map u : RKo(BG) — Ko(C*(G)) is surjective.
Let us recall that Hilbert space uniform embeddability of G implies that p
is split injective, as proven by Yu [30] if the classifying space BG is finite
and by Skandalis, Yu and Tu [24] in the general case. We will also use a
strengthening of this result by Tu [26] who showed that G has a gamma
element. In conjunction with a theorem of Kasparov [15] this guarantees
the surjectivity of the dual assembly map v : K°(C*(G)) — RK°(BG) for
countable, discrete, torsion free groups which are uniformly embeddable in
a Hilbert space.

The notion of almost flat K-theory class was introduced in [4] as a tool for
proving the Novikov conjecture. In the second part of the paper we pursue
a reverse direction. Namely, we use known results on the Baum-Connes
and the Novikov conjectures to derive the existence of almost flat K-theory
classes by employing the concept of quasidiagonality.

Theorem 1.2. Let G be a countable, discrete, torsion free group which is
uniformly embeddable in a Hilbert space. Suppose that the classifying space
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BG is a finite simplicial complex and that the full group C*-algebra C*(Q)
is quasidiagonal. Then all the elements of K°(BG) are almost flat.

The class of groups considered in Theorem 1.2 is closed under free prod-
ucts, by [1] and [2]. If G can be written as a union of amenable residually
finite groups (as is the case if G is a linear amenable group), then C*(G) is
quasidiagonal. It is an outstanding open question if all discrete amenable
groups have quasidiagonal C*-algebras [29].

Voiculescu has asked in [29] if there are invariants of a topological nature
which can be used to describe the obstruction that a C*-algebra be quasidi-
agonal. One can view Theorem 1.2 as further evidence towards a topological
nature of quasidiagonality, since it shows that the existence of non-almost
flat classes in K°(BG) represents an obstruction for the quasidiagonality of
C*(@Q).

The fundamental connection between deformations of C*-algebras and
K-theory was discovered by Connes and Higson [5]. They introduced the
concept of asymptotic homomorphism of C*-algebras which formalizes the
intuitive idea of deformations of C*-algebras. An asymptotic homomor-
phism is a family of maps ¢; : A — B, t € [0,00) such that for each a € A
the map ¢ — (a) is continuous and bounded and the family (¢¢)e(o,00)
satisfies asymptotically the axioms of *-homomorphisms. There is a natural
notion of homotopy for asymptotic homomorphisms. E-theory is defined as
homotopy classes of asymptotic homomorphisms from the suspension of A
to the stable suspension of B, E(A, B) = [[Co(R) ® A,Cy(R) ® B ® K]].
The introduction of the suspension and of the compact operators K yields
an abelian group structure on F(A, B). Connes and Higson showed that
E-theory defines the universal half-exact C*-stable homotopy functor on
separable C*-algebras. In particular the KK-theory of Kasparov factors
through E-theory. A similar construction based on completely positive as-
ymptotic homomorphisms gives a realization of KK-theory itself as shown
by Larsen and Thomsen [13].

While E-theory gives in general maps of suspensions of C*-algebras it is
often desirable to have interesting deformations of unsuspended C*-algebras.
In joint work with Loring [8], [6], we proved a suspension theorem for com-
mutative C*-algebras A = Cp(X \xz¢), where X is a compact connected space
and x¢p € X is a base point. Specifically, we showed that the reduced K-
homology group K (X) = Ko(X,x0) is isomorphic to the homotopy classes
of asymptotic homomorphisms [[Co(X \ x0), K]]. One can replace the com-
pact operators KC by US2 ; M, (C) and conclude that the reduced K-homology
of X classifies the deformations of Cy(X) into matrices. The case of X = T?
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played an important role in the history of the subject. Indeed, Voiculescu
[28] exhibited pairs of almost commuting unitaries u,v € U(n) whose prop-
erties reflect the non-triviality of H?(T? ,Z). One can view such a pair as
associated to a quasi-representation of C*(Z?) = C(T?). If the commuta-
tor ||uv — vul| is sufficiently small, then there is an induced pushforward of
the Bott class that represents the obstruction for perturbing u,v to a pair
of commuting unitaries, [28], [9]. It is therefore quite natural to investigate
deformations of C*-algebras associated to non-commutative groups. In view
of Theorem 1.1 we propose the following;:

Conjecture. If G is a discrete, countable, torsion free, amenable group,
then the natural map [[I(G),K]] - KK(I(G),K) = K°(I(G)) is an isomor-
phism of groups.

This is verified if G is commutative. Indeed, I(G) = Co(G \ z0) and @ is
connected since G is torsion free, so that we can apply the suspension result
of [6].

Manuilov, Mishchenko and their co-authors have studied various aspects
and applications of quasi-representations and asymptotic representations of
discrete groups. The paper [18] is a very interesting survey of their contribu-
tions. The notion of quasi-representation of a group is used in the literature
in several non-equivalent contexts, to mean several different things, see [22].

2. QUASI-REPRESENTATIONS AND K-THEORY

Definition 2.1. Let A and B be unital C*-algebras. Let F C A be a finite
set and let € > 0. A unital completely positive map ¢ : A — B is called
an (F,e)-homomorphism if ||¢(aa’) — p(a)p(d)|| < € for all a,a’ € F. If
B is the C*-algebra of bounded linear operators on a Hilbert space, then we
say that ¢ is an (F,e)-representation of A. We will use the term quasi-
representation to refer to an (F,e)-representation where F and € are not
necessarily specified.

An important method for turning K-theoretical invariants of A into nu-
merical invariants is to use quasi-representations to pushforward projections
in matrices over A to scalar projections. Consider a finite set of projec-
tions P C M, (A). We say that (P, F,e) is a Ko-triple if for any (F,¢)-
homomorphism ¢ : A — B and p € P, the element b = (id,, ® p)(p) satisfies
|62 —b|| < 1/4 and hence the spectrum of b is contained in [0,1/2)U(1/2,1].
We denote by ¢ the projection x(b), where x is the characteristic function
of the interval (1/2,1]. It is not hard to show that for any finite set of
projections P there exist a finite set F' C A and € > 0 such that (P, F,¢)
is a Ko-triple. If (P, F,e) is a Ko-triple, then any (F,e)-homomorphism
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¢ : A — B induces a map ¢y : P — Ko(B) defined by ¢4(p) = [q]. Let
Proj(A) denote the set of all projections in matrices over A. It is convenient
to extend ¢4 to Proj(A) by setting ¢4(p) = 0 if b = (id,, ® ¢)(p) does not
satisfy ||b2 —b|| < 1/4. If ¢ were a *-homomorphism, then ¢ would induce a
map ¢y : Ko(A) — Ko(B). Intuitively, one may think of ¢4 as a substitute
for w,.

Two sequences (a,,) and (by,) are called tail-equivalent if there is ng such
that a,, = b, for n > ngy. Tail-equivalence is denoted by (a,) = (b,,) or even
a, = by, abusing the notation.

We will also work with discrete completely positive asymptotic morphisms
(¢n)n- They consists of a sequence of contractive completely positive maps
o+ A= By with limy, o ||pn(aa’)—@n(a)en(a’)|| = 0 for alla,a’ € A. Ifin
addition each B, is a matricial algebra B, = Mj,,)(C), then we call (¢n)n
a discrete asymptotic representation of A. A discrete completely positive
asymptotic morphism (¢,), induces a sequence of maps ¢, : Proj(A) —
Ko(By). Note that if p,q € Proj(A) have the same class in Ky(A), then
eng(P) = ng(q)-

For any x € Ky(A), we fix projections p, ¢ € Proj(A) such that x = [p]—|q]
and set v 4(2) = ©ni(P)—¢ni(q) € Ko(By). The sequence (¢, 4(x)) depends
on the particular projections that we use to represent x but only up to tail-
equivalence. While in general the maps ¢y : Ko(A) — Ko(By) are not
group homomorphisms, the sequence (¢, 4(x)) does satisfy (¢n4(z +y)) =
(6ns(2) + pus(y)) for all 2,y € Ko(A).

A subset B C L(H) is called quasidiagonal if there is an increasing se-
quence (py) of finite rank projections in L(H) which converges strongly to
1m and such that lim,_, ||[b, p]|| = 0 for all b € B. B is block-diagonal,
if there is a sequence (p,) as above such that [b,p,] = 0 for all b € B
and n > 1. Let A be a separable C*-algebra. Let us recall that the el-
ements of KK (A,C) can be represented by Cuntz pairs, i.e. by pair of
s-representations ¢, : A — L(H), such that ¢(a) — ¢(a) € K(H), for all
acA

Definition 2.2. Let A be a separable C*-algebra. An element o € KK (A, C)
is called quasidiagonal if it can be represented by a Cuntz pair (p,v) : A —
L(H) with the property that the set (A) C L(H) is quasidiagonal. In this
case let us note that the set p(A) C L(H) must be also quasidiagonal. Sim-
ilarly, we say that « is residually finite dimensional if it can be represented
by a Cuntz pair with the property that the set 1¥(A) is block-diagonal. We
denote by KKqq4(A,C) the subset of KK (A,C) consisting of quasidiagonal
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classes and by KK,¢q4(A,C) the subset of KK(A,C) consisting of residu-
ally finite dimensional classes. It is clear that KK, ¢q(A,C) C KKgq(A,C),
that KKyq(A,C) is a subgroup of KK(A,C) and that KK,;q(A,C) is a
subsemigroup.

We say that A is K-quasidiagonal if KKgq(A,C) = KK(A,C) and that
A is K-residually finite dimensional if KK, ¢q4(A,C) = KK (A,C).

Remark 2.3. Let A be a separable C*-algebra. It was pointed out by Skan-
dalis [23] that for any given faithful x-representation m : A — L(H) such
that m(A) N K(H) = {0}, one can represent all the elements of KK(A,C)
by Cuntz pairs where the second map is fived and equal to w. It follows that a
separable quasidiagonal C*-algebra is K-quasidiagonal and a separable resid-
ually finite dimensional C*-algebra is K-residually finite dimensional. More
generally, if A is homotopically dominated by B and B is K-quasidiagonal
or K-residually finite dimensional then so is A. Let us note that the Cuntz
algebra O9 is K-residually finite dimensional while it is not quasidiagonal.

The following lemma and proposition are borrowed from [7]. For the sake
of completeness, we review briefly some of the arguments from their proofs.
Let B be a unital C*-algebra and let E be a right Hilbert B-module. If
e, f € Lp(F) are projections such that e — f € Kp(F), we denote by [e, f]
the corresponding element of KK (C, B) = Ky(B).

Lemma 2.4. Let B be a unital C*-algebra and let E be a right Hilbert B-
module. Let e, f € Lg(F) and h € Kg(FE) be projections such that e — f €
Kp(E), and |eh—he| < 1/9, | fh—=hf|| < 1/9, [[(1=h)(e—f)(1=h)| < 1/9.
Then
Sp(heh) U Sp(hfh) € [0,1/2) U (1/2,1],
e, f] = [x(heh), x(hfh)] € KK(C, B) = Ko(B).

Proof. One shows that if €/, f' € Lp(FE) are projections such that ¢ — [’ €
Kp(FE)and |le—¢€'|| < 1/2, || f—f'|| < 1/2, then [e, f] = [¢/, f']. This is proved
using the homotopy (x(et), x(ft)) where e; = (1—t)e+te’, fr = (1—t)f+tf’,
0 <t < 1. Then one applies this observation to conclude that
le, f] = [x(@)+x(2"), x(»)+x(¥)] = [x(@)+x(2'), x(y)+x(2)] = [x(2), x(¥)],
where x = heh, 2’ = (1 —h)e(1—h), y=hfh, vy =1 —-h)f(1—h). O

Let A, B be separable C*-algebras. An element o € KK (A, C) induces a
group homomorphism a, : Ko(A ® B) — Ky(B) via the cup product

KK(C,A® B) x KK(A,C) - KK(C,B), (xz,a)— zo(a®1p).

Here we work with the maximal tensor product.
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Proposition 2.5. Let A be a separable unital C*-algebra and o € KKyq(A,C).
There exist two discrete asymptotic representations (pn)n and (n), con-
sisting of unital completely positive maps ¢n @ A — My, (C) and 1y, :
A — M,,)(C) such that for any separable unital C*-algebra B, the map
s Ko(A® B) — Ko(B) has the property that

() = (pn @ idp)y(x) = (Yn ® idp)y(z),
forallz € Ko(A® B). If o« € KK,7q(A,C) then all 1y, can be chosen to be

x-representations.

Proof. Represent a by a Cuntz pair ¢,v : A — L(H) with ¢(a) — ¢(a) €
K(H), for all a € A, and such that the set 1(A) is quasidiagonal. Therefore
there is an increasing approximate unit (py), of K(H) consisting of projec-
tions such that (p,), commutes asymptotically with both ¢(A) and ¥(A).
Let us define contractive completely positive maps ¢, ¥, : A — L(p,H) by

on(a) := ppp(a)p, and ¥y, (a) := ppip(a)p,. Without any loss of generality
we may assume that x is the class of a projection e € A® B. It follows from
the definition of the Kasparov product that

o (z) = (¢ ® idp)(e), (¥ @ idp)(e)] € KK(C, B).

On the other hand, the sequence of projections p, ® 15 € K(H) ® B com-
mutes asymptotically with both projections (¢ ® idg)(e) and (¢ ® idg)(e)
and moreover

Tim [l @ 15 (¢ @ idp)(e) — (¥ @ idp)(e)) pa @ 18] = 0,

since the sequence (p, ® 15), forms an approximative unit of K (H)® B. It
follows now from Lemma 2.4 that for all sufficiently large n

[(p ®@idp)(e), (¥ ®idp)(e)] = (pn @ idp)s(e) — (Yn @ idp)y(e).
It is standard to perturb ¢, and %, to completely positive maps such
that ¢, (1) and 9, (1) are projections. Finally, let us note that 1, is a
x-homomorphism if p, commutes with . U
3. ASYMPTOTIC REPRESENTATIONS OF GROUP C*-ALGEBRAS
We use the following notation for the Kasparov product:
KK(A,B)x KK(B,C) - KK(A,C), (y,z)—~you.

In the case of the pairing K;(B) x K'(B) — Z we will also write (y,z) for
y o x. We are mostly interested in the map

(1) K'(C*(G)) = Hom(K;(C*(G)), Z),
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induced by the pairing above for B = C*(G). If G has the Haagerup prop-
erty, then it was shown in [25] that C*(G) is KK-equivalent with a com-
mutative C*-algebra and hence the map (1) is surjective. Assuming that G
is a countable, discrete, torsion free group that is uniformly embeddable in
a Hilbert space, we are going to verify that the map (1) is split surjective
whenever the assembly map p : RK;(BG) — K;(C*(G)) is surjective.

Following Kasparov [15], for a locally compact, o-compact, Hausdorff
space X and Cjy(X)-algebras A and B we consider the representable K-
homology groups RK;(X), the representable K-theory groups RK*(X) and
the bivariant theory RKK;(X;A,B). If Y is compact, then RK;(Y) =
KK;(C(Y),C) and RK'(Y) = KK;(C,C(Y)). Suppose now that X is lo-
cally compact, o-compact and Hausdorff. Then

RK;(X) = hgn RK;(Y) = hﬂ KK;(C(Y),C)
YCX YCcX

where Y runs over the compact subsets of X. Kasparov [15, Prop. 2.20] has
shown that

RKY(X) =2 RKK;(X;Cy(X),Co(X)).

Moreover, if Y C X is a compact set, then the restriction map RK*(X) —
RK(Y) corresponds to the map

RIK(X; Co(X), Co(X)) = REK(Y;C(Y), C(Y)) = KK (C, C(Y)).
It is useful to introduce the group

LEK'(X) = lim RK'(Y),
YCX

where Y runs over the compact subsets of X. If X is written as the union
of an increasing sequence (Y;,), of compact subspaces, then as explained in
the proof of Lemma 3.4 from [16], there is a Milnor I'Lm1 exact sequence:

0 — lim'RE™(Y,) = REK'(X) — lim RK'(Y,) — 0.
The morphism RK*(X) — Hom(RK;(X),Z) induced by the pairing RK;(X) x
RK*(X) — Z factors through the morphism
lim RK*(Y,) =LK"(X) — Hom(RK;(X), Z) = Hom(lim RK;(Y,), Z)
= Jim Hom(RK; (Y,,), Z)
given by the projective limit of the morphisms RK*(Y,,) — Hom(RK;(Yy,),Z).

If X is a locally finite separable CW-complex then there is a Universal
Coefficient Theorem [16, Lemma 3.4]:

(2) 0= Ext(RK41(X),Z) » RK*(X) — Hom(RK;(X),Z) — 0.
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In particular, it follows that the map LK*(X) — Hom(RK;(X),Z) is sur-
jective.

Let us recall the construction of the assembly map p : RK;(BG) —
K;(C*(@)) and of the dual map v : K'(C*(G)) — RK*(BG) as given in
[15]. Kasparov considers a natural element

B € RKK(BG; Co(BG),Co(BG) @ C*(G))

(which we denote here by /¢ as it corresponds to Mischenko’s ”line bundle”
on BG). If G is a discrete countable group then it is known [15, §6] that
EG and BG can be realized as locally finite separable CW-complexes. Write
BG as the union of an increasing sequence (Y, ), of finite CW-subcomplexes.
Let ¢, be the image of ¢ in

REK (Yy; C(Y,), C(Y) ® CH(Q)) = KK(C,C(Y,) ® C*(G))

under the restriction map induced by the inclusion Y,, C BG.
The map py, : RK;(Y,) = K;(C*(Q)) is defined as the cap product by £;,:

KK(C,C(Y,) ® C*(@)) x KK;(C(Y,),C) — KK;(C,C*(G))

(U, 2) = pn(2) =Llyo (2@ 1).
The assembly map p : RK;(BG) — K;(C*(Q)) is the inductive limit homo-
morphism y := lim i, The homomorphism v : K{(C*(G)) - RKY(BG) is
defined as the cap product by £:
RKK(BG;Cy(BG),Co(BG) @ C*(Q)) x KK;(C*(G),C)
— 'RKKi(BG; Co(BG), C()(BG))

(lyx)—v(x)=Lo(1®x).
Let v, : K(C*(G)) — RK'(Y,) be obtained by composing v with the
restriction map RK'(BG) — RK*(Y,). Noting that v, is also given by the
cap product by £,, Kasparov has shown that
Va(2) 0 2 = pin(2) 0 2

forallz € K(C*(G)) and z € RK;(Yy,), [15, Lemma 6.2]. The assembly map
induces a homomorphism p* : Hom(K;(C*(G)),Z) — Hom(RK;(BG),Z).
Since

Hom(RK;(BG), Z) = Hom(liy RK;(Y;,), Z) = lim Hom(RK;(Y,), Z)

and since the equalities v, (x) 0 2 = x o u,(2) are compatible with the maps
induced by the inclusions Y,, C Y,,4+1, we obtain that the following diagram
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is commutative

(3) K'(C*(G)) — Hom(K;(C*(G)), Z)

RK‘(BG) — Hom(RK;(BG),Z)

where the horizontal arrows correspond to natural pairings of K-theory with
K-homology. The map RK*(BG) — Hom(RK;(BG),Z) is surjective by (2).

In view of the previous discussion, by combining results of Kasparov [15]
and Tu [26], one derives the following.

Theorem 3.1. Let G be a countable, discrete, torsion free group. Suppose
that G is uniformly embeddable in a Hilbert space. Then for any group
homomorphism h : K;(C*(G)) — Z there is x € K'(C*(G)) such that
h(p(z)) = (u(z),z) for all z € RK;(BG).

Proof. For a discrete group G which admits a uniform embedding into a
Hilbert space it was shown in [26, Thm. 3.3] that G has a y-element. Since
G is torsion free, we can take BG = BG. If G has a ~v-element, it follows by
Theorem 6.5 and Lemma. 6.2 of [15] that the dual map v : KK;(C*(G),C) —
RK'(BQ) is split surjective. Therefore, in the diagram above, the composite
map K'(C*(G)) — Hom(RK;(BG),Z), x + (v(z),-) is surjective. This
shows that if h : K;(C*(G)) — Z is a group homomorphism, then p*(h) =
hop = (v(x),-) for some x € K'(C*(G)). Since the diagram above is
commutative, we obtain that h oy = (v(x), ) = (u(-), x). O

The following proposition is more or less known; for example, it is implic-
itly contained in [11]. Let ¢ be the trivial representation of G, ¢(s) = 1 for
all s € G.

Proposition 3.2. Let p : RKy(BG) — Ko(C*(Q)) be the assembly map.
Then for any unital finite dimensional representation 7 : C*(G) — M,,(C),
Ts O [l = M * Ly O L.

Proof. Write BG as the union of an increasing sequence (Y,), of finite
CW-subcomplexes. Let z € RKy(Y,) for some n > 1 and let x = [n] €
K°(C*(G)). The equality v,(z) o z = pn(2) o = becomes (v,(x),z) =
7« (pin(2)). The Chern character makes the following commutative:

RK°(Y,) x RKy(Y,) Z

ch* X chs \L [

Heven(yn’ Q) X Heven(Yn’ @) - Q
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Thus (ch*(vy(x)), chy(2)) = Tx(pn(z)). Since x is the class of a unital finite
dimensional representation 7 : C*(G) — M,(C), it follows that v,(x) is
simply the class of the flat complex vector bundle [V] = 7. (¢,) over Y;,. On
the other hand, if V' is a flat vector bundle, then ch*(V) = rank(V) =m =
dim(7) by [14]. Therefore, for any unital m-dimensional representation ,
T (pin(2)) = m - (1,chy(2)). By applying the same formula for the trivial
representation ¢ : C*(G) — C, we get tx(un(2)) = (1, chy(z)). It follows that
Taltin(2)) = m - 12 (in(2)) 0

Recall that we denote by I(G) the kernel of the trivial representation
t: C*(G) — C. Since the extension 0 — I(G) — C*(G) — C — 0 is split,
Ko(C*(G)) = Ko(I(G)) & Z.

Theorem 3.3. Let G be a countable, discrete, torsion free group that is
uniformly embeddable in a Hilbert space. Let h : Ko(C*(G)) — Z be a group
homomorphism.

(i) If C*(G) is K-quasidiagonal, then there exist two discrete completely
positive asymptotic representations {mn : C*(G) — My, (C)}n and {yy, :
C*(G) = My () (C)}n such that mpy(2)—yny(x) = h(z) for allz € p(RKo(BG)).

(ii) If C*(Q) is K-residually finite dimensional, then there is a discrete
completely positive asymptotic representation {m, : C*(G) — Myu)(C)}y
such that mp¢(x) = h(x) for all x € Ko(I(GQ)) N u(Ko(BG)).

Proof. Part (i) follows from Theorem 3.1 and Proposition 2.5 for A = C*(G)
and B = C. For part (ii) we observe that if v, is a x-representation, then
v =0 on Ko(I(G)) by Proposition 3.2. O

Theorem 3.4. Let G be a countable, discrete, torsion free group. Suppose
that G satisfies either one of the conditions (a) or (b) below.

(a) G has the Haagerup property and C*(G) is K-residually finite dimen-
sional.

(b) G is an increasing union of residually finite, amenable groups.

Then, for any group homomorphism h : Ko(C*(G)) — Z there is a dis-
crete completely positive asymptotic representation {my, : C*(G) — My, (C)}y
such that mp4(x) = h(x) for all x € Ko(I(G)).

Proof. Recall that the assembly map is an isomorphism for groups with
the Haagerup property by a result of Higson and Kasparov [12], and that
these groups are also embeddable in a Hilbert space. Thus, if G satisfies
(a), then the conclusion follows from Theorem 3.3(ii). Suppose now that G
satisfies (b). Thus G = |J; G; where G; are residually finite, amenable

groups and G; C Git1. Then C*(G) = |J,C*(G;) and Ko(C*(G)) =

lim Ko(C*(Gy)). Similarly, I(G) = U; I(G;) and Ko(I(G)) = lim Ko(I(G})).
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Let 6; : Ko(C*(G;)) — Ko(C*(G)) be the map induced by the inclusion
C*(G;) C C*(Q). Let h be given as in the statement of the theorem. By the
first part of the theorem, for each ¢, there is a discrete completely positive
asymptotic representation (m(f))n of C*(G};) such that Wflzé(:c) = h(6;(z)) for
all z € Ko(I(G;)). By Arveson’s extension theorem, each 7 extends to
a unital completely positive map 7’r7(1i ) on C*(@). Since C*(G) is separable,
Ko(I(@)) is countable and Ky(I(G)) = liﬂKo(I(Gi)), it follows that there
is a sequence of natural numbers r(1) < r(2) < ... such that (7_r1(f()l))Z is a
discrete completely positive asymptotic representation of C*(G) such that

7{{)).4(@) = h(2) for all z € Ko(I(G)). -

4. ALMOST FLAT K-THEORY CLASSES

In this section we use the dual assembly to derive the existence of almost
flat K-theory classes on the classifying space BG if the group C*-algebra
of G is quasidiagonal. It is convenient to work with an adaptation of the
notion of almost flatness to simplicial complexes, see [19].

Definition 4.1. Let Y be a compact Hausdorff space and let (U;)icr be a
fized finite open cover of Y. A complex vector bundle E € Vect,,(Y) is
called e-flat if is represented by a cocycle vy : Uy N U; — U(m) such that
vij(y) — vi; ()| < € for all y,y' € UyNU; and all 1,j € I. A K-theory
class a € K°(Y) is called almost flat if for any € > 0 there are e-flat vector
bundles E, F such that o = [E] — [F|. This property does not depend on the
cover (U;)ier-

Remark 4.2. The set of all almost flat elements of K°(Y)) form a subring
denoted by Kgf(Y). If f: Z =Y is a continuous map, then f*(Kgf(Y)) C

K3y(Z2).

The following proposition gives a method for producing e-flat vector bun-
dles. Let Y be a finite simplicial complex with universal cover Y and
fundamental group G. Consider the flat line-bundle ¢ with fiber C*(G),
Y xq C*(G) — Y, where G C C*(G) acts diagonally, and let P be the
corresponding projection in M,,(C) ® C(Y) ® C*(G). Consider a discrete
asymptotic representation {¢, : C*(G) = My(,)(C)}, and set Fy, = (idy, ®
ido(yy ® on)(P). Since |F? — Full = 0 as n — oo, E, := x(F,) is a
projection in M,,,)(C(Y)) such that [|E,, — Fy,|| — 0 as n — oo.

Proposition 4.3. For any € > 0 there is ng > 0 such that for any n > ng
there is an e-flat vector bundle on'Y which is isomorphic to the vector bundle
given by the idempotent E,,.
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Proof. We rely on a construction and results of Phillips and Stone from
[20, 21], see also [18]. A simplicial complex is locally ordered by giving a
partial ordering o of its vertices in which the vertices of each simplex are
totally ordered. The first barycentric subdivision of any simplicial complex
has a natural local ordering [21, §1.4]. Thus we may assume that Y is
endowed with a fixed local ordering o. Let Y have vertices I = {1,2,...,m}.
We denote by Y* the set of k-simplices of Y. Given r > 1, a U(r)-valued
lattice gauge field u on the simplicial complex Y is a function that assigns
to each 1-simplex (i, j) of Y an element u;; € U(r) subject to the condition
that uj; = u;jl, see [21, Def. 3.2]. Consider the cover of Y by dual cells
(Vi)ier [21, A.1].

Phillips and Stone show that for a fixed locally ordered finite simpli-
cial complex Y as above there is a function h : [0,4+00) — [0,1] with
lim¢_,oo h(t) = 0 and which has the following property. Let u be a U(r)-
valued lattice gauge field on Y for some r > 1. Suppose that

(4) Jwijujr — ukll <6

for all 2-simplices (i, j, k) (with vertices so o-ordered). Then there is a
cocycle v;; : ViNV; — U(r), (i,j) € Y, such that
sup ||vij(x) — uijl| < h(8).
zeV;NV;
The functions v;;(x) are constructed by an iterative process, based on the
skeleton of Y. At each stage of the construction one takes affine combina-
tions of functions defined at a previous stage, starting with the constant
matrices w;;. It follows that for each i € I, there exists a fixed small open
tubular neighborhood U; of V; which is affinely homotopic to V;, such that
the cover (U;)ier has the following property. For any U(r)-valued lattice
gauge field u on Y that satisfies (4), there is a cocycle v;; : UyNU; — U(r),
(i,§) € Y'! such that
sup [lvij(x) — w4l < 2h(9).
zelU;NU;

We are going to use the asymptotic representation (¢, ), as follows. Using
trivializations of ¢ to U; one obtains group elements s;; € G for (i,j) € Y'*
giving a constant cocycle on U; NU; that represents ¢, so that si_jl = 5j; and
Sij - Sjk = Si) whenever (i, j, k) € Y2

If (xi)ier are positive continuous functions with y; supported in U; and
such that 3, ; X? =1, then £ is represented by an idempotent

P= Z eij ® XiXj ® sij € M (C) @ C(Y) @ C*(G).
i,7€1



14 MARIUS DADARLAT

Here m = |I] and (e;;) is the canonical matrix unit of M,,(C). It follows that
for all n sufficiently large, (idy, ® idc(yy ® @n)3(P) is given by the class of a
projection E, with ||E, — F,[| < 1/2, where F,, = (idy, ® idoy) @ ¢n)(P).

Fu= 3 €ij @ XiX; ® ¢n(5ij) € Min(C) @ C(Y) @ Mys)(C).
1,5€l
For v € GLi(C) we denote by w(v) the unitary v(v*v)~Y2. Fix n suffi-
ciently large so that ¢y (sij) € GLyn)(C). For each ordered edge (i,j) € Y
we set u;; = w(pn(si;)) and uj; = ug;'. This will define a U (k(n))-valued

ij
lattice gauge field on the ordered simplicial complex Y. Fix ¢ > 0 such that

4m?c < 1/2 and choose § > 0 such that h(§) < /2. Since (¢,), is an
asymptotic representation, there is ng > 0 such that if n > ng then

(5) [on(si) — uijl| <e/2

for all (i,j) € Y and |lujjujr — wig| < & for all 2-simplices (i, j, k). By
the result of Phillips and Stone quoted above, there exists a cocycle v;; :
UinNU; — U(k(n)) such that

(6) [0ij (x) — usll < h(5) <e/2
for all z € U;NU;. Tt follows that ||v;;(z) —vij(2')| < € for all z, 2’ € U;NU;
and all ¢,7 € I and hence the idempotent
en(z) = Z eij @ Xi(z)x;j(z)vij(z), €Y
ijel
gives an e-flat vector bundle on Y. From (5) and (6) we have
(7) [vij(z) — en(sij) <€

for all z € U;NU; and (i, ) € Y. Using (7) we see that ||e, — Fy|| < 2m?%e <
1/2 and hence |le,, — E,|| < |len — Ful| + | En — Fr|| < 1. Tt follows that E,, =
we,w™ ! for some invertible element w. This shows that the isomorphism
class of the vector bundle given the idempotent E,, is represented by an
e-flat vector bundle since we have seen that e, has that property. O

Let Y be a finite simplicial complex with universal cover Y and fundamen-
tal group G and let ¢ be the corresponding flat line-bundle with fiber C*(G).
Recall that the Kasparov product Ko(C(Y) ® C*(G)) x KK(C*(G),C) —
K°(Y) induces a map v : KK(C*(G),C) = K°(Y), v(a) = [{]o (a®1).

Corollary 4.4. v(KK,(C*(G),C)) C K°.(Y).

Proof. This follows from Propositions 2.5 and 4.3. U
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Theorem 4.5. Let G be a countable, discrete, torsion free group which is
uniformly embeddable in a Hilbert space. Suppose that the classifying space
BG is a finite simplicial complex and that the full group C*-algebra C*(Q)
is K-quasidiagonal. Then all the elements of K°(BG) are almost flat.

Proof. We have seen in the proof of Theorem 3.1 that under the present
assumptions on G, the dual assembly map v : KK(C*(G),C) — K°(BG)
is surjective. Since C*(G) is K-quasidiagonal by hypothesis (this holds for
instance if C*(G) is quasidiagonal as observed in Remark 2.3), we have that
KK(C*(G),C) = KKy (C*(G),C). The result follows now from Corol-
lary 4.4. ([

From Theorem 4.5 one can derive potential obstructions to quasidiago-
nality of group C*-algebras.

Remark 4.6. Let G be a countable, discrete, torsion free group which is
uniformly embeddable in a Hilbert space and such that the classifying space
BG is a finite simplicial complex. If not all elements of K°(BG) are almost
flat, then C*(G) is not quasidiagonal.
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