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Abstract. For a discrete group Γ, we study vector bundles Eρ on compact subsets of BΓ

associated to almost representations ρ : Γ → U(n). We compute the first Chern class of Eρ

in terms of ρ. When ρ is both projective and almost multiplicative, we determine its Chern

character. These invariants yield obstructions to perturbing almost representations to those

arising from projective representations. For residually finite amenable groups, the K-theory

classes of Eρ classify almost representations up to stable equivalence. Finally, for Zd, Z × H3,

and H3 ×H3, we construct explicit almost representations with prescribed Chern classes.
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1. Introduction

Let Γ be a discrete countable group. Let S be a finite subset of Γ and let δ > 0. A unital

map ρ : Γ→ U(n) is called an (S, δ)-representation if

∥ρ(ab)− ρ(a)ρ(b)∥ < δ, ∀a, b ∈ S.

We call such a map an almost representation, even when S and ε are not explicitly specified,

provided that S is sufficiently large and ε sufficiently small for the context. In the literature,

the same notion is also referred to as a quasi-representation, [6], [8]. A sequence of unital maps

{ρn : Γ→ U(kn)}n will be called an asymptotic representation of Γ if

lim
n→∞

∥ρn(ab)− ρn(a)ρn(b)∥ = 0, ∀a, b ∈ Γ.
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The study of almost representations of groups with respect to the operator norm goes back to

Kazhdan [34], Voiculescu [53], Connes, Gromov and Moscovici [6] and Exel and Loring [18].

We study asymptotic and almost representations using K-theory methods and quasidiagonality.

Vector bundles on compact subspaces of the classifying space BΓ play a key role. The idea of

constructing almost representations from almost flat bundles was introduced in [6]. The approx-

imate monodromy correspondence between almost flat bundles and almost representations was

further studied in [23], [22], [3], [29] and [37]. A functional-analytic approach to constructing

almost representations and almost flat bundles was introduced in [8] and [9], using the notion of

quasidiagonal K-homology classes for group C∗-algebras. This method draws upon key results

by Kasparov [31], Yu [54], and Tu [52], particularly in relation to the Novikov and Baum-Connes

conjectures. The applicability of this technique, revisited in [4], was significantly broadened by

Kubota in [38] through the consideration of quasidiagonal C∗-algebras that are intermediate

between the full and the reduced group C∗-algebras; see also [10], [12] for further work in this

direction with applications to non-stability.

It is convenient to work with a CW-complex model of BΓ as described in [24, Example 1B.7]

as we elaborate in Section 2. This allows us to identify the chain complex which defines the

simplicial homology of BΓ, with the non-homogeneous bar complex that defines the homology

of Γ. We will also fix an exhaustion of BΓ by an increasing sequence of finite subcomplexes

(Yn)n. Let us recall that Atiyah-Segal’s construction which associates to a finite dimensional

representation of Γ, a flat vector bundle on BΓ generalizes to almost representations. If the

classifying space BΓ admits a realization as a finite CW-complex, then, there exist a finite

subset S of Γ and δ > 0 such that one can associate to any (S, δ)-representation ρ : Γ→ U(n), a

rank-n almost flat bundle Eρ over BΓ, see for example [9], [12]. The construction of Eρ will be

reviewed subsequently. For groups Γ that are quasidiagonal and admit a γ-element, it is known

that K0(BΓ) is generated by almost flat vector bundles Eρ as above, [9], [36], [10]. Since flat

complex vector bundles have trivial rational Chern classes, [43], it follows that if [Eρ]− [n] ̸= 0

in K0(BΓ) ⊗ Q, then the almost representation ρ is not a small perturbation of a genuine

representation, see [10]. Specifically, there are ε, δ0 > 0 and finite sets F, S0 ⊂ Γ such that if

ρ : Γ → U(n) is an (S, δ)-representation with δ ⩽ δ0 and S ⊇ S0, then for any homomorphism

π : Γ→ U(n),

max
s∈F
∥ρ(s)− π(s)∥ ⩾ ε.

One can extend the construction above to general groups with BΓ an infinite CW complex.

Thus, for any compact subspace Y ⊂ BΓ, there are S and δ such that to (S, δ)-representation

ρ : Γ→ U(n) we can associate a rank-n vector bundle EYρ over Y , see Section 4.

This leads naturally to the question of computing invariants of the bundle EYρ in terms

of ρ. Using previous work [8], [11], [21], [12], we compute the first Chern class of EYρ as

described below. Moreover, if ρ is not only an almost representation, but also a projective

representation, in the sense that ρ(a)ρ(b)ρ(ab)−1 = λ(a, b)1n, with λ(a, b) ∈ T for all a, b ∈ Γ,

then we compute the rational Chern classes of EYρ . Let j denote the canonical isomorphism

j : H2(Γ, Q)→ H2(BΓ, Q), with Q an abelian group. As explained in Section 2, we shall make

no notational distinction between and element x and its image j(x). A local 2-cocyle on Γ is

a map that satisfies the 2-cocycle equation for finitely many triples a, b, c ∈ Γ. This notion is
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discussed in Section 2 along with the corresponding map j : Z2(Γ, Q)Y → Z2(Y,Q). We write

ci(E)Z for the ith integral Chern class and ci(E) for the ith Chern class considered as a rational

or real cohomology class, depending on context.

The first half of the paper is devoted to computation of invariants of EYρ .

Theorem 1.1. Let Γ be a countable discrete group. For any finite subcomplex Y of BΓ, there

are a finite set S ⊂ Γ and δ > 0 such that for any (S, δ)-representation ρ : Γ→ U(n), the vector

bundle EYρ is well-defined and

(1) The equation

(1) ω(a, b) :=
1

2πi
Tr(log(ρ(a)ρ(b)ρ(ab)−1)),

defines a local 2-cocycle ω ∈ Z2(Γ,R)Y with the property that c1(E
Y
ρ ) = [ω] in H2(Y,R). More-

over, for any integral 2-cycle c ∈ Z2(Y,Z), the corresponding Kronecker pairing takes integral

values, ⟨[ω], [c]⟩ ∈ Z.
(2) If ρ : Γ → U(n) is both an (S, δ)-representation and a projective representation, then

the total Chern class of EYρ is

c(EYρ ) =

(
1 +

1

n
c1(E

Y
ρ )

)n
=

(
1 +

1

n
[ω]

)n
and the Chern character is

ch(EYρ ) = ne
1
n
c1(EY

ρ ) = n e
1
n
[ω].

When BΓ admits a compact model, Eρ can be constructed as a bundle over BΓ and

[ω] ∈ H2(BΓ,R). In general, to detect the nontriviality of c1(E
Y
ρ ), we pair [ω] with 2-homology

classes. This recovers the winding number invariants of the type used in [34], [18] and [17].

The Exel-Loring formula [18] shows the equality of two invariants associated to a pair of almost

commuting unitaries regarded as an almost representation of Z2. A generalization of the Exel-

Loring formula to almost representations of arbitrary discrete groups Γ was given in [11] in the

form of an index formula. This formula, which we will review in Theorem 3.1, defines a pairing

⟨⟨⟨ρ, r⟩⟩⟩ between sufficiently multiplicative almost representations ρ : Γ → U(k) and elements [r]

of the group homology H2(Γ,Z) realized through the Hopf formula for 2-homology. We write

this symbolically as

{Almost representations} ×H2(Γ,Z)Hopf → Z, (ρ, [r]) 7→ ⟨⟨⟨ρ, r⟩⟩⟩.

Another pairing (((ρ, c))), between almost representations ρ : Γ → U(k) and elements of

H2(Γ,Z), was introduced in [21] using the bar-resolution definition of H2(Γ,Z):

{Almost representations} ×H2(Γ,Z)→ Z, (ρ, [c]) 7→ (((ρ, c))).

We review this second pairing in equation (7) below. In Section 3 we show that the two pairings

can be identified modulo the isomorphism φ : H2(Γ,Z)Hopf → H2(Γ,Z), in the sense that

⟨⟨⟨ρ, r⟩⟩⟩ = (((ρ, φ(r)))).

Furthermore, we give the following geometric interpretation of the pairings. If BΓ admits a

compact model. Then there exist δ > 0 and a finite set S ⊂ Γ such that for any (S, δ)-

representation ρ : Γ→ U(n), (((ρ, c))) coincides with the Kronecker pairing between the first Chern
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class of Eρ and [c] ∈ H2(BΓ,Z):
(((ρ, c))) = ⟨c1(Eρ), [c]⟩.

If BΓ is not compact, we have a similar interpretation that involves c1(E
Y
ρ ), where Y is a finite

subcomplex of BΓ that supports the 2-cycle c, as discussed in the proof of Theorem 4.2.

In the second half of the paper we study the extent to which the bundle Eρ determines ρ.

We establish the following stable uniqueness result, showing that the associated vector bundles

classify almost representations up to stable approximate unitary equivalence under suitable

conditions.

Theorem 1.2. Let Γ be a torsion-free residually finite countable amenable group. For any finite

set F ⊂ Γ and any ε > 0, there exist a finite set S ⊂ Γ, δ > 0 and a compact subspace Y ⊂ BΓ

such that for any two (S, δ)-representations ρ, ρ′ : Γ→ U(k) with [EYρ ] = [EYρ′ ] in K
0(Y ), there

is a representation π : Γ→ U(m) and a unitary u ∈ U(k +m) such that

(2) ∥u(ρ(s)⊕ π(s))u∗ − ρ′(s)⊕ π(s)∥ < ε, ∀s ∈ F.

The same conclusion remains valid even if Γ is not residually finite; however, in that case

we need to allow π to be an (S, δ)-representation. To complete the picture, we note that the

following existence result is implicitly contained in [9]. The class of the trivial bundle of rank

k is denoted by [k]. Fix an exhaustion of BΓ by an increasing sequence of finite connected

subcomplexes (Yn)n. Kasparov [32], uses the notation LK∗(BΓ) = lim←−K
∗(Yn).

Theorem 1.3. Let Γ be a torsion free residually finite countable amenable group. For any

(zn)n ∈ lim←− K̃
0(Yn), there exist an asymptotic representation {ρn : Γ → U(kn)}n and finite

dimensional representations {πn : Γ → U(kn)}n, such that [Eρn ] − [kn] = zn for all n ⩾ 1.

Moreover, by Theorem 1.2, {ρn}n is unique up to stable approximate unitary equivalence. Thus,

if {ρ′n : Γ → U(kn)}n is another lifting of (zn)n, then there exist a sequence of representations

{πn : Γ→ U(ℓn)}n and unitaries un ∈ U(kn + ℓn) such that

lim
n→∞

∥ρn(s)⊕ πn(s)− un
(
ρ′n(s)⊕ πn(s)

)
u∗n∥ = 0, ∀s ∈ Γ.

If Γ is not residually finite, one can still lift (zn)n to a pair of asymptotic homomorphisms

{ρn, πn : Γ→ U(kn)}n such that [Eρn ]− [Eπn ] = zn for all n ⩾ 1.

Corollary 1.4. Let Γ be a residually finite amenable group such that BΓ admits a finite CW

complex model.

(1) For any z ∈ K̃0(BΓ) there are δ0 > 0 and a finite set S0 ⊂ Γ such that for any finite

set S0 ⊂ S ⊂ Γ and any 0 < δ < δ0 there is an (S, δ)-representation ρ : Γ → U(n) such

that [Eρ] − [n] = z. In particular, for any x ∈ H̃even(BΓ,Q) there is an (S, δ)-representation

ρ : Γ→ U(n) such that c̃h(Eρ) = qx for some q ∈ Q.

(2) For any finite set F ⊂ Γ and any ε > 0, there is a finite set S ⊂ Γ and δ > 0 such

that for any two (S, δ)-representations ρ, ρ′ : Γ→ U(n) with [Eρ] = [Eρ′ ] in K
0(BΓ), there is a

representation π : Γ→ U(m) and a unitary u ∈ U(n+m) satisfying (2).

Using Theorem 1.1 and Corollary 1.4, we can now address the question of perturbing

multiples of approximate representations to direct sums of projective representations for poly-Z
groups. For a map ρ : Γ→ U(n) and r ∈ N, we denote ρ⊕r by rρ.
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Theorem 1.5. Let Γ be a poly-Z group. Consider the following properties:

(1) For every ε > 0 and finite subset F ⊂ Γ, there exist a finite subset S ⊂ Γ and δ > 0 so

that for any (S, δ)-representation ρ, there are an integer r > 0, representations π1 and

π2, a unitary u, and a projective representation ψ, so that

||u(rρ(s)⊕ π1(s))u∗ − ψ(s)⊕ π2|| < ε, ∀s ∈ F.

(2) For every ε > 0 and finite subset F ⊂ Γ, there exist a finite subset S ⊂ Γ and a

δ > 0 so that for any (S, δ)-representation ρ, there are an integer r > 0, a unitary u, a

representation π, and a finite family of projective representations (ψi), so that∥∥∥∥∥u(rρ(s)⊕ π(s))u∗ −⊕
i

ψi(s)

∥∥∥∥∥ < ε ∀s ∈ F

(3) For every ε > 0 and finite subset F ⊂ Γ, there exist a finite subset S ⊂ Γ and a δ > 0 so

that for any (S, δ)-representation ρ, there are an integer r > 0, a unitary u, and finite

families of projective representations (φi) and (ψk) so that∥∥∥∥∥u
(
rρ(s)⊕

⊕
i

φi(s)

)
u∗ −

⊕
k

ψk(s)

∥∥∥∥∥ < ε ∀s ∈ F

Then condition (1) is true if and only if H̃even(Γ;Q) = H2(Γ;Q). Condition (2) is true if

and only if H̃even(Γ;Q) is spanned by nonnegative linear combinations of elements of the form

ex − 1 with x ∈ H2(Γ;Q). Condition (3) is true if and only if H̃even(Γ;Q) is spanned by linear

combinations of elements of the form ex with x ∈ H2(Γ;Q).

Let Γ be a finitely generated group with a non-torsion 2-cohomology class [ω] that corre-

sponds to a central extension where the middle group is residually finite. Motivated by work of

Kazhdan [34], Voiculescu [53] and Eilers, Shulman and Sørensen [17], the second author provided

in [21] an explicit formula, in terms of the 2-cocycle ω, for projective representations of Γ that

are almost representations and which are not perturbable to genuine representations.

In the last part of the paper we explore the question of constructing concrete almost repre-

sentations which realize higher dimensional cohomological invariants. More precisely, we consider

tensor products and direct sums of projective representations to construct almost representa-

tions ρ for which the associated almost flat bundle Eρ is stably isomorphic to a given bundle

E over BΓ and which in particular will correspond to higher dimensional cohomology classes

in H2k(Γ,Q). Due to limitations of our approach, we have satisfactory results only for certain

classes of groups where the ring K0(BΓ) is generated by line bundles. However, Theorem 1.2

shows that almost representations constructed out of projective representations are as general

as any other almost representation, in many cases when the ring K0(BΓ) is generated by line

bundles. We have satisfactory results only for certain classes of groups where the ring K0(BΓ)

is generated by line bundles such as Γ = Zd, Γ = Z×H3 and Γ = H3 ×H3.

For each given element α of K0(BZd) ∼=
∧even Zd of virtual rank 0, we construct a concrete

almost representation ρ : Zd → U(n) such that [Eρ] = n + α. Furthermore, we exhibit explicit

almost representations ρ : Γ = H3×H3 → U(n) such that c1(Eρ) = c2(Eρ) = 0 while c3(Eρ) ̸= 0.
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In this case, the obstruction to perturbing ρ into a true representation lies solely in an element

of H6(Γ,Z).

2. Local 2-cocycles associated to almost representations

We will only use homology and cohomology with coefficients in commutative rings Q such

as Z, Q and R, viewed as trivial Γ-modules. The reader is referred to [2, Chapter II.3] for more

background information. Let Ck(Γ;Q) consist of formal linear combinations of elements of Γk

with coefficients in Q. We write a typical element of C2(Γ;Q) as

m∑
j=1

kj [aj |bj ]

with aj , bj ∈ Γ and kj ∈ Q. There are boundary maps ∂2 : C2(Γ;Q)→ C1(Γ;Q) defined by

∂2[a|b] = [a]− [ab] + [b]

and ∂3 : C3(Γ;Q)→ C2(Γ;Q) defined by

∂3[a|b|c] = [b|c]− [ab|c] + [a|bc]− [a|b].

Then H2(Γ;Q) := ker(∂2)/ Im(∂3). An element of Z2(Γ, Q) := ker(∂2) is referred to as a 2-cycle

and an element in Im(∂3) is referred to as a 2-boundary.

Let us recall now the definition of 2-cohomology H2(Γ, Q). A 2-cocycle σ : Γ2 → Q is a

function that satisfies the equation

(3) σ(a, b) + σ(ab, c) = σ(a, bc) + σ(b, c), for all a, b, c ∈ Γ.

We indicate that σ satisfies this condition by writing σ ∈ Z2(Γ, Q). A 2-coboundary is a

2-cocycle that can be written in the form

σ(a, b) = ∂ γ(a, b) = γ(a)− γ(ab) + γ(b)

for some function γ : Γ → Q. H2(Γ;Q) is defined to be the group of 2-cocycles, mod the

subgroup of 2-coboundaries. The group operation is pointwise addition. One can normalize a

2-cocycle σ by adding to it a boundary element. Specifically, by replacing σ by σ + ∂ γ, where

γ : Γ→ Q is defined by γ(a) = −σ(e, a) for a ∈ Γ, we obtain a 2-cocycle satisfying

σ(a, e) = σ(e, a) = 0.

The Kronecker pairing between a 2-homology class c and a 2-cohomology class x is a bilinear

map H2(Γ;Q)×H2(Γ;Z)→ Q defined by the formula

⟨x, c⟩ =

〈
σ,

m∑
j=1

kj [aj |bj ]

〉
=

m∑
j=1

kjσ(aj , bj)

where σ is a 2-cocycle representing x, and
∑m

j=1 kj [aj |bj ] is a 2-cycle representing c. The value

does not depend on the choice of representatives.

For a discrete group Γ, we will use the construction of its classifying space BΓ based

on the notion of ∆-complex. ∆-complexes are defined in [24, Ch.2§2.1] and the construction

of BΓ if given in [24, Example 1B.7]. An n-cell of BΓ which is the image of the simplex
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[1, a1, a1a2, ..., a1 · · · an] is labeled by [a1|a2|...|an]. The chain complex which defines the simplicial

homology of the ∆-complex of BΓ, denoted by C∆
∗ (BΓ;Q), coincides with the non-homogeneous

bar complex that defines the homology of Γ as discussed in [2, p.36] via the bijection which maps

the element [a1|a2|...|an] of the basis of C∆
n (BΓ;Q) to the element [a1|a2|...|an] of Cn(Γ;Q). This

allows us to identify H∆
n (BΓ;Q) with Hn(Γ;Q) and Hn

∆(BΓ;Q) with Hn(Γ;Q). Furthermore,

the simplicial homology (cohomology) is isomorphic to the singular homology (cohomology).

At the level of chains this isomorphism is induced by the map which takes an n-cell to its

characteristic map ∆n → BΓ. We will make no notational distinction between the simplicial

homology (cohomology) of a subcomplex Y of BΓ and its singular homology (cohomology).

Let Γ = {a1, a2, . . . } be a fixed enumeration of Γ, and let Sn = {a1, . . . , an}. For each n ≥ 1,

define Yn as the smallest CW subcomplex of BΓ that contains all cells of the form [b1|b2| . . . |bk],
where bi ∈ Sn, 1 ⩽ k ⩽ n. It is then clear that Yn is a finite subcomplex of BΓ of dimension n.

Moreover, Yn ⊂ Yn+1 and
⋃∞
n=1 Yn = BΓ.

BΓ is endowed with the direct limit topology (the weak topology). In particular any

compact subspace of BΓ is contained in some Yn [24, Proposition A.1]. In this model BΓ is not

locally finite, hence not locally compact in general. For a locally finite model one replaces Yn
by Yn× [0, 1] and employs the usual telescope construction where Yn×{1} is identified with the

corresponding subspace of Yn+1 × {0}. It is this latter model that we will use in Section 6 in

order to appeal to Kasparov’s theory RKK(BΓ;A,B).

Let Y be a finite ∆-subcomplex of BΓ and let Q be an abelian group. We have a natural

map of chain complexes C∆
∗ (Y ;Q)→ C∆

∗ (BΓ;Q).

Lemma 2.1. Denote by Zn(Γ;Q)Y the n-cycles in C∆
n (Y ;Q).

(a) Every simplicial cycle c ∈ Z2(Γ;Q)Y can be directly viewed as a cycle c ∈ Z2(Γ;Q).

(b) Any map ω : {(a, b) ∈ Γ × Γ | [a|b] ∈ Y[2]} → Q, that satisfies the 2-cocycle equation

(3) for all 3-simplices [a|b|c] ∈ Y[3], defines a 2-cocycle in Z2
∆(Y ;Q) and hence an element

[ω] ∈ H2(Y,Q). We call ω a local 2-cocycle and the set of all such maps is denoted by Z2(Γ;Q)Y .

(c) For any c ∈ Z2(Γ,Z), there is a finite ∆-subcomplex Y of BΓ that supports c. If ω ∈
Z2(Γ;Q)Y is as in (b), then we have a pairing ⟨ω, c⟩ given by the Kronecker pairing H2(Y,Q)×
H2(Y,Z)→ Q.

Proof. (a) Since Y ⊆ BΓ as ∆-complexes, we have C∆
2 (Y ;Q) ⊆ C∆

2 (BΓ;Q). The boundary

operator ∂Y2 is simply the restriction of ∂BΓ
2 , so cycles remain cycles under this inclusion:

Z2(Y ;Q) ⊆ Z2(BΓ;Q). The isomorphism C∆
∗ (BΓ;Q) ∼= Cbar

∗ (Γ;Q) identifies the ∆-complex

of BΓ with the bar resolution chain complex used in group homology, [2, p.18].

(b) The cocycle condition requires that for every 3-simplex [a|b|c] ∈ Y[3]:

ω(b, c)− ω(ab, c) + ω(a, bc)− ω(a, b) = 0.

Since Y is a subcomplex, whenever a 3-simplex belongs to Y , all its 2-dimensional faces are also

in Y . This guarantees that ω is well-defined on all terms appearing in the cocycle equation,

and the extension to a 2-cochain ω : C2(Y ;Q)→ Q via ω([a|b]) = ω(a, b) automatically satisfies

δ2Y (ω) = 0, so that ω ∈ Z2(Y,Q).

(c) This follows from the previous discussion. □
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Lemma 2.2. If BΓ admits a compact model X, then the standard CW model of BΓ has a finite

subcomplex Y that contains a compact space homotopy equivalent to X, so that if ι : Y → BΓ

is the inclusion map, then ι∗ : Hk(BΓ;Q) → Hk(Y ;Q) is injective, and ι∗ : Hk(Y ;Q) →
Hk(BΓ;Q) is surjective.

Proof. Let f : X → BΓ be a homotopy equivalence then let Y be a finite subcomplex containing

f(X). Then f∗ and f∗ are isomorphisms that factor through the cohomology and homology of

Y . □

The upshot is that if BΓ has any compact model, we can understand the cohomology of Γ,

by seeing what it does on the finite subset that is needed to build Y as a CW complex.

We will prove the following facts for matrices, but using the de la Harpe-Skandalis deter-

minant, they may be generalized to any tracial Banach algebra; see [14]. Many results in this

section follow from results in [14], but we are providing alternate proofs that lead to explicit

numerical bounds.

Definition 2.3. Let S be a finite subset of Γ and let δ > 0. A unital map ρ : Γ → U(n) is

called an (S, ε)-representation if

∥ρ(st)− ρ(s)ρ(t)∥ < δ, ∀s, t ∈ S.

Definition 2.4. If ρ is an (S, δ)-representation with 0 < δ < 1, then for a, b ∈ S we define the

local 2-cocyle associated to ρ by the formula

(4) ω(a, b) = ωρ(a, b) =
1

2πi
Tr
(
log
(
ρ(a)ρ(b)ρ(ab)−1

))
.

where log is defined to be the usual power series centered at 1. The terminology is justified by

Proposition 2.6 below.

Lemma 2.5. [21, Lemma 3.2] If u1, u2 are unitary matrices each within 1
2 of the identity then

Tr(log(u1u2)) = Tr(log(u1)) + Tr(log(u2)).

Proposition 2.6. Suppose that ρ is an (S, δ)-representation. If a, b, c, ab, bc ∈ S and δ ⩽ 1
2 ,

then ω satisfies the coycle equation at a, b, c:

ω(a, b) + ω(ab, c) = ω(a, bc) + ω(b, c).

Proof. Note that

Tr((xy)n) = Tr(x(yx)n−1y) = Tr((yx)n−1yx) = Tr((yx)n).
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Since log is a power series, it follows that Tr(log(xy)) = Tr(log(yx)). Using Lemma 2.5 and the

observation above,

ω(a, b) + ω(ab, c) =
1

2πi
(Tr(log(ρ(a)ρ(b)ρ(ab)−1)) + Tr(log(ρ(ab)ρ(c)ρ(abc)−1)))

=
1

2πi
Tr(log(ρ(a)ρ(b)ρ(c)ρ(abc)−1))

=
1

2πi
Tr(log(ρ(b)ρ(c)ρ(abc)−1ρ(a)))

=
1

2πi
(Tr(log(ρ(b)ρ(c)ρ(bc)−1)) + Tr(log(ρ(bc)ρ(abc)−1ρ(a))))

=
1

2πi
(Tr(log(ρ(b)ρ(c)ρ(bc)−1)) + Tr(log(ρ(a)ρ(bc)ρ(abc)−1)))

= ω(a, bc) + ω(b, c).

□

Thus for a given subcomplex Y ⊂ BΓ, ωρ defines a local 2-cocycle in Z2(Γ,R)Y , whenever
S is sufficiently large and ε is sufficiently small. We say that ωρ is the local cocycle associated

to ρ.

Denote by Repn(S,δ)(Γ) the set of (S, δ)-representations ρ : Γ→ U(n) and let Rep(S,δ)(Γ) be

the disjoint union
⊔
n⩾1Rep

n
(S,δ)(Γ).

Proposition 2.7. For any finite subcomplex Y ⊂ BΓ there are a finite subset S ⊂ Γ and δ > 0

such that the correspondence ρ 7→ ωρ is a well-defined map Repn(S,δ)(Γ)→ Z2(Γ,R)Y .

Proof. This follows from Lemma 2.1(b) and Proposition 2.6. □

3. Pairings in tracial C*-Algebras

We confine our discussion of pairing to matrix-valued approximate representations. The

general case of tracial algebras is discussed in [12]. The Exel-Loring [18] formula establishes

the equality of two invariants associated to a pair of almost commuting unitaries regarded as

an almost representation of Z2. A generalization of the Exel-Loring formula to almost repre-

sentations of arbitrary discrete groups Γ is given in [11]. The index formula, which we review

in Theorem 3.1 below, defines a pairing ⟨⟨⟨ρ, r⟩⟩⟩ between sufficiently multiplicative almost repre-

sentations ρ : Γ → U(k) and elements [r] of the group homology H2(Γ,Z) realized through the

Hopf formula, see equation (6) below.

{Almost representations} ×H2(Γ,Z)Hopf → Z, (ρ, [r]) 7→ ⟨⟨⟨ρ, r⟩⟩⟩.

Another pairing (((ρ, c))), between almost representations ρ : Γ → U(k) and elements of

H2(Γ,Z), was introduced in [21] using the bar-resolution definition of H2(Γ,Z), see equation (7)

below.

{Almost representations} ×H2(Γ,Z)→ Z, (ρ, [c]) 7→ (((ρ, c))).

We show that the two pairings can be identified via the isomorphism φ : H2(Γ,Z)Hopf →
H2(Γ,Z), in the sense that

⟨⟨⟨ρ, r⟩⟩⟩ = (((ρ, φ(r)))).
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While this fact can be derived from [12, Prop. 4.1], in the sequel, we will give a proof

that allows for quantitative estimates. The isomorphism of the two pairings is useful because,

depending on the context, it can be advantageous to use the form of the pairing that is best

suited to the task at hand.

Furthermore, we give a geometric interpretation of the pairings. This is easier to explain

if BΓ admits a compact model. Under that assumption, there exist δ > 0 and a finite set

S ⊂ Γ such that for any (S, δ)-representation ρ : Γ→ U(k), the pushforward of the Mishchenko

line-bundle is a vector bundle Eρ on BΓ, see [8], [9]. In this situation we show that (((ρ, c)))

coincides with the Kronecker pairing between the first Chern class of Eρ, c1(Eρ) ∈ H2(BΓ,Q)

and [c] ∈ H2(BΓ,Z):
(((ρ, c))) = ⟨c1(Eρ), [c]⟩.

This equality will be derived as a consequence of Theorem 1.1 which shows that c1(Eρ) = [ωρ],

where ωρ is the local 2-cocycle associated to ρ.

Hopf’s formula expresses the second homology of Γ in terms of a free presentation

1→ R→ F
q−→ Γ→ 1,

where q(a) = ā, as

H2(Γ,Z)Hopf =
R ∩ [F, F ]

[R,F ]
.

Each element r ∈ H2(Γ,Z) can be represented by a product of commutators
∏g
i=1[ai, bi] with

ai, bi ∈ F , for some integer g ⩾ 1, such that
∏g
i=1[āi, b̄i] = 1. Recall the canonical isomorphisms

H2(Γ,Q) → H2(BΓ,Q) and H2(Γ,Z) → H2(BΓ,Z). The following composition of maps will

play a role in the sequel.

H2(Γ,Z)Hopf H2(Γ,Z) H2(BΓ,Z)φ ∼=

The Chern character in K-homology yields an isomorphism

ch∗⊗idQ : K∗(BΓ)⊗Z Q
∼=−→ H∗(BΓ;Q) = H∗(Γ;Q)

Matthey [41], [42], see also [1], constructed a natural rationally injective homomorphism

βΓ2 : H2(BΓ;Z) −→ K0(BΓ),

which is rationally a right-inverse of the Chern character:

(5) (ch⊗idQ) ◦ (βΓ2 ⊗ idQ) = idH2(BΓ;Q)

For simplicity we will write βΓ in place of βΓ2 and denote by βY its restriction to subspaces Y

of BΓ.

Let αΓ : H2(Γ,Z)→ K0(ℓ
1(Γ)) be the composition αΓ = µΓ1 ◦ βΓ

H2(BΓ,Z) K0(BΓ) K0(ℓ
1(Γ))

βΓ µΓ1

where µΓ1 is the ℓ1-version of the assembly map of Lafforgue [39]. We abbreviate the winding

number of a closed loop L in C \ {0} by wn(L). The linear extension ρ : ℓ1(Γ) → Mk(C) of a

sufficiently multiplicative unital map ρ : Γ → U(k) satisfies the following generalization of the

Exel-Loring formula:
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Theorem 3.1 ([11]). Let r ∈ H2(Γ,Z)Hopf be represented by a product of commutators∏g
i=1[ai, bi] with ai, bi ∈ F and

∏g
i=1[āi, b̄i] = 1. There exist a finite set S ⊂ Γ and δ > 0 such

that if ρ : Γ→ U(k) is an (S, δ)-representation, then

ρ♯(α
Γ(φ(r))) = wndet

(
(1− t)1n + t

g∏
i=1

[ρ(āi), ρ(b̄i)]

)
=

1

2πi
Tr log

(
g∏

i=1

[ρ(āi), ρ(b̄i)]

)
Here, if we write αΓ(φ(r))) = [p0]−[p1], where pi are projections in matrices over ℓ1(Γ), then

ρ♯(α
Γ(φ(r)))) = ρ♯(p0)− ρ♯(p1), where ρ♯(pi) ∈ Z is the rank of the perturbation of (id⊗ ρ)(pi)

to a projection via analytic functional calculus.

The right-hand side of Theorem 3.1 defines a pairing

(6) ⟨ρ, r⟩ = 1

2πi
Tr log

(
g∏
i=1

[ρ(āi), ρ(b̄i)]

)
between almost representations ρ : Γ→ U(k) and elements r of the group homologyH2(Γ,Z)Hopf
realized through the Hopf formula.

Another pairing (((ρ, c))) between almost representations ρ : Γ → U(k) and elements of

H2(Γ,Z) was introduced in [21] using the bar-resolution definition ofH2(Γ,Z). Let c =
∑m

j=1 kj [xj |yj ] ∈
Z2(Γ,Z) be a 2-cycle. Let ρ : Γ → U(k) be an (S, δ)-representation such that xj , yj ∈ S and

0 < δ < 1. Then

(7) (((ρ, c))) =
1

2πi

m∑
j=1

kjTr
(
log
(
ρ(xj)ρ(yj)ρ(xjyj)

−1
))

Remark 3.2. If one replaces r and c by homologous 2-cycles r′ and c′ the pairings yield the

same values provided that S is sufficiently large and δ is sufficiently small: ⟨⟨⟨ρ, r′⟩⟩⟩ = ⟨⟨⟨ρ, r′⟩⟩⟩,
and (((ρ, c))) = (((ρ, c′))). While the second equality is proved directly in [21], we think that it is

more conceptual to point out that it follows from Proposition 2.6 by using the (local) cocycle

condition. On the other hand, the first equality follows from Theorem 3.1.

We have the following consequence of [14, Prop. 4.1]:

Proposition 3.3. Let Γ be a countable discrete group and let φ : H2(Γ,Z)Hopf → H2(Γ,Z) be

the canonical isomorphism. Let [r] ∈ H2(Γ,Z) be represented by r =
∏g
i=1[ai, bi] and let φ([r])

be represented by a 2-cycle φ(r) =
∑m

j=1 kj [xj |yj ] in the bar resolution. There exist a finite set

S ⊂ Γ and δ > 0, such that for any (S, δ)-representation ρ : Γ→ U(k) we have

⟨⟨⟨ρ, r⟩⟩⟩ = (((ρ, φ(r)))).

Proof. This can be established by applying [14, Proposition 4.1] and proceeding via a proof

by contradiction. Nevertheless, we rewrite the proof from [14] to make the computation of an

explicit S and δ possible.

By [2, chapter II.5 Exercise 4], if r ∈ H2(Γ,Z) is represented by
∏g
i=1[ai, bi] in the Hopf

formula, then a 2-cycle representative for the class of φ(r) is the element
∑g

i=1 di, where

(8) di = [Ii−1|āi] + [Ii−1āi|b̄i]− [Ii−1āib̄iā
−1
i |āi]− [Ii|b̄i]

and Ii = [ā1, b̄1] · · · [āi, b̄i]. Let [φ(r)] =
∑g

i=1[di] with di as in (8). Let L(m) = 1
2πiTr(log(m))

and note that if ρ is sufficiently multiplicative on a sufficiently large finite subset of Γ we may
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use Lemma 2.5 to compute

⟨[ρ], [di]⟩ =L(ρ(Ii−1)ρ(āi)ρ(Ii−1āi)
−1) + L(ρ(Ii−1āi)ρ(b̄i)ρ(Ii−1āib̄i)

−1)

+ L(ρ(Ii−1āib̄i)ρ(āi)
−1ρ(Ii−1āib̄iā

−1
i )−1) + L(ρ(Iib̄i)ρ(b̄i)

−1ρ(Ii)
−1)

=L(ρ(Ii−1)ρ(āi)ρ(b̄i)ρ(āi)
−1ρ(Iib̄i)

−1ρ(Iib̄i)ρ(b̄i)
−1ρ(Ii)

−1)

=L(ρ(Ii−1)[ρ(āi), ρ(b̄i)]ρ(Ii)
−1).

Consequently,

⟨[ρ], [φ(r)]⟩ =
g∑
i=1

L(ρ(Ii−1)[ρ(āi), ρ(b̄i)]ρ(Ii)
−1) = L

(
ρ(I1)

( g∏
i=1

[ρ(āi), ρ(b̄i)]
)
ρ(Ig)

−1

)
.

Since Ig = I1 = 1, we obtain the desired conclusion. □

Corollary 3.4. For any c ∈ Z2(Γ,Z), there exist a finite set S ⊂ Γ and δ > 0 such that if

ρ : Γ→ U(k) is an (S, δ)-representation, then

(9) ρ♯(α
Γ([c])) = ⟨[ω], [c]⟩.

Proof. The cycle c is supported by some finite subcomplex Y of BΓ. Having Y fixed, by

Proposition 2.7 there are suitable S and δ so that ω ∈ Z2(Γ,R)Y is well-defined and ⟨[ω], [c]⟩ is
meaningful as discussed in Lemma 2.1. By equation (7) and definition of ω, the pairing (((ρ, c)))

coincides with the following Kronecker pairing:

(((ρ, c))) = ⟨[ω], [c]⟩.

Substituting c = φ(r), we rewrite this as (((ρ, φ(r)))) = ⟨ω, φ(r)⟩. By Proposition 3.3, we deduce

that ⟨⟨⟨ρ, r⟩⟩⟩ = ⟨ω, φ(r)⟩. The desired conclusion follows by applying Theorem 3.1, according to

which ρ♯(α
Γ(φ(r))) = ⟨⟨⟨ρ, r⟩⟩⟩. □

4. Proof of the first part of Theorem 1.1

Consider the Mishchenko line-bundle ℓΓ with fiber ℓ1(Γ) defined by EΓ ×Γ C
∗(Γ) → BΓ,

where Γ ⊂ ℓ1(Γ) acts diagonally. Let Y be a finite subcomplex Y ⊂ BΓ. Let (Ui)i∈I be a

finite covering of Y by open sets such that ℓ is trivial on each Ui and Ui ∩ Uj is connected.

Using trivializations of restrictions of ℓ to Ui one obtains group elements sij ∈ G which define a

1-cocycle that is constant on each nonempty set Ui∩Uj and which represents ℓY , the restriction

of ℓ to Y . Thus s−1
ij = sji and sij · sjk = sik whenever Ui ∩ Uj ∩ Uk ̸= ∅. Let (χi)i∈I be positive

continuous functions with χi supported in Ui and such that
∑

i∈I χ
2
i = 1. Set m = |I| and

let (eij) be the canonical matrix unit of Mm(C). Then ℓY is represented by the selfadjoint

projection

eY =
∑
i,j∈I

χiχj ⊗ sij ⊗ eij ∈ C(Y )⊗ ℓ1(Γ)⊗Mm(C).

Definition 4.1. For a unital map ρ : Γ → U(k), we denote again by ρ its contractive linear

extension ℓ1(Γ)→ Mk(C). Consider a finite set S ⊂ Γ such that {sij : i, j ∈ I} ⊂ S and δ > 0.

Suppose that ∥ρ(st)− ρ(s)ρ(t)∥ < δ for all s, t ∈ S. Then the element

hY = (id ⊗ ρ⊗ id)(eY ) =
∑
i,j∈I

χiχj ⊗ ρ(sij)⊗ eij ∈ C(Y )⊗Mk(C)⊗Mm(C),
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is almost a projection. Using functional calculus, if δ is sufficiently small, one finds an projection

eY ∈ C(Y )⊗Mk(C)⊗Mm(C) close to hY . We denote by EYρ the vector bundle representing eY
and write EYρ =Eρ if Y = BΓ is compact.

In Proposition 5.1 we verify that EYρ is given by a cocycle uij : Ui ∩ Uj → U(V ) such that

uij is a small perturbation of ρ(sij)

Theorem 4.2. Let Γ be a countable discrete group. For any finite subcomplex Y of BΓ, there

are a finite set S ⊂ Γ and δ > 0 such that for any (S, δ)-representation ρ : Γ→ U(n), the vector

bundle EYρ is well-defined and

(1) The equation

(10) ω(a, b) :=
1

2πi
Tr(log(ρ(a)ρ(b)ρ(ab)−1)),

defines a local 2-cocycle ω ∈ Z2(Γ,R)Y with the property that c1(E
Y
ρ ) = [ω] in H2(Y,R). More-

over, for any integral 2-cycle c ∈ Z2(Y,Z), the corresponding Kronecker pairing takes integral

values, ⟨[ω], [c]⟩ ∈ Z.
If ρ is a projective representation ρ : Γ → U(n) with cocycle λ(a, b) = e2πiσ(a,b), for σ ∈

Z2(Γ,Q) and |σ(a, b)| < δ for a, b ∈ S, then ω(a, b) = nσ(a, b) for all a, b ∈ S, hence c1(EYρ ) =
ni∗[σ], where i∗ : H2(BΓ,Q)→ H2(Y,Q) is the map induced by the inclusion i : Y → BΓ.

Proof. By the universal coefficient theorem it suffices to show that

⟨c1(EYρ ), [c]⟩ = ⟨[ω], [c]⟩,

for all c ∈ Z2(Y,Z) ⊂ Z2(Γ,Z). Recall the isomorphism φ : H2(Γ,Z)Hopf → H2(Γ,Z) discussed
earlier. We can write [c] = φ(r) for r ∈ H2(Γ,Z)Hopf . Then φ(r) ∈ H2(Γ,Z) ∼= H2(BΓ,Z). By
Corollary 3.4 we have

(11) ρ♯(α
Γ(φ(r))) = ⟨[ω], φ(r)⟩,

so that it suffices to show that

(12) ρ♯(α
Γ(φ(r))) = ⟨c1(EYρ ), φ(r)⟩.

By definition αΓ = µΓ1 ◦ βΓ. By [8, Thm. 3.2], for any z ∈ K0(Y ) and fixed projections q0, q1 in

matrices over ℓ1(Γ) with µ1(z) = [q0]− [q1], for all S ⊂ Γ sufficiently large and all δ sufficiently

small, then map ρ : ℓ1(Γ)→ C satisfies

(13) ρ♯(µ1(z)) = ⟨[EYρ ], z⟩.

where the right hand is given by the pairing K0(Y ) × K0(Y ) → Z. We have a commutative

diagram with vertical maps the Chern characters

K0(Y )×K0(Y ) Z

Hev(Y,Q)×Hev(Y,Q) Q

chch

It follows from (13)

ρ♯(µ1(z)) = ⟨ch(EYρ ), ch(z)⟩
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If we set z = βY (φ(r)), then by (5)

(ch⊗idQ)(βY (φ(r)) = φ(r)Q ∈ H2(Y,Q)

and hence

ρ♯(α
Γ(φ(r))) = ρ#(µ1(β

Γ(φ(r)))) = ⟨c1(EYρ ), φ(r)⟩,
as desired. The left hand side is an integer and ⟨c1(Eρ), [c]⟩ is the image in Q of the integer

⟨c1(Eρ)Z, [c]Z⟩ given by the pairing H2(Y,Z)×H2(Y,Z)→ Z.
For the second part of the statement, note that if ρ is a projective representation with

cocycle λ(a, b) = e2πiσ(a,b), for σ ∈ Z2(Γ,Q), then

ω(a, b) :=
1

2πi
Tr(log(e2πiσ(a,b))1n) = nσ(a, b).

□

Corollary 4.3. Let x ∈ H2(Γ,Z) be represented by a 2-cocycle σ ∈ Z2(Γ,Z). For any finite

subcomplex Y of BΓ, there is n0 ∈ N such that if a unital map ρ : Γ → U(k) satisfies the

equation

ρ(a)ρ(b)ρ(ab)−1 = e
2πi
n
σ(a,b)1k, ∀a, b ∈ Γ

for some n ⩾ n0, then

c1(Eρ) =
k

n
i∗(x) ∈ H2(Y,Q).

Proposition 4.4. Suppose that f : Γ→ Λ is a homomorphism of groups and that both BΓ and

BΛ are finite CW -complexes. If ρ : Λ → U(k) is sufficiently multiplicative, then [f∗(Eρ)] =

[Eρ◦f ] in K
0(BΓ)⊗Q.

Proof. By the universal coefficient theorem it suffices to check that

⟨[f∗(Eρ)], z⟩ = ⟨[Eρ◦f ], z⟩, ∀z ∈ K0(BΓ).

Equivalently

⟨[Eρ], f∗(z)⟩ = ⟨[Eρ◦f ], z⟩, ∀z ∈ K0(BΓ),

where f∗ : K0(BΓ) → K0(BΛ) is the map on K-homology induced by f . Using (13) this is

equivalent to

(14) ρ♯(µ1(f∗(z)) = (ρ ◦ f)♯(z)

Since µ1 is a natural transformation, µ1(f∗(z)) = f∗(µ1(z)) and hence

ρ♯(µ1(f∗(z)) = ρ♯(f∗(µ1(z))) = (ρ ◦ f)♯(z).

□

For a more general version of Proposition 4.4 see Proposition 6.1

5. Proof of the second part of Theorem 1.1

In this section prove the second part of Theorem 1.1, see Theorem 5.4. The proof is obtained

by putting together Propositions 5.1, 5.2 and 5.3, which we believe to be of independent interest,

with Theorem 4.2.
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Let A be a unital C∗-algebra and let V be a finitely generated (projective) right Hilbert

A-module. Let L(V ) be the C∗-algebra of adjointable A-linear operators acting on V . Let X

be a compact Hausdorff space and let U = (Ui)i∈I be a finite open cover of X. Let (χi)i∈I be

positive continuous functions with χi supported in Ui and such that
∑

i∈I χ
2
i = 1. Set m = |I|

and let (eij) be the canonical matrix unit of Mm(C) = L(Cm). Let ei : C→ Cm be the inclusion

on the ith-component and let e∗i : Cm → C be its adjoint. Thus e∗i ◦ ej = eij and ei ◦ e∗j = δi,j idC.

The proof of the following proposition, which perturbs an approximate 1-cocycle to a true

cocycle, is based on an idea of Kubota from [37, Lemma 4.4]. A different but more involved

proof is due to Phillips and Stone [44], [45], see also [9] and [3].

We use the following two elementary perturbation properties. Let h be a self-adjoint element

in a unital C∗-algebra D with ∥h∥ ⩽ 1 and ∥h2 − h∥ < ε < 2/9. By functional calculus, there

exists a self-adjoint projection p ∈ D such that:

(15) ∥p− h∥ < 3ε/2

If p is a self-adjoint projection in D and w ∈ D is a contraction with ∥w∗w − 1∥ < ε and

∥ww∗ − p∥ < ε < 1/15, then by functional calculus, there is a partial isometry u ∈ D such that

(16) ∥u− w∥ < 12ε, and u∗u = 1, uu∗ = p.

Proposition 5.1. Suppose that vij : Ui ∩ Uj → U(V ) is continuous, vij = v∗ji, vii = 1 and

(17) max
i,j∈I

sup
x∈Ui∩Uj∩Uk

∥vij(x)vjk(x)− vij(x)∥ < δ < 1/40m2.

Then there exists a continuous 1-cocycle uij : Ui ∩ Uj → U(V ), uij(x)ujk(x) = uik(x) for all

x ∈ Ui ∩ Uj ∩ Uk, such that

∥uij(x)− vij(x)∥ < 66m2δ, ∀x ∈ Ui ∩ Uj .

Proof. Consider the selfadjoint contractive element

(18) h =
∑
i,j∈I

χiχj ⊗ vij ⊗ eij .

of the C∗-algebra C(X)⊗ L(V )⊗Mm(C). Then

h2 − h =
∑
i,k

∑
j

eik ⊗ χiχkχ2
j ⊗ (vijvjk − vik)


and hence ∥h2 − h∥ < m2δ < 1/10. It follows from (15) that there is a self-adjoint projection

p ∈ C(X)⊗ L(V )⊗Mm(C) with

(19) ∥p− h∥ < 3m2δ/2.

For each i ∈ I and x ∈ Ui define the isometry vi(x) : V → V ⊗ Cm by

vi(x) =
∑
r

χr(x)⊗ vri(x)⊗ er.

Its range projection is denoted pi = viv
∗
i ∈ Cb(Ui)⊗ L(V )⊗Mm(C), and

(20) pi =
∑
r,s

χrχs ⊗ vrivis ⊗ ers.
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If we denote the restriction of h to Ui by h as well, we obtain from (17) and (18) that

∥h− pi∥ < m2δ.

Consequently,

(21) ∥p− pi∥ ⩽ ∥p− h∥+ ∥h− pi∥ < 3m2δ/2 +m2δ = 5m2δ/2.

Next perturb each vi to an isometry ui with range projection p|Ui as follows. We denote the

restriction of p to Ui by p as well. Let wi = pvi. Then

∥vi − wi∥ = ∥pivi − pvi∥ < 5m2δ/2

∥w∗
iwi − 1∥ = ∥v∗i (p− pi)vi∥ < 5m2δ/2

∥wiw∗
i − p∥ = ∥pviv∗i p− p∥ = ∥p(pi − p)p∥ < 5m2δ/2.

Since 5m2δ/2 < 1/15 by hypothesis, it follows from (16) that there is a isometry ui such that

∥ui − wi∥ < 12 · 5
2
m2δ = 30m2δ,

and

(22) u∗iui = 1, uiu
∗
i = p|Ui .

Since

(23) v∗i vj =
∑
r

χ2
r ⊗ virvrj ⊗ 1

we obtain from (17) and (23)

(24) ∥vij(x)− vi(x)∗vj(x)∥ < δ, ∀x ∈ Ui ∩ Uj .

Then

∥ui − vi∥ ⩽ ∥ui − wi∥+ ∥wi − vi∥ ⩽ 30m2δ + 5m2δ/2 = 65m2δ/2

and hence

(25) ∥ui(x)∗uj(x)− vi(x)∗vj(x)∥ < 65m2δ, ∀x ∈ Ui ∩ Uj .

Let uij : Ui ∩ Uj → U(V ) be defined by

uij(x) = ui(x)
∗uj(x)

From (24) and (25)

∥uij(x)− vij(x)∥ < 65m2δ + δ ⩽ 66m2δ, ∀x ∈ Ui ∩ Uj .

Moreover

uij(x)ujk(x) = uik(x), ∀x ∈ Ui ∩ Uj ∩ Uk,
since

ui(x)
∗uj(x) · uj(x)∗uk(x) = ui(x)

∗p(x)uk(x) = ui(x)
∗ (ui(x)ui(x)

∗)uk(x) = ui(x)
∗uk(x).

□
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For G a topological group, a principal G-bundle is flat if it has a set of trivializations with

constant transition functions. Equivalently, the bundle has a reduction to the group Gd, the

underlying discrete group of G, [16].

Proposition 5.2. Let E be a locally trivial hermitian vector bundle of rank n on a paracompact

Hausdorff space X such that the associated projective bundle P (E) is isomorphic to a flat PU(n)-

bundle. Then the Chern classes of E are ck(E) = 1
nk

(
n
k

)
c1(E)k and the Chern character is

ch(E) = ne
1
n
c1(E).

We thank Rufus Willet for alerting us that, in the case where X is a manifold, this corre-

sponds to [35, Proposition 2.3.1].

Proof. Consider the commutative diagram:

(26)

1 Z/n SU(n) PSU(n) 1

1 U(1) U(n) PU(n) 1

j

d π

and the corresponding fibration of classifying spaces

BZ/n BSU(n) BPU(n)
π◦j

Since the rational cohomology of Z/n vanishes in positive degrees, the E2-page of the Serre

spectral sequence of this fibration is concentrated on the q = 0 row. It follows that the edge

homomorphism

(π ◦ j)∗ : H∗(BPU(n);Q)→ H∗(BSU(n);Q)

is an isomorphism of groups. Consider the commutative diagram

(27)

H∗(X;Q) H∗(BU(n);Q) H∗(BPU(n);Q)

H∗(BSU(n);Q)

j∗

d∗ π∗

∼=

Recall that by [50], the map

j∗ : H∗(BU(n);Q)→ H∗(BSU(n);Q)

is the canonical projection of graded algebras

Q[c1, c2, c3, . . . , cn]→ Q[c2, c3, . . . , cn]

which maps c1 to 0 and ck to ck if k > 1. Here ck are the universal Chern classes, deg(ck) = 2k.

It follows from the diagram (27) that for any x ∈ H2k(BU(n);Q) there are y ∈ H2k(BPU(n);Q)

and e ∈ ker(j∗) ∩H2k(BU(n);Q) = c1H
2k−2(BU(n);Q) such that x = π∗(y) + e. By induction

on k we can thus see that

x = π∗(y1) + c1π
∗(y2) + · · ·+ ck−1

1 π∗(yk−1) + λck1,

for some λ ∈ Q. In particular

(28) ck = π∗(y1) + c1π
∗(y2) + · · ·+ ck−1

1 π∗(yk−1) + λkc
k
1,
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for a unique constant λk ∈ Q. Since the map π ◦ d is constant, it follows that d∗ ◦ π∗ = 0 in all

degrees other than zero. Thus from equation (28) we deduce that

(29) d∗(ck) = λkd
∗(c1)

k.

Since ck is the kth Chern class of the tautological vector bundle W over BU(n), and

H∗(BU(1);Q)) = Q[c1] where c1 is the first Chern class of the tautological line bundle, one sees

that d∗(W ) is the n-fold direct sum of the tautological line bundle over BU(1). By the Whitney

sum formula for the total Chern class, it follows that

d∗(ck) =

(
n

k

)
ck1 and in particular d∗(c1) = nc1.

In conjunction with equation (29) we deduce that λk =
1
nk

(
n
k

)
.

If f : X → BU(n) is the classifying map of E we have a diagram

H∗(X;Q) H∗(BU(n);Q) H∗(BPU(n);Q)
f∗ π∗

If G is a compact Lie group, then by [16, p.145] the canonical inclusion Gd → G induces the

zero map Hq(BG;Q) → Hq(BGd;Q), q > 0. The assumption that P (E) is flat means that the

associated principal PU(n)-bundle is flat. It follows that the classifying map of P (E), namely

π ◦ f : X → BPU(n) factors up to homotopy through the map BPU(n)d → BPU(n) and hence

f∗ ◦ π∗ = 0 in all dimensions k > 0. Thus from equation (28) we deduce that

(30) f∗(ck) = λkf
∗(c1)

k.

Consequently,

(31) ck(E) = λkc1(E)k =
1

nk

(
n

k

)
c1(E)k.

The formula for the Chern character is proved via the splitting principle. By this principle, there

exists a space Y and a map p : Y → X such that p∗ : H∗(X,Q) → H∗(Y,Q) is injective, and

the pullback bundle splits as p∗E ∼= L1⊕ · · ·⊕Ln, where Li are line bundles on Y. We will show

that p∗ ch(E) = p∗(ne
1
n
c1(E)) and this will imply the equality ch(E) = ne

1
n
c1(E) by injectivity of

p∗.

Let xi = c1(Li) and set z = 1
n(x1 + · · · + xn) ∈ H2(Y,Q). The total Chern class is

c(p∗E) = (1+x1) · · · (1+xn), and hence c1(p
∗(E)) = x1+· · ·+xn, and more generally ck(p

∗(E)) =

ek(x1, . . . , xn), where is the k-th elementary symmetric polynomial. On the other hand by (31)

we have

ck(p
∗E) = p∗ck(E) =

1

nk

(
n

k

)
c1(p

∗E)k =

(
n

k

)(
x1 + · · ·+ xn

n

)k
=

(
n

k

)
zk.

This shows that ek(x1, . . . , xn) = ek(y1, . . . , yn), where y1 = · · · = yn = z. Since ex1 + · · ·+ exn

is a symmetric function, it follows that

p∗ ch(E) = ch(p∗E) = ex1 + · · ·+ exn = ey1 + · · ·+ eyn = nez

We conclude the proof by observing that

p∗(ne
1
n
c1(E)) = ne

1
n
c1(p∗E) = ne

1
n
(x1+···+xn) = nez.
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□

Let B be a C∗-algebra. Let X be a compact metric space, and let (Ui)i∈I be a finite open

cover of X. Let α = (αij) and β = (βij) be two 1-cocycles

αij , βij : Ui ∩ Uj → Aut(B).

Let Aα and Aβ be the C(X)-C∗-algebras of continuous sections in the locally trivial C∗-bundles

with fiber B associated to α and β. Define

dist(α, β) := max
i,j∈I

sup
x∈Ui∩Uj

∥αij(x)− βij(x)∥

Proposition 5.3. Let B be a separable and nuclear C∗-algebra. If dist(α, β) < 10−11, then Aα
is isomorphic to Aβ as C(X)-C∗-algebras. Thus, the Aut(B)-principal bundles constructed from

the cocycles (αij) and (βij) are isomorphic.

Proof. Let B act faithfully on a separable Hilbert H space such that BH is dense in H, and let

N be the von Neumann algebra N = B′′ ⊂ B(H). Let Y be a countable set dense in X and set

Yi = Ui ∩ Y. Consider the von Neumann algebra

M =
⊕
i∈I

ℓ∞(Yi, N) =
⊕
i∈I

Mi ⊂ B(K)

acting on the separable Hilbert space K =
⊕

i∈I ℓ
2(Yi)⊗H. Let D be the C∗-algebra

D =
⊕
i∈I

Cb(Ui, B) =
⊕
i∈I

Di

and let j : D → M be the canonical embedding map induced componentwise by restriction of

functions and the inclusion B ⊆ N . We view both D andM as C(X)-C∗-algebras. If f ∈ C(X),

d ∈ D and m ∈M then, (fd)i = f |Uidi and (fm)i = f |Yimi. Then j is a C(X)-linear map.

Let (χi)i∈I be a partition of unity subordinated to the cover (Ui)i∈I . Define a map Φα :

D → D, where for d = (di) ∈ D, the components of Φα(d) are given by

Φα(d)i(x) =
∑
j∈I

χj(x)αij(x)(dj(x)),

for all x ∈ Ui. One verifies immediately that Φα is a contractive completely positive linear map.

Moreover, if β = (βij) is another 1-cocycle, then

∥Φα − Φβ∥ ⩽ dist(α, β) := max
i,j∈I

sup
x∈Ui∩Uj

∥αij(x)− βij(x)∥

Let Aα and Aβ be the C(X)-C∗-subalgebras of D defined by

Aα = {(di)i∈I : di(x) = αij(x)(dj(x)), ∀x ∈ Ui ∩ Uj},

Aβ = {(di)i∈I : di(x) = βij(x)(dj(x)), ∀x ∈ Ui ∩ Uj}.
Let us note Φα(d) = d for all d ∈ Aα. Indeed if d ∈ Aα, and x ∈ Ui, then

Φα(d)i(x) =
∑
j∈I

χj(x)αij(x)(dj(x)) =
∑
j∈I

χj(x)di(x) = di(x).
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By the same argument, the elements of Aβ are fixed by Φβ. In particular both C∗-algebras Aα
and Aβ are nuclear since D is nuclear and the maps Φα and Φβ are contractive and completely

positive. Let a ∈ A and b ∈ B with ∥a∥, ∥b∥ ⩽ 1. Then

∥a− Φβ(a)∥ = ∥Φα(a)− Φβ(a)∥ ⩽ dist(α, β), ∥Φα(b)− b∥ ⩽ dist(α, β).

Thus the Hausdorff distance between the unit balls of Aα and Aβ is at most dist(α, β). If

dist(α, β) < δ := 10−11, then by Theorem B from [5], there is a unitary u ∈ j(Aα ∪ Aβ)′′ ⊂
M ′′ = M such that uj(Aα)u

∗ = j(Aβ). In other words, there is a ∗-isomorphism θ : Aα → Aβ
and a commutative diagram:

Aα M

Aβ M

j

θ Adu

j

Since the ∗-homomorphisms j and Adu are C(X)-linear and j is an injective map, it follows

that θ is C(X)-linear. □

Theorem 5.4. Let Γ be a countable discrete group and let Y ⊆ BΓ be a finite subcomplex.

There are a finite set S ⊂ Γ and δ > 0 such that for any projective representation ρ : Γ→ U(n),

ρ(a)ρ(b)ρ(ab)−1 = λ(a, b)1n, with λ(a, b) ∈ T for all a, b ∈ Γ, such that |λ(a, b) − 1| < δ, for all

a, b ∈ S, we have

ck(E
Y
ρ ) =

1

nk

(
n

k

)
[ω]k and ch(EYρ ) = n e

1
n
[ω] ∈ Heven(Y,R),

where ω ∈ Z2(Γ,R)Y is a local 2-cocycle defined by ω(a, b) := 1
2πiTr(log(λ(a, b))).

Proof. For all i, j ∈ I, choose unitaries vij which are small perturbations of ρ(sij) and such that

vij = v−1
ji . Let uij be the cocycle provided by Proposition 5.1. This is the cocycle corresponding

to EYρ . Let π : U(n) → PU(n) be the canonical map. Then the cocycle π(uij) is a small

perturbation of the constant cocycle π(ρ(sij)). It follows from Proposition 5.3 that P (EYρ ) is

isomorphic to the flat PU(n)-bundle constructed from the cocycle π(ρ(sij)), and hence ck(E
Y
ρ ) =

1
nk

(
n
k

)
c1(E

Y
ρ )

k and ch(EYρ ) = n e
1
n
c1(EY

ρ ) ∈ Heven(Y,R), by Proposition 5.2. As already shown in

Theorem 4.2, c1(E
Y
ρ ) = [ω]. □

Corollary 5.5. If ρ : Γ → U(n) is a projective representation with cocycle λ(a, b) = e2πiσ(a,b),

for σ ∈ Z2(Γ,Q) and |σ(a, b)| < δ for a, b ∈ S, then ω(a, b) = nσ(a, b) for all a, b ∈ S, so that

c1(E
Y
ρ ) = ni∗[σ] and ch(EYρ ) = nei

∗[σ], where i∗ : H2(BΓ,Q)→ H2(Y,Q) is the map induced by

the inclusion i : Y → BΓ.

6. Classifying almost representations up to stable equivalence

Let B be a unital C∗-algebra and let X be a locally compact and σ-compact space Hausdorff

space. We shall make use of various K-theory groups and follow the notation of Kasparov [31].

The representable K-theory of X with coefficients in B is the group

RKj(X;B) := RKKj(X;C, B) = RKKj(X;C0(X), C0(X)⊗B).
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If X is compact, then RKj(X;B) = Kj(X;B) ∼= KK(C, C(X) ⊗ B) ∼= Kj(C(X) ⊗ B). The

K-homology groups of compact spaces, Kj(X) = KK(C(X),C), are extended to non-compact

spaces X by defining

RKj(X) = lim−→Kj(Y ),

where Y runs through the compact subspaces of X.

Let K be the C*-algebra of compact operators on an infinite dimensional separable Hilbert

space. Let e0 ∈ K be a rank-one self-adjoint projection. We denote by Pr(B ⊗K) the space of

all self-adjoint projections in B ⊗K and by Pr0(B ⊗K) its connected component that contains

1B⊗e0. Recall that Pr0(B⊗K) is a model for BU(B), the classifying space of the unitary group

U(B), see the proof of [15, Cor.2.9]. Let us note that any continuous map e : X → Pr(B ⊗
K) = Pr(K(HB)) gives rise to a C0(X)-linear ∗-homomorphism φ : C0(X) → K(HC0(X)⊗B),

φ(f) = f · e, and hence it defines an element of RKK0(X;C0(X), C0(X)⊗B) = RK0(X;B).

For a countable discrete group Γ, one can a choose a model for the classifying space BΓ

which is locally compact and σ-compact, and in fact a separable locally finite CW complex,

see [31, p.192]. Throughout this section we will considered a fixed representation of BΓ as a

countable increasing union of finite CW complexes, Y1 ⊆ Y2 ⊆ · · · ⊆ Yi ⊆ · · ·

(32) BΓ =
⋃
n

Yi.

The principal Γ-bundle EΓ→ BΓ induces a canonical element of RK0(BΓ, C∗(Γ)), which

we now describe. Mishchenko’s flat line bundle LΓ is the canonical bundle EΓ×Γ C
∗(Γ)→ BΓ

induced by the diagonal action of Γ. Its fibers are isomorphic to the C∗(Γ)-Hilbert module

C∗(Γ). If ı : Γ → U(C∗(Γ)) is the canonical inclusion, then LΓ is classified by the map Bı :

BΓ → BU(C∗(Γ)). One can describe the classifying map e of LΓ as follows. By [30, p.57],

there is a locally finite countable open cover (Ua)a∈I of BΓ and positive continuous functions

(χa)a∈I such that (χ2
a)a∈I is a partition of unity subordinated to the cover and such that the

covering space EΓ → BΓ is trivial on each open set Ua. We denote by sab : Ua ∩ Ub → Γ the

corresponding locally constant cocycle. Then LΓ is classified by the map

(33) e =
∑
a,b∈I

sab ⊗ χaχb ⊗ eab,

where (eab) are matrix units for M∞(C) ⊂ K. Note that

e : BΓ→ Pr(C[Γ]⊗M∞(C)) ∩ Pr0(C∗(Γ)⊗K).

We denote by eY the restriction of e to a compact subspace of BΓ and by ei the restriction

of e to Yi. Note that

ei =
∑

a,b∈I(i)

sab ⊗ χaχb ⊗ eab

for some finite subset I(i) of I. We view ei as an element of Pr(C[Γ]⊗ C(Yi)⊗MI(i)(C)).
Consider an asymptotic homomorphism consisting of a sequence of unital maps φn : Λ →

U(kn). This induces a unital ∗-homomorphism

(34) φ : C∗(Λ)→ B =
∏
n

Mkn(C)/
⊕
n

Mkn(C).
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Let ℓφ denote the bundle on BΛ classified by the map BΛ BU(B) = Pr0(B ⊗K).
Bφ

If

f : Γ→ Λ is a group homomorphism, and Bf : BΓ→ BΛ, then by basic properties of classifying

spaces,

(35) (Bf)∗(ℓφ) ∼= ℓφ◦f .

For each compact subspace Z of BΛ, by functional calculus we lift the restriction of Bφ to Z to

a map p : Z → Pr0((
∏
nMkn) ⊗ K). If we denote the components of p by (pn) it follows from

the definition of EZφn
that there is k such that the bundle EZφn

is given by the projection pn for

all n ⩾ k. Using equation (35), and the functoriality of the functional calculus, it follows that

for any compact subset of BΓ, there is k ∈ N such that

[EYφn◦f ] = [f∗(Ef(Y )
φn

] ∈ K0(Y ), for all n ⩾ k.

We restate this property in the following equivalent form.

Proposition 6.1. Suppose that f : Γ → Λ is a group homomorphism, and Y ⊆ BΓ is a

finite sub-complex. Then there exist a finite subset S ⊂ Λ and ε > 0 such that for any (S, δ)-

representation ρ : Λ→ U(n), [EYρ◦f ] = [f∗(E
f(Y )
ρ )] in K0(Y ).

The element of RK(BΓ;C∗(Γ)) corresponding to e is denoted by eΓ. Kasparov uses the

product

RK(BΓ;C∗(Γ))×KKj(C∗(Γ), B)→ RKj(BΓ;B)

to define the co-assembly map

ν : KKj(C∗(Γ), B)→ RKj(BΓ;B)

as the cap product with eΓ. If Y ⊆ BΓ is compact, we denote by νY the composite map

(36) νY : KKj(C∗(Γ), B) RKj(BΓ;B) RKj(Y ;B)ν

For each compact subspace Y ⊆ BΓ, there is a map µY : Kj(Y ) → Kj(C
∗(Γ)) defined as the

cap product with [eY ] ∈ K0(Y ;C∗(Γ)), the restriction of eΓ to Y . The corresponding inductive

limit homomorphism is the (full) assembly map

µ : Kj(BΓ)→ Kj(C
∗(Γ)).

The associativity of the Kasparov product, shows that ν and µ are linked by a duality relation:

(37) νY (x)⊗C(Y ) z = x⊗C∗(Γ) µ(z), x ∈ Kj(C
∗(Γ)), z ∈ Kj(Y ),

(see [31, Lemma 6.2]). In the sequel we shall use the notation νi = νYi and µi = µYi .

Lemma 6.2. The following diagram is commutative

(38)

KKj(C∗(Γ), B) Hom(K∗(C
∗(Γ)),K∗(B))

RKj(BΓ;B) Hom(K∗(BΓ),K∗(B))

lim←−K
j(Yi;B) lim←−Hom(K∗(Yi),K∗(B))

g

ν µ∗

β

g′

α

g′′
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The maps g, g′, g′′ are induced by the natural pairings. The maps β, α are induced by inclusions

Yi ⊂ BΓ. The Hom–groups are graded according to the parity of j.

Proof. The bottom diagram is commutative by naturality of pairings in topological setting, thus

g′′ ◦ β = α ◦ g′. By equation (37), g′′ ◦ β ◦ ν = α ◦ µ∗ ◦ g. It follows that

α ◦ g′ ◦ ν = α ◦ µ∗ ◦ g.

Since the map α is bijective as it becomes apparent once we describe it as

Hom(K∗(BΓ),K∗(B)) = Hom(lim−→K∗(Yi),K∗(B))→ lim←−Hom(K∗(Yi),K∗(B))

we deduce that g′ ◦ ν = µ∗ ◦ g. □

Proposition 6.3. Suppose that C∗(Γ) satisfies the UCT. For example Γ is a countable amenable

group. Then there is a commutative diagram with exact rows.

(39)

Ext(K∗(C
∗(Γ),K∗(B)) KKj(C∗(Γ), B) Hom(K∗(C

∗(Γ)),K∗(B))

Ext(K∗(BΓ),K∗(B)) RKj(BΓ;B) Hom(K∗(BΓ),K∗(B))

lim←−Ext(K∗(Yi),K∗(B)) lim←−K
j(Yi;B) lim←−Hom(K∗(Yi),K∗(B))

f

µ∗ext

g

ν µ∗

f ′

αext β

g′

α

f ′′ g′′

The Hom–groups and the Ext–groups are graded in accord to the parity of j.

Proof. The maps g, g′, g′′ are induced by the natural pairings. The maps αext, β, α are induced

by inclusions Yi ⊂ BΓ. The first row is the UCT of [46] which holds for amenable groups by [25]

and [51]. The second row is exact as it represents the universal coefficient theorem expressed

by Lemma 3.4 of [33]. The exactness of the third row follows from the same lemma and the

property that if G is the injective limit of a system (Gi) of finitely generated groups, then

lim←−
1 Ext(Gi, H) = 0 by [47, Thm. 6.2]. The bottom diagram is commutative by the naturality

of the universal coefficient theorem expressed by Lemma 3.4 of [33]. We have seen in Lemma 6.2

that the map α is injective and that

(40) g′ ◦ ν = µ∗ ◦ g.

It remains to show that

f ′ ◦ µ∗ext = ν ◦ f.
For this we will need to use the naturality of (40) while revisiting the proofs of the two universal

coefficient theorems represented by the top two rows.

Consider a geometric injective resolution of B as in [46].

0 A D SB 0h

The associated K-theory sequences give injective resolutions for Kj(B) :

0 Kj+1(SB) Kj(A) Kj(D) 0
h∗



24 MARIUS DADARLAT AND FORREST GLEBE

Consider the commutative diagrams that appear in the proof of the UCTs:

Hom(K∗(C
∗(Γ)),K∗(A)) Hom(K∗(C

∗(Γ)),K∗(D)) KKj+1(C∗(Γ), B)

KKj(C∗(Γ), A) KKj(C∗(Γ), D) KKj+1(C∗(Γ), B)

RKj(BΓ, A) RKj(BΓ, D) RKj+1(BΓ, B)

Hom(K∗(BΓ),K∗(A)) Hom(K∗(BΓ),K∗(D)) Hom(K∗(BΓ),K∗(B))

h∗

gA ∼=

νA

h∗

gD ∼=

νD

=

νB

g′A
∼=

h∗

g′D
∼= β′

h∗

By (40), µ∗A ◦ gA = g′A ◦ νA and µ∗D ◦ gD = g′D ◦ νD. It follows that

coker (h∗ : Hom(K∗(C
∗(Γ)),K∗(A))→ Hom(K∗(C

∗(Γ)),K∗(D))) = Ext(K∗(C
∗(Γ),K∗(B)))

identifies with

coker (h∗ : Hom(K∗(BΓ),K∗(A))→ Hom(K∗(BΓ),K∗(D))) = Ext(K∗(BΓ),K∗(B)))

via a map which is exactly µ∗ext. □

Following Kasparov [32], we use the notation LK∗(BΓ;B) = lim←−K
∗(Yi;B).

Proposition 6.4. Let Γ be a countable torsion-free group which admits a γ-element equal to

1 and such that C∗(Γ) satisfies the UCT. For example Γ is a countable torsion-free amenable

group. Then there is an exact sequence

0 Pext(K∗(C
∗(Γ)),K∗(B)) KK∗(C∗(Γ), B) LK∗(BΓ;B) 0

f β◦ν
.

Proof. Under the assumption γ = 1, it is known that both maps ν and µ are isomorphisms [31],

[51]. Since the diagram (39) is commutative and the map α is injective, an easy diagram chase (or

the nine lemma) shows that f maps isomorphically the kernel of αext◦µ∗ext onto the kernel of β◦ν.
Thus we need to show that the kernel of αext ◦ µ∗ext is the subgroup Pext(K∗(C

∗(Γ)),K∗(B)) of

Ext(K∗(C
∗(Γ)),K∗(B)). If G is the injective limit of a system (Gi) of finitely generated groups,

then by [47, Prop. 5.6]:

0→ Pext(G,H)→ Ext(G,H) −→ lim←−Ext(Gi, H)→ 0

Thus the kernel of the map αext in diagram (39) is Pext(K∗(BΓ),K∗(D)). By commutativity

of the diagram (39) and naturality of the Pext-functor, Pext(K∗(BΓ),K∗(D)) coincide with the

image Pext(K∗(C
∗(Γ)),K∗(D)) of under µ∗ext. If Γ is amenable and torsion free, then γ = 1 and

C∗(Γ) satisfies the UCT by [25], [51]. This concludes the proof. □

As explained in the prof of Lemma 3.4 from [33], there a Milnor lim1-exact sequence

0 lim←−
1Kj−1(Yi;B) RKj(BΓ;B) lim←−K

j(Yi;B) 0 .

Notation 6.5. Fix a classifying map e for LΓ as in equation (33). If Y ⊂ BΓ is compact, S ⊂ Γ

finite and δ > 0, we say that (Y, S, δ) is a K-triple for Γ if for any unital (S, δ)-representation
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ρ : Γ→ U(k),

(41) h =
∑
a,b∈I

ρ(sab)⊗ χaχb ⊗ eab,

satisfies ∥h(x)2 − h(x)∥ < 2/9 for all x ∈ Y . We denote by eYρ ∈ C(Y )⊗M∞(C) the projection

obtained from h|Y via functional calculus. The corresponding vector bundle is denoted by EYρ .

It easy to see that for each compact Y, there are S and δ such (Y, S, δ) is a K-triple.

Recall that we fixed a decomposition BΓ =
⋃
i Yi, see (32). Consider a sequence of pairs

(Sn, δn) such that Γ =
⋃
n Sn, and δn ↘ 0. Consider an asymptotic homomorphism consisting

of a sequence of unital maps ρn : Γ→ U(kn) which are (Sn, δn)-representations. This induces a

unital ∗-homomorphism

(42) ρ̇ : C∗(Γ)→ B =
∏
n

Mkn(C)/
⊕
n

Mkn(C).

Since the subspaces Yi are compact, after passing to a subsequence we may arrange that

for each n, (Yn, Sn, δn) is a K-triple for Γ. Thus if en := e|Yn , then hn = (ρn ⊗ id)(en) satisfies

∥h2n − hn∥ < 2/9. We denote the vector bundle on Yn associated to pn and implicitly to ρn
by Eρn . For i ⩽ n, observe that hn,i = (id ⊗ ρn)(ei) satisfies ∥h2n,i − hn,i∥ < 2/9, ∀ i ⩽ n,

since hn,i = hn|Yi . Let pn ∈ Mkn ⊗ C(Yn) ⊗ K and pn,i ∈ Mkn ⊗ C(Yi) ⊗ K be the projections

pn = χ(hn) and pn,i = χ(hn,i) obtained by functional calculus, where χ is the characteristic

function of (0.5, 1.5). Then ∥hn − pn∥ < 1/3 and ∥hn,i − pn,i∥ < 1/3. Let us note that

(43) pn|Yi = pn,i for all i ⩽ n,

by functoriality of the functional calculus. If we have another asymptotic homomorphism {ρ′n :

Γ → U(kn)}n with ρ′n a (Sn, δn)-representation with the same properties as above, then, we

construct h′n,i and p
′
n,i similarly. In particular if follows from (43) that if

(44) [pn] = [p′n] ∈ K0(C(Yn))

then

(45) [pn,i] = [p′n,i] ∈ K0(C(Yi)), for all i ⩽ n.

Lemma 6.6. If A is a separable and nuclear C∗-algebras satisfying the UCT, then the following

natural map is injective.

θ : K∗

(
A⊗

∏
nMkn(C)⊕
nMkn(C)

)
→
∏
nK∗(A)⊕
nK∗(A)

Proof. Let B =
∏
nMkn(C)/

⊕
nMkn(C). Then K1(B) = 0 and K0(B) is torsion free since

K0

(∏
n

Mkn(C)

)
∼= {(xn)n ∈

∏
n

Z : (xn/kn)n} is a bounded sequence}.

Using the Künneth formula and the property that K0(B) is a pure subgroup of
∏
n Z/

⊕
n Z, for

j = 0, 1, one shows that the map

Kj(A⊗B) ∼= Kj(A)⊗K0(B)→ Kj(A)⊗
(∏

n Z⊕
n Z

)
→
∏
nKj(A)⊕
nKj(A)
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is injective. For the injectivity of the map on the right, we use the property that if G is an

abelian groups, then the natural map

ı : G⊗
∏
n

Z→
∏
n

G

is injective. Indeed, any x ∈ G⊗
∏
n Z is in the image of Gx⊗

∏
n Z, for some finitely generated

subgroup Gx of G, and we have a commutative diagram

Gx ⊗
∏
n Z

∏
nGx

G⊗
∏
n Z

∏
nG

ı

It is routine to verify that the top map is injective, as Gx is a finite sum of cyclic groups. This is

also implied by the easy direction of [19, Thm. 8.14]. The map on the right is clearly injective.

It follows that the composition of the map on the left and ı is injective as well. Thus if x ̸= 0,

then ı(x) ̸= 0. □

Lemma 6.7. Consider two asymptotic homomorphisms {ρn, ρ′n : Γ → Mkn(C)}n which have

the same approximate multiplicativity properties as above. Thus for each n, ρn, ρ
′
n are (Sn, δn)-

representations and (Yn, Sn, δn) is a K-triple for Γ. Suppose that [pn] = [p′n] ∈ K0(C(Yn)) for all

n ∈ N. Then with ρ̇, ρ̇′ : C∗(Γ)→ B defined as in (42) we have

[(ρ̇⊗ id)(ei)] = [(ρ̇′ ⊗ id)(ei)] ∈ K0(B ⊗ C(Yi)), for all i ∈ N.

Proof. The map θ in the diagram below is injective by Lemma 6.6.

(46) K0(C
∗(Γ)⊗ C(Yi)) K0(B ⊗ C(Yi))

∏
nK∗(C(Yi))⊕
nK∗(C(Yi))

ρ̇ θ

Therefore it suffices to show that θ[(ρ̇⊗ id)(ei)] = θ[(ρ̇′⊗ id)(ei)]. By construction, the projection

(ρ̇ ⊗ id)(ei) lifts to the element (ρ ⊗ id)(ei) = (hn,i)n⩾i ∈
(∏

n⩾iMkn(C)
)
⊗ C(Yi) ⊗ K and

therefore to the projection (pn,i)n⩾i. Thus θ[(ρ̇⊗id)(ei)] is represented by the sequence ([pn,i])n⩾i.

Similarly, θ[(ρ̇′⊗ id)(ei)] is represented by the sequence ([p′n,i])n⩾i. By assumption, [pn] = [p′n] ∈
K0(C(Yn)) for all n and hence [pn,i] = [p′n,i] ∈ K0(C(Yi)), for all n ⩾ i, by (45). □

Let F ⊂ Γ be a finite set and let ε > 0. For two maps φ,ψ : Γ→ U(B), we write

φ ≈
F,ε

ψ

if there is a unitary u ∈ U(B) such that ∥uφ(s)u∗ − ψ(s)∥ < ε, ∀s ∈ F. We shall use a similar

notation to indicate approximate unitary equivalence for maps between C∗-algebras.

Theorem 6.8. Let Γ be a torsion-free residually finite countable amenable group. For any

finite set F ⊂ Γ and any ε > 0, there exist a compact subspace Y ⊂ BΓ, a finite set S ⊂ Γ and

δ > 0 with (Y, S, δ) a K-triple, such that for any two (S, δ)-representations ρ, ρ′ : Γ→ U(k) with

[EYρ ] = [EYρ′ ] in K0(Y ), there is a representation π : Γ → U(m) and a unitary u ∈ U(k +m)

such that

(47) ∥u(ρ(s)⊕ π(s))u∗ − ρ′(s)⊕ π(s)∥ < ε, ∀s ∈ F.
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Proof. We prove this by contradiction. Suppose that there are F and ε for which no S, δ and Y

satisfy the conclusion of the Theorem. Write BΓ =
⋃
i Yi, as in (32). Choose a sequence of pairs

(Sn, δn) such that Γ =
⋃
n Sn, and δn ↘ 0 so that each (Yn, Sn, δn) a K-triple. Then the vector

bundle Eρn as in Notation 6.5 is well defined for any (Sn, δn)-representation. By assumption,

there are two sequences of (Sn, δn)-representation ρn, ρ
′
n : Γ → U(kn), such that [EYnρn ] = [EYnρ′n

]

in K0(Yn) and yet

(48) ρn ⊕ πn ̸≈
F,ε

ρ′n ⊕ πn

for any finite dimensional representation πn.

Let B =
∏
nMkn(C)/

⊕
nMkn(C) and let ρ̇, ρ̇′ : Γ → U(B) be the ∗-homomorphisms

induced by the sequences (ρn) and (ρ′n). By Lemma 6.7, the condition [EYnρn ] = [EYnρ′n
], for

all n ⩾ 1, implies that [ρ̇] − [ρ̇′] belongs to the kernel of the map KK∗(C∗(Γ),K∗(B)) →
lim←−K

∗(Yn;B) and hence [ρ̇] − [ρ̇′] ∈ Pext(K∗(C
∗(Γ)),K∗(D)) by Proposition 6.4. Since C∗(Γ)

satisfies the UCT, Pext(K∗(C
∗(Γ)),K∗(D)) = {0} by [7, Thm. 4.1]. Since Γ is residually finite

and amenable, C∗(Γ) is residually finite dimensional. The stable uniqueness result from [7,

Cor. 3.8] implies that for any finite set F ⊂ Γ and any ε > 0, there is a finite dimensional

representation π : C∗(Γ)→Mm(C) ⊂Mm(C1B) such that

ρ̇⊕ π ≈
F,ε

ρ̇′ ⊕ π.

This property contradicts (48) for all sufficiently large n. □

Theorem 6.9. Let Γ be a torsion-free residually finite countable amenable group. For any

(zn)n ∈ lim←− K̃
0(Yn) = LK̃0(BΓ), there exists an asymptotic representation {ρn : Γ → U(kn)}n

such that [EYnρn ] − [kn] = zn for all n ⩾ 1. Moreover, by Theorem 6.8, {ρn}n is unique up to

stable approximate unitary equivalence. Thus, if {ρ′n : Γ → U(kn)}n is another lifting of (zn)n,

then there exist a sequence of representations {πn : Γ→ U(ℓn)}n and unitaries un ∈ U(kn + ℓn)

such that

lim
n→∞

∥ρn(s)⊕ πn(s)− un
(
ρ′n(s)⊕ πn(s)

)
u∗n∥ = 0, ∀s ∈ Γ.

Proof. The existence part is proved implicitly in [9]. For the sake of completeness, we review

the argument here. Since Γ is amenable and torsion free, the map KK(C∗(Γ),C)→ lim←−K
0(Yn)

is surjective by Proposition 6.4. Therefore there is α ∈ KK(C∗(Γ),C) such that νn(α) = zn
for all n ⩾ 1. Represent α as the class of a Cuntz pair α = [φ,ψ], φ,ψ : C∗(Γ) → B(H),

φ(a) − ψ(a) ∈ K(H), a ∈ C∗(Γ). By [48] we can choose ψ to be a fixed faithful essential

representation of C∗(Γ). Since Γ is amenable and residually finite, there is such a ψ which is

direct sum of finite dimensional representations. Let (pn) be an increasing approximate unit

of K(H) consisting of projections which commutes with ψ. Then φn(a) = pnφ(a)pn is an

asymptotic homomorphism and each ψn(a) = pnψ(a)pn is a finite dimensional representation.

After passing to subsequences, Proposition 2.5 of [9] implies that there is n0 ∈ N such that for

all n ⩾ n0 :

zn = νn(α) = [EYnφn
]− [EYnψn

].
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Since all rational Chern classes of a flat complex bundle do vanish, [16], for each n there is an

integer rn ⩾ 1 such that the bundle (EYnψn
)⊕rn is trivial. We conclude the proof by choosing

ρn = φn ⊕ ψ⊕(rn−1)
n . □

Remark 6.10. As noted in the introduction, Theorems 6.8 and 6.9 extend to torsion-free

amenable groups that are not necessarily residually finite, at the cost of replacing the represen-

tations πn with asymptotic representations. The proofs are very similar. For the existence part,

one chooses ψ = λΓ to be the left regular representation of Γ. By the Tikuisis–White–Winter

theorem [49], λΓ is a quasidiagonal representation, and hence we can choose (pn) to be an in-

creasing approximate unit of K(H) consisting of projections that commute asymptotically with

both φ and ψ. For the uniqueness part, one uses the stable uniqueness theorem from [13], with

λΓ playing the role of the absorbing representation. We do not state these more general results

explicitly here, as we find them less elegant.

Corollary 6.11. Let Γ be a residually finite countable amenable group such that BΓ is compact

and let z ∈ K̃0(BΓ). For any finite set S ⊂ Γ and any δ > 0 there is an (S, δ)-representation

ρ : Γ → U(n) such that [Eρ] − [n] = z. In particular for any x ∈ H̃even(BΓ,Q) there is an

(S, δ)-representation ρ : Γ→ U(n) such that c̃h(Eρ) = qx for some q ∈ Q.

7. Approximation by projective representations

In this section we prove Theorem 1.5.

Proposition 7.1. Let Γ be a virtually polycyclic group and let Y
i
↪−→ BΓ be a compact sub-

space. For any x ∈ H2(BΓ,Z) there is an asymptotic representation consisting of projective

representations (ψn : Γ → U(mn))n such that c1(E
Y
ψn

) = mn
n i

∗(x) ∈ H2(Y,Q), and hence

ch(Eψn) = mne
1
n
i∗(x) ∈ Heven(Y,Q), for all sufficiently large n ∈ N.

Proof. We are using a method from [21]. Let x be represented by a 2-cocycle σ ∈ Z2(Γ,Z) and
construct the corresponding central extension

0 Z Γσ Γ 1,ι

so that for a set-theoretic splitting γ : Γ → Γσ, γ(a)γ(b)γ(ab)
−1 = ι(σ(a, b)), for all a, b ∈ Γ.

For each n ⩾ 1, the cyclic subgroup ⟨ι(1)n⟩ generated by the central element ι(1)n is a normal

subgroup. Clearly, Γσ/⟨ι(1)n⟩ is virtually polycyclic and thus residually finite by [26]. It follows

that there is a finite quotient Gn of Γσ where the image of ι(1) generates a central subgroup

isomorphic to Z/n. Let λn be the representation of Gn induced by the character of Z/n that

maps the generator to e2πi/n. The restriction of λn to Z/n is a multiple of that character, with

multiplicity mn = [Gn : Z/n]. The composition

ψn : Γ Γσ Gn U(mn),
γ λn

is a projective representation of Γ that satisfies ψn(a)ψn(b)ψn(ab)
−1 = e

2πi
n
ι(σ(a,b))1mn . It follows

by Theorem 1.1 that c1(Eψn) = mn
n x ∈ H2(BΓ,Q). Note that ∥σ∥F = supa,b∈F |σ(a, b)| then
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for sufficiently large n:

sup
a,b∈F

∥ψn(a)ψn(b)− ψn(ab)∥ ⩽
4π

n
∥σ∥F . □

When we will use this proposition in the sequel, we will write mx
n for mn, to indicate that

the sequence is associated to x. Now that a sequence (mx
n) was found, it is clear that the

conclusion of the statement remains true if we replace each (mx
n) by a sequence (mn) where each

mn is a multiple of mx
n.

Lemma 7.2. Let Y be a finite CW complex.

(1) H̃even(Y ;Q) is spanned by nonnegative linear combinations of elements of the form ex−1
with x ∈ H2(Y ;Q) if and only if for any y ∈ H̃even(Y ;Q) there are finitely many elements

xi ∈ H2(Y,Z) and natural numbers ki such that ry =
∑

i ki(e
xi − 1) for some integer

r ⩾ 1.

(2) H̃even(Y ;Q) is spanned by linear combinations of elements of the form ex − 1 with x ∈
H2(Y ;Q) if and only if for any y ∈ H̃even(Y ;Q) there are finitely many elements xi ∈
H2(Y,Z) and integers ki such that ry =

∑
i ki(e

xi − 1) for some integer r.

(3) Observe that if y ∈ H2k(Y ;Z), k ⩾ 1 and ry =
∑

i ki(e
xi − 1) as in (1) above, then

rmky =
∑

i ki(e
mxi − 1) for any m ∈ Q.

Proof. (3) For x ∈ H̃even(Y ;Q) we will let [x]2k denote the component of x that is in H2k(Y ;Q).

Then for j ̸= k,

rmk[y]2j = 0 = rmj [y]2j =
∑
i

ki[e
mxi ]2j ,

and one can easily see that rmk[y]2k =
∑

i ki[e
mxi ]2k. Thus, the desired equality holds for all j.

(1) We will only show the “only if” direction since the “if” direction is obvious. It is

sufficient to show this for y ∈ H2k(Y ;Q) for some k > 0. By assumption y =
∑

i κi(e
χi − 1)

with κi, χi ∈ Q+. Let d be the least common multiple of the denominators of the χi terms, and

observe that by (3), dky =
∑

i κi(e
χid−1). Multiplying both sides by the least common multiple

of the denominators of the κi terms, we get the desired result.

The proof of (2) is identical to that of (1). □

It is known that every polycyclic group is a virtually poly-Z group. An exact sequence of

discrete groups 1 −→ N −→ G −→ Q −→ 1 gives a locally trivial fiber bundle of classifying

spaces: BN −→ BG −→ BQ. From this we see that if Γ is a poly-Z group, then BΓ can be

realized as a finite CW-complex.

Notation 7.3. If ρ : Γ→ U(n) is a function and r ∈ N, we write rρ := ρ⊕r.

The following implies Theorem 1.5 from the introduction.

Theorem 7.4. Let Γ be a virtually polycyclic group with BΓ a finite CW complex. Consider

the following properties:

(1) For every ε > 0 and finite subset F ⊂ Γ, there exist a finite subset S ⊂ Γ and δ > 0 so

that for any (S, δ)-representation ρ, there are an integer r > 0, representations π1 and

π2, a unitary u, and a projective representation ψ, so that

||u(rρ(s)⊕ π1(s))u∗ − ψ(s)⊕ π2|| < ε, ∀s ∈ F.
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(2) For every ε > 0 and finite subset F ⊂ Γ, there exist a finite subset S ⊂ Γ and a

δ > 0 so that for any (S, δ)-representation ρ, there are an integer r > 0, a unitary u, a

representation π, and a finite family of projective representations (ψi), so that∥∥∥∥∥u(rρ(s)⊕ π(s))u∗ −⊕
i

ψi(s)

∥∥∥∥∥ < ε ∀s ∈ F.

(3) For every ε > 0 and finite subset F ⊂ Γ, there exist a finite subset S ⊂ Γ and a δ > 0 so

that for any (S, δ)-representation ρ, there are an integer r > 0, a unitary u, and finite

families of projective representations (φi) and (ψk) so that∥∥∥∥∥u
(
rρ(s)⊕

⊕
i

φi(s)

)
u∗ −

⊕
k

ψk(s)

∥∥∥∥∥ < ε ∀s ∈ F.

Then condition (1) is true if and only if H̃even(Γ;Q) = H2(Γ;Q). Condition (2) is true if

and only if H̃even(Γ;Q) is spanned by nonnegative linear combinations of elements of the form

ex − 1 with x ∈ H2(Γ;Q). Condition (3) is true if and only if H̃even(Γ;Q) is spanned by linear

combinations of elements of the form ex with x ∈ H2(Γ;Q).

Proof. Suppose that condition (1) holds. Let z ∈ H2k(BΓ,Q) for some k > 1. By Corollary 6.11,

see also [9], there is an asymptotic representation (ρn)n such that c̃h(Eρn) = qnz, for some qn ∈ Q,

for all n ∈ N. By assumption, there are positive integers (rn), representations (πn)
(1) and (π1n)

and projective representations (ψ2
n) so that

||rnρn(s)⊕ π1n(s)− ψn(s)⊕ π2n|| −→ 0, ∀s ∈ Γ.

Note that (ψn) is necessarily an asymptotic representation. It follows that for all sufficiently

large n, rn[Eρn ] + [Eπ1
n
] = [Eψn ] + [Eπ2

n
]. Since Eπi

n
is a flat vector bundles, we obtain that

rnc̃h(Eρn) = c̃h(Eψn) and in particular c1(Eψn) = c1(Eρn) = 0. Since (ψn) are projective

representations with c1(Eψn) = 0, it follows from Theorem 1.1 that c̃h(Eψn) = 0. Therefore

rnc̃h(Eρn) = rnqz = 0 and hence z = 0.

Conversely, assume now that H̃even(Γ;Q) = H2(Γ;Q). Then for F ⊂ Γ finite and ε > 0,

pick the S ⊂ Γ finite and δ > 0 according to Corollary 1.4. Suppose that ρ is an (S, δ)-

representation and set x := c1(Eρ)Z ∈ H2(BΓ,Z). By Proposition 7.1, there is an asymptotic

representation consisting of projective representations (ψn : Γ→ U(mn))n such that c1(Eψn) =
mn
n x ∈ H

2(BΓ,Q), for all sufficiently large n ∈ N. It follows that c̃h(mn[Eρ]−n[Eψn ]) = 0. Since

the Chern character is a rational isomorphism, it follows that [Epnρ] = pn[Eρ] = qn[Eψn ]+kn[1] =

[Eqnψn ] + kn[1] for some integers pn, qn > 0 and kn ∈ Z. We conclude the proof by applying

Corollary 1.4 for the approximate representations pnρ and qnψn, for a suitable large n which

assures that ψn is a (S, δ)-representation.

Suppose that condition (2) holds. Then for any given z ∈ H̃even(Γ;Q), there is some

asymptotic representation ρn and a rational numbers qn with z = qnc̃h(Eρn). By condition

(2), there are sequences of natural numbers Nn and rn, projective representations {ψin}
Nn
i=1 and



ALMOST REPRESENTATIONS 31

representations πn, so that∥∥∥∥∥un(rnρn(s)⊕ πn(s))u∗n −
Nn⊕
i=1

ψin(s)

∥∥∥∥∥→ 0, ∀s ∈ Γ.

Thus, for large enough n it follows that

rnz =

Nn∑
i=1

c̃h(Eψi
n
)

and so the desired result follows from Theorem 1.1.

Conversely, let ε > 0 and let F ⊂ Γ be finite. Pick the δ > 0 and S ⊂ Γ finite according to

Corollary 1.4 and suppose that ρ is an (S, δ)-representation. Let z = c̃h(Eρ). Let z = c̃hk(Eρ) ∈
H2k(BΓ,Z) for some k ⩾ 1. By Lemma 7.2, there are finitely many elements xi ∈ H2(Y,Z) and
natural numbers ki such that qz =

∑
i ki(e

xi − 1) for some integer q ⩾ 1. For each n ⩾ 1, let

mn =
∏
im

xi
n where mxi

n are given by Proposition 7.1. Then mnqz = nk
∑

imnki(e
1
n
xi − 1). By

applying Proposition 7.1 and selecting a large enough n, we find a finite family (ψi) of projective

representations which are (S, δ)-multiplicative and such that ch(Eψi
) = mne

1
n
xi . Repeating this

process for each k > 0 with chk(Eρ) ̸= 0 and replacing ki with nk · ki we get, mnc̃h(Eρ) =∑
imnki(e

1
n
xi − 1). Thus, if we set p = mnq/n

k, then [Epρ]− [
⊕

iEψi
] is a torsion element plus

a trivial bundle of K0(BΓ). Thus there is a multiple r of p such that if we set r′ = r/p, then

[Erρ] = [
⊕

iEr′ψi
] in K0(BΓ). We apply Corollary 1.4 to conclude the desired result.

Suppose that condition (3) holds. Following the same reasoning as above, we get that for

any z ∈ H̃even(Γ;Q), we can write

rz =

N∑
i=1

c̃h(Eψi
)−

M∑
k=1

c̃h(Eφj )

for projective representations ψi and φj and an integer r ⩾ 1. Then the desired result follows

from Theorem 1.1.

The proof of the converse is similar to proof of part (2) above. Let ε > 0 and let F ⊂ Γ

be finite. Pick the δ > 0 and S ⊂ Γ finite according to Corollary 1.4 and suppose that ρ is

an (S, δ)-representation. We may assume that z = c̃h(Eρ) ∈ H2k(BΓ,Z) for some k ⩾ 1. By

Lemma 7.2, there are finitely many elements xi, yj ∈ H2(Y,Z) and natural numbers ki, ℓj such

that qz =
∑

i ki(e
xi − 1)−

∑
j ℓj(e

yj − 1) for some integer q ⩾ 1. Let mn =
∏
i,jm

xi
n m

yj
n where

mxi
n ,m

yj
n are given by Proposition 7.1. Then mn

nk qz+
∑

j ℓjmn(e
1
n
yj−1) =

∑
i ki(mne

1
n
xi−1). By

applying Proposition 7.1 and selecting a large enough n, we find finite families (ψi) and (φj) of

projective representations which are (S, δ)-multiplicative and such that ch(Eψi
) = mne

1
n
xi and

ch(Eφj ) = mne
1
n
yj . Reasoning as above the K-theory classes [Epρ⊕

⊕
j Eφj ] and [

⊕
iEψi

] differ

by a torsion element plus a trivial bundle. We conclude the proof by applying Corollary 1.4 to

a common multiple of these almost representations, just as in (2) above. □

8. Examples of almost representations observing higher invariants

In this section we assume that BΓ is compact. Let us denote by Repk(S,ε)(Γ) the set of unital

maps such that ∥ρ(st)− ρ(s)ρ(t)∥ < ε for all s, t ∈ S with the property that the vector bundle
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Eρ = EBΓ
ρ associated to ρ as in Definition 4.1 is well-defined. Let Rep(S,ε)(Γ) be the disjoint

union
⊔
k Rep

k
(S,ε)(Γ). Henceforth, we will consider only groups with compact classifying space,

and we introduce the following more concise notation in that case.

Definition 8.1. For ρ ∈ Rep(S,ε)(Γ) define its Chern character by

(49) ch(ρ) = ch(Eρ) ∈ Heven(BΓ,Q) ∼= Heven(Γ,Q).

The purpose of this section is to develop techniques to construct almost representations ρ

with the following property: chk(ρ) ̸= 0 and chj(ρ) = 0 for 1 ⩽ j ⩽ k. This implies that ck(ρ) is

the first non-vanishing Chern class of ρ. Our focus will be on certain classes of nilpotent groups.

Lemma 8.2. (i) Suppose that ρ1, ρ2 ∈ Rep(S,ε)(Γ) are such that ρ1 ⊕ ρ2 ∈ Rep(S,ε)(Γ) and

ρ1 ⊗ ρ2 ∈ Rep(S,ε)(Γ). Then ch(ρ1 ⊕ ρ2) = ch(ρ1) + ch(ρ2), ch(ρ1 ⊗ ρ2) = ch(ρ1) · ch(ρ2), and
chk(ρ̄) = (−1)k chk(ρ). (ii) If f : Γ → Λ is a homomorphism of groups, under the assumptions

of Proposition 4.4,

f∗ (ch(ρ)) = ch(ρ ◦ f)
in K0(BΓ)⊗Q.

Proof. Part (1) follows from basic properties of the Chern character, while part (2) is a conse-

quence of Proposition 4.4. □

The following fact is established in the proof of [11, Thm. 1.2].

Proposition 8.3. Suppose that BΓ is a finite complex. Let {ρn : Γ→ U(kn)} be a sequence of

unital maps such that

lim
n→∞

∥ρn(st)− ρn(s)ρn(t)∥ = 0, for all s, t ∈ Γ,

and ch(ρn)− kn ̸= 0, for all n ⩾ 1. Then there exists no sequence of homomorphisms {πn : Γ→
U(kn)} such that

lim
n→∞

∥φn(s)− πn(s)∥ = 0, for all s ∈ Γ.

Let us recall that Voiculescu’s example of a nontrivial asymptotic representation ψn : Z2 →
U(n) is defined by (x, y) 7→ uxnv

y
n where un and vn are the n× n matrices,

un =



0 0 · · · 0 0 1

1 0 · · · 0 0 0

0 1 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · 1 0 0

0 0 · · · 0 1 0


and vn =



e
2πi
n 0 0 · · · 0 0

0 e
4πi
n 0 · · · 0 0

0 0 e
6πi
n · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · e
2πi(n−1)

n 0

0 0 0 · · · 0 1


.

Proposition 8.4. Let x ∈ H̃even(Zd;Z). Then there is an asymptotic representation ρn : Zd →
U(mn) so that c̃h(ρn) = x. Furthermore, ρn can be built from tensor products and direct sums

of Voiculescu’s example. In particular, it follows that every asymptotic representation of Zd is

stably equivalent to one built from tensor products and direct sums of Voiculescu’s example.
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Proof. From the Künneth formula, H∗(Zd;Z) is the exterior algebra generated by H1(Zd;Z) =
Hom(Zd;Z). Let êj be the dual basis to the standard basis of Zd. Then H̃even(Zd;Z) is generated
by cup products of elements of the form êj ⌣ êi. Let ρijn : Zd → U(n) be the asymptotic

representation defined by sending ei and ej to Voiculescu’s unitaries and the rest of the generators

to the identity. From Theorem 1.1 we see that ch(ρijn ) = êi ⌣ êj + n. Note that by Lemma 8.2

we can use tensor products and direct sums of ρijn to represent any polynomial with non-negative

coefficients in êi ⌣ êj + n. It is then sufficient to show that any element of the form

z =
∏

(i,j)∈S

êi ⌣ êj + (3n)|S|

is expressible as such a polynomial with non-negative coefficients in ei ⌣ ej + n for any S ⊆
{1, . . . , d}2. Note that since êj ⌣ êi = −êi ⌣ êj , it follows that if we may express all such z

this way, then we may also express 2(3n)|S|− z this way as well. We will show this by induction

on |S|. For the base case, we have S = ∅, and what we want to show is trivially true. For the

inductive step∏
(i,j)∈S⊔{(ℓ,m)}

êi ⌣ êj + (3n)|S|+1 =

(êℓ ⌣ êm + n)

 ∏
(i,j)∈S

êi ⌣ êj + (3n)|S|

−n
 ∏

(i,j)∈S

êi ⌣ êj − (3n)|S|

− (3n)|S|(êℓ ⌣ êm − n).

By the inductive hypothesis, all the terms on the right-hand side may be expressed in the desired

form.

For the last claim, we can use the Künneth formula to show that the Chern character

ch : K0(Td) → Heven(Td,Q) induces an isomorphism onto Heven(Td,Z) ⊂ Heven(Td,Q). Thus,

by Corollary 1.4 it follows that all asymptotic representations are stably equivalent to one of

the above. □

Remark 8.5. In particular, we can construct explicit asymptotic representations ρn : Z2d →
U(mn) such that chd(ρn) is the generator of H2d(Z2d;Z) but chj(ρn) = 0 for 0 < j < d.

Remark 8.6. In the examples coming from 8.4, with chk ̸= 0, the defect for any two of the

generators is bounded above by 2πk
n , since this is true for Voiculescu’s example and our examples

are built out of up to k-fold tensor products and direct sums of these. It is possible to calculate

the asymptotics of the dimension of the asymptotic representation as well. To approximate an

element in the 2d cohomology, the dimension is the zeroth Chern character, and can thus be

picked to be (3n)d. This is not the lowest possible dimension, as we illustrate by Example 8.10.

Notation 8.7. If ρ : Γ → U(n) then let ρ denote the pointwise complex conjugate of ρ. As

noted in Lemma 8.2, if ρ is sufficiently multiplicative for Eρ to exist, then Eρ = Eρ, and thus

chk(ρ) = (−1)k chk(ρ).

Example 8.8. Let π1, π2 : Z4 → Z2 be projections onto the first two and last two coordinates,

respectively. Let ψn : Z2 → U(n) be Voiculescu’s example of an asymptotic representation. Let

αn = ψn ◦ π1 and βn = ψn ◦ π2. Define φn : Z4 → U(3n2) by the formula

φn := (αn ⊗ βn)⊕ (1n ⊗ ᾱn)⊕ (1n ⊗ β̄n).
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Using Lemma 8.2, and the Künneth formula, we see that ch2(φn) is the generator of H4(Z4,Z),
while ch1(φn) = 0.

Example 8.9. Note that αn ⊗ βn is itself a projective representation. By Lemma 8.2, one can

check that ch2(αn ⊗ βn) generates H4(Z4). Thus, if we define

φn := (αn ⊗ βn)⊕ (ᾱn ⊗ β̄n),

we obtain an asymptotic representation of φn : Z4 → U(2n2) so that ch2(φn) is twice the

generator of H4(Z4,Z) but ch1(φn) = 0.

Example 8.10. Using analogous notation as above, we define π1, π2, π3 : Z6 → Z2 as projections

onto the first two, middle two, and last two coordinates, respectively. Then let αn = ψn ◦ π1,
βn = ψn ◦ π2, and γn = ψn ◦ π3. We define φn : Z6 → U(7n3) by

φn =(αn ⊗ βn ⊗ γn)
⊕ (1n ⊗ ᾱn ⊗ βn)⊕ (1n ⊗ β̄n ⊗ γn)⊕ (1n ⊗ γ̄n ⊗ αn)
⊕ (1n2 ⊗ ᾱn)⊕ (1n2 ⊗ β̄n)⊕ (1n2 ⊗ γ̄n)

One verifies by a straightforward computation that

ch3(φn) = ch1(αn) ch1(βn) ch1(γn),

and that the other Chern classes vanish. By the Künneth theorem, ch3(φn) generates H
6(Z6,Z).

Concrete almost representations for the group Γ = H3. Here H3 is the discrete

Heisenberg group generated by a, b, c with the relations ba = abc, ca = ac, and cb = bc.

Each element of the group may be represented uniquely as a triple of integers as follows: x =

(x1, x2, x3) = ax1bx2cx3 . First, we will describe the cohomology ring of H3 in terms of explicit

generators in terms of the bar resolution.

Definition 8.11. For 1 ⩽ j ⩽ n let ej be the standard basis element of Cn and extend the

symbol by the convention that ej+n = ej . For odd n consider the map ρn : H3 → U(n)

determined by the equation

ρn(x)ej = exp

(
2πi

n

(
x3j +

1

2
x2j(j − 1)

))
ej+x1 .

This is equivalent to the almost representation due to Eilers, Shulman, and Sørensen in [17].

We also define

ρ̃n(x)ej = exp

(
2πi

n

(
(x1x2 − x3)j +

1

2
x1j(j − 1)

))
ej+x2

which is ρn composed with the automorphism of H3 defined by (x1, x2, x3) 7→ (x2, x1, x1x2−x3).

Note that the functions in the exponent are

β1(x, y) = x3y1 +
1

2
x2y1(y1 − 1)

β2(x, y) = (x1x2 − x3)y2 +
1

2
x1y2(y2 − 1),
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which generate H2(H3;Z) by Proposition A.2, so this example is also equivalent to the example

formula in [20, Proposition 4.1]. Then by Proposition 4.3 c1(ρn) = [β1] and c1(ρ̂n) = [β2].

Because H3 has a cohomological dimension of 3, all higher Chern classes and characters of [Eρn ]

vanish, or by Theorem 1.1.

Concrete almost representations for the group Γ = H3 × Z. Let π1 : Γ → H3 and

π2 : Γ → Z be the obvious maps. Let α1 : H3 → Z and α2 : H3 → Z by (x1, x2, x3) 7→ x1 and

(x1, x2, x3) 7→ x2 respectively. Note that ψ = (α2 ◦ π1, π2) is a map from Γ to Z2. Suppose that

φn : Z2 → U(n) is Voiculescu’s example of an asymptotic representation of Z2.

Proposition 8.12. Using the notation above, for odd n define ηn : Γ→ U(3n2) by

ηn = (ρn ◦ π1)⊗ (φn ◦ ψ)⊕ (ρn ◦ π1)⊗ 1n ⊕ (φn ◦ ψ)⊗ 1n.

Let γ be the generator of H3(H3;Z) from Proposition A.2. Then c1([Eηn ]) = 0 and c2([Eηn ]) =

π∗1([γ])⌣ π2. Here π2 ∈ Hom(Γ,Z) ∼= H1(Γ,Z).

Proof. It is easy to check that ρn is a projective representation with cocycle e2πiβ1 and φn ◦ ψ
is a projective representation with cocycle e2πi(π2⌣α2◦π1). Using Theorem 1.1, Lemma 8.2, and

Proposition A.2 the result follows from a straightforward computation. □

Note that by the Künneth formula, and Proposition A.2, π∗1([γ])⌣ π2 generates H4(Γ).

Concrete almost representations for the group Γ = H3 × H3. Let π1 and π2 be

the projections from Γ to the first and second coordinates, respectively. Define ψ : Γ → Z2 as

(α2 ◦ π2, α2 ◦ π1). Define φn : Z2 → U(n) as in the previous subsection.

Proposition 8.13. Using the notation above, define

ηn =(ρn ◦ π1)⊗ (φn ◦ ψ)⊗ (ρn ◦ π2)
⊕ (ρn ◦ π1)⊗ (φn ◦ ψ)⊗ 1n ⊕ (φn ◦ ψ)⊗ (ρn ◦ π2)⊗ 1n ⊕ (ρn ◦ π1)⊗ (ρn ◦ π2)⊗ 1n

⊕ (ρn ◦ π1)⊗ 1n2 ⊕ (φn ◦ ψ)⊗ 1n2 ⊕ (ρn ◦ π2)⊗ 1n2 .

Then c1([Eηn ]) = 0, c2([Eηn ]) = 0, and c3([Eηn ]) = 2π∗1([γ])⌣ π∗2([γ]).

Proof. The proof is the same as the proof of Proposition 8.12. □

Note that π∗1([γ]) ⌣ π∗2([γ]) is the generator of H6(Γ,Z), by the Künneth formula, and

Proposition A.2.

Appendix A. Cohomology ring of H3

The cohomology ring has been computed elsewhere [28], but generators are given in terms

of a resolution other than the bar-resolution, which is not well-suited for our present context

because our formula for the first Chern class uses the bar resolution. All (co)homology in this

appendix is assumed to have coefficients in Z. In particular, our computation of higher invariants

relies on the fact that [β1] ⌣ [α2] ̸= 0 for the specific cocycles β1 and α2 defined below; this

does not follow from simply knowing the isomorphism class of the cohomology ring.
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Proposition A.1 ([28],[40]).

H1(H3) ∼= H1(H3) ∼= Z2

H2(H3) ∼= H2(H3) ∼= Z2

H3(H3) ∼= H3(H3) ∼= Z.

Proposition A.2. The generators of H1(H3) are given by

α1(x) = x1

α2(x) = x2.

The generators of H2(H3) are given by

β1(x, y) = x3y1 +
1

2
x2y1(y1 − 1)

β2(x, y) = (x1x2 − x3)y2 +
1

2
x1y2(y2 − 1).

The generator of H3(H3) is given by

γ(x, y, z) = (x3y1 +
1

2
x2y1(y1 − 1))z2.

The cohomology ring is given by the relations

[α1]⌣ [α2] = 0

[βi]⌣ [αj ] = (1− δij)γ.

The generators of H1(H3) are given by

A1 = [a]

A2 = [b].

The generators of H2(H3) are given by

B1 = [c|a]− [a|c]
B2 = [b|c]− [c|b].

The generator of H3(H3,Z) is given by

C = [c−1|bc|ab−1c−1] + [bc|ab−1c−1|a−1bc−1] + [ab−1c−1|a−1bc−1|ac]

+ [a−1bc−1|ac|c−1]− [ac|a−1bc−1|ab−1c−1]− [a−1bc−1|ab−1c−1|bc].

Many of these generators were likely already in the literature. The explicit formula for the

generator of H3(H3) may be new.

The formal proof of Proposition A.2 unfortunately involves a lot of brute force calculations

that are not very illuminating. For that reason, we will describe the process by which we

computed each generator. Then the computations in the proof of Proposition A.2 show that

these do in fact generate the (co)homology of H3.
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One can compute the 2-cocycles by creating a presentation of a central extension by hand,

then computing the multiplication in the extension. These extensions can be built by “blowing

up” the relations ac = ca and bc = ca respectively. See [21, Section 7.2] for a similar computation.

For any elements x, y in a group that commute with each other it is a useful fact that

[x|y]− [y|x] is a 2-cycle. For an abstract motivation of this fact; from the isomorphism in [2] we

would get [e|a] + [a|b]− [b|a]− [e|b]. Then use the fact that ∂([e|e|b]− [e|e|a]) = [e|a]− [e|b]
The 3-cycle γ is just the cup product of β1 and α2.

One can compute C as follows. Start with the generator of H3(H3) in the “small resolu-

tion” given by Huebschmann [28]. Following the proof of the independence of resolutions in [2,

Chapter I.7], one can inductively find chain maps from Huebschmann’s resolution to the stan-

dard resolution. Once the map on the third degree is computed, the image of the generator of

H3(H3) in Huebschmann’s resolution is mapped to a generator in terms of the bar resolution.

This computation is long, so we will only provide direct computations that demonstrate that C

generates the 3-homology.

Proof. First we compute the 1-cohomology as, H1(H3) ∼= Hom(H3,Z) and it is generated by α1

and α2.

The 1-homology is isomorphic to the abelianization, generated by a and b. Following the

isomorphism from the bar resolution to abelianization, a and b map to A1 and A2 [2, Chapter

II.3].

We first check that β1 satisfies the cocycle equation;

∂β1(x, y, z) =β1(x, y)− β1(yz) + β1(xy, z)− β1(y, z)

=x3y1 +
1

2
x2y1(y1 − 1)

− x3(y1 + z1)−
1

2
x2(y1 + z1)(y1 + z1 − 1)

+ (x3 + y3 + x2y1)z1 +
1

2
(x2 + y2)z2(z2 − 1)

− y3z1 −
1

2
y2z1(z1 − 1).

Noting the identity 1
2(y1 + z1)(y1 + z1 − 1) = 1

2y1(y1 − 1) + 1
2z1(z1 − 1) + y1z1 one can see that

all terms cancel.

Note that a 7→ b, b 7→ a, c 7→ c−1 is an automorphism η of H3, so that η(x1, x2, x3) =

(x2, x1, x1x2 − x3) and β2 = η∗(β1) so β2 is a cocycle as well.

One can see that

∂B1 = [c]− [ac] + [a]− ([a]− [ac] + [c]) = 0

and the computation for B2 is identical.
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We compute that

⟨β1, B1⟩ = 1

⟨β1, B2⟩ = 0

⟨β2, B1⟩ = 0

⟨β2, B2⟩ = 1.

We claim that this implies that β1 and β2 generate H2(H3) and that B1 and B2 generate

H2(H3). To show this note that the pairing of a cohomology class with both B1 and B2 induces a

map H2(H3) to Z2. Since this map is surjective, it must also be injective; this relies on previous

computations of the (co)homology groups. Thus, it is an isomorphism and so β1 and β2 generate

H2(H3). The argument that B1 and B2 generate H2(H3) is analogous.

To show that [α1] ⌣ [α2] = 0 we will let β3(x, y) = α2(x)α1(y) = x2y1. Then β3 is a

cocycle representative of [α2]⌣ [α1] = −[α1]⌣ [α2]. Consider the function f : H3 → Z defined

by f(x) = −x3. Then

∂f(x, y) = f(x)− f(xy) + f(y)

= −x3 + (x2y1 + x3 + y3)− y3
= x2y1

= β3(x, y).

One may also deduce that [α1]⌣ [α2] = 0 by using the Gysin sequence [27, Theorem 3, Theorem

4].

Note the identity b−1a−1 = a−1b−1c, in addition to those in the presentation. Using these

relations, we compute that all the terms that appear in ∂C are as follows:

+[c−1|bc] −[c−1|ac] +[b|ab−1c−1] −[bc|ab−1c−1]

+[bc|ab−1c−1] −[bc|c−1] +[ac|a−1bc−1] −[ab−1c−1|a−1bc−1]

+[ab−1c−1|a−1bc−1] −[ab−1c−1|bc] +[c−1|ac] −[a−1bc−1|ac]
+[a−1bc−1|ac] −[a−1bc−1|a] +[bc|c−1] −[ac|c−1]

−[ac|a−1bc−1] +[ac|c−1] −[b|ab−1c−1] +[a−1bc−1|ab−1c−1]

−[a−1bc−1|ab−1c−1] +[a−1bc−1|a] −[c−1|bc] +[ab−1c−1|bc]

One can check that each of these terms cancel out, so ∂C = 0.

By construction we can see that [γ] = [β1] ⌣ [α2], and from this deduce that γ obeys the

cocycle equation. Going term-by-term, we compute that

⟨γ,C⟩ = 0 + 1 + 0 + 0− 1− (−1) = 1

Because H3(H3) ∼= H3(H3) ∼= Z and ⟨γ,C⟩ = 1 we can see that (co)homology classes of C and

γ generate the H3(H3) and H
3(H3) respectively.
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To show the other facts about the cup product we define

γ1,1(x, y, z) = (x3y1 +
1

2
x2y1(y1 − 1))z1

γ2,1(x, y, z) = ((x1x2 − x3)y2 +
1

2
x1y2(y2 − 1))z1

γ2,2(x, y, z) = ((x1x2 − x3)y2 +
1

2
x1y2(y2 − 1))z2

so that γi,j is a cocycle representative of [βi]⌣ [αj ]. Then

⟨γ1,1, C⟩ = 0 + (−1) + 0 + 0− (−1)− 0 = 0

⟨γ2,1, C⟩ = 1 + (−1) + 0 + 0− (−1)− 0 = 1

⟨γ2,2, C⟩ = (−1) + 1 + 0 + 0− 1− (−1) = 0.

Since the map given by the universal coefficient theorem from H3(H3) to Hom(H3(H3),Z)
is an isomorphism in this case we conclude that the cohomology class of 3-cocycles on H3

is determined by their pairing with C. In particular, this implies the cup product structure

claimed in the introduction is correct.

□

Acknowledgments The second author thanks Rufus Willett for a stimulating discussion
that led to some steps of the proof of Proposition 5.2.
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[53] D. Voiculescu. Asymptotically commuting finite rank unitary operators without commuting approx-

imats. Acta Sci. Math. (Szeged), 45:429–431, 1983. 2, 5

[54] G. Yu. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert

space. Invent. Math., 139(1):201–240, 2000. 2


	1. Introduction
	2. Local 2-cocycles associated to almost representations
	3. Pairings in tracial C*-Algebras
	4.  Proof of the first part of Theorem 1.1
	5.  Proof of the second part of Theorem 1.1
	6. Classifying almost representations up to stable equivalence
	7. Approximation by projective representations
	8. Examples of almost representations observing higher invariants
	Appendix A. Cohomology ring of H3
	References

