ON CHERN CLASSES OF ALMOST REPRESENTATIONS

MARIUS DADARLAT AND FORREST GLEBE

ABSTRACT. For a discrete group I', we study vector bundles E, on compact subsets of BI'
associated to almost representations p : I' — U(n). We compute the first Chern class of E,
in terms of p. When p is both projective and almost multiplicative, we determine its Chern
character. These invariants yield obstructions to perturbing almost representations to those
arising from projective representations. For residually finite amenable groups, the K-theory
classes of E, classify almost representations up to stable equivalence. Finally, for 7%, 7 x Hs,
and Hs x Hs, we construct explicit almost representations with prescribed Chern classes.

CONTENTS
1. Introduction 1
2. Local 2-cocycles associated to almost representations 6
3. Pairings in tracial C*-Algebras 9
4. Proof of the first part of Theorem 1.1 12
5. Proof of the second part of Theorem 1.1 14
6. Classifying almost representations up to stable equivalence 20
7. Approximation by projective representations 28
8. Examples of almost representations observing higher invariants 31
Appendix A. Cohomology ring of Hs 35
References 39

1. INTRODUCTION

Let T" be a discrete countable group. Let S be a finite subset of I' and let § > 0. A unital
map p: ' = U(n) is called an (S, §)-representation if

lp(ab) — p(a)p(b)|| <6, Va,b e S.

We call such a map an almost representation, even when S and ¢ are not explicitly specified,
provided that S is sufficiently large and e sufficiently small for the context. In the literature,
the same notion is also referred to as a quasi-representation, [6], [8]. A sequence of unital maps
{pn : T — U(ky)}n will be called an asymptotic representation of I' if

lim_ [|pn(ad) = pn(a)pa(b)[| = 0, Va,b €T
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The study of almost representations of groups with respect to the operator norm goes back to
Kazhdan [34], Voiculescu [53], Connes, Gromov and Moscovici [6] and Exel and Loring [18].
We study asymptotic and almost representations using K-theory methods and quasidiagonality.
Vector bundles on compact subspaces of the classifying space BI' play a key role. The idea of
constructing almost representations from almost flat bundles was introduced in [6]. The approx-
imate monodromy correspondence between almost flat bundles and almost representations was
further studied in [23], [22], [3], [29] and [37]. A functional-analytic approach to constructing
almost representations and almost flat bundles was introduced in [8] and [9], using the notion of
quasidiagonal K-homology classes for group C*-algebras. This method draws upon key results
by Kasparov [31], Yu [54], and Tu [52], particularly in relation to the Novikov and Baum-Connes
conjectures. The applicability of this technique, revisited in [4], was significantly broadened by
Kubota in [38] through the consideration of quasidiagonal C*-algebras that are intermediate
between the full and the reduced group C*-algebras; see also [10], [12] for further work in this
direction with applications to non-stability.

It is convenient to work with a CW-complex model of BI" as described in [24, Example 1B.7]
as we elaborate in Section 2. This allows us to identify the chain complex which defines the
simplicial homology of BI', with the non-homogeneous bar complex that defines the homology
of I'. We will also fix an exhaustion of BI' by an increasing sequence of finite subcomplexes
(Yn)n- Let us recall that Atiyah-Segal’s construction which associates to a finite dimensional
representation of I', a flat vector bundle on BI' generalizes to almost representations. If the
classifying space BI' admits a realization as a finite CW-complex, then, there exist a finite
subset S of I" and 0 > 0 such that one can associate to any (5, d)-representation p : I' = U(n), a
rank-n almost flat bundle E, over BT, see for example [9], [12]. The construction of E, will be
reviewed subsequently. For groups I' that are quasidiagonal and admit a y-element, it is known
that K°(BT) is generated by almost flat vector bundles E, as above, [9], [36], [10]. Since flat
complex vector bundles have trivial rational Chern classes, [43], it follows that if [E,] — [n] # 0
in K9 BT') ® Q, then the almost representation p is not a small perturbation of a genuine
representation, see [10]. Specifically, there are £,y > 0 and finite sets F, Sy C I' such that if
p: T — U(n) is an (S, d)-representation with § < dp and S D Sp, then for any homomorphism
m: ' —= U(n),

mas [o(s) — (s > e

One can extend the construction above to general groups with BI" an infinite CW complex.
Thus, for any compact subspace Y C BT, there are S and § such that to (S, J)-representation
p:I' = U(n) we can associate a rank-n vector bundle E;f over Y, see Section 4.

This leads naturally to the question of computing invariants of the bundle E;/ in terms
of p. Using previous work [8], [11], [21], [12], we compute the first Chern class of E;/ as
described below. Moreover, if p is not only an almost representation, but also a projective
representation, in the sense that p(a)p(b)p(ab)~' = A(a,b)1,, with A(a,b) € T for all a,b € T,
then we compute the rational Chern classes of EZ. Let j denote the canonical isomorphism
j: H*(T',Q) — H?(BT,Q), with Q an abelian group. As explained in Section 2, we shall make
no notational distinction between and element = and its image j(x). A local 2-cocyle on T is
a map that satisfies the 2-cocycle equation for finitely many triples a,b,c € I'. This notion is



ALMOST REPRESENTATIONS 3

discussed in Section 2 along with the corresponding map j : Z2(I',Q)y — Z%(Y, Q). We write
ci(E)z for the i'" integral Chern class and ¢;(F) for the i® Chern class considered as a rational
or real cohomology class, depending on context.

The first half of the paper is devoted to computation of invariants of EE)/.

Theorem 1.1. Let I' be a countable discrete group. For any finite subcomplex Y of BL', there
are a finite set S C I' and 6 > 0 such that for any (S, )-representation p : I' — U(n), the vector
bundle EZ 1s well-defined and

(1) The equation

(1) wla,8) i= 5~ Te(log(p(a)p(b)p(ab) ),

defines a local 2-cocycle w € Z*(T',R)y with the property that c; (EZ) = [w] in H*(Y,R). More-
over, for any integral 2-cycle ¢ € Zy(Y,7Z), the corresponding Kronecker pairing takes integral
values, (Jw], [c]) € Z.

(2) If p: T — U(n) is both an (S, d)-representation and a projective representation, then
the total Chern class of E;/ 18

1 n 1 "
Yy Y _
o(E,) = <1 + ECI(EP )) = <1 + n[w])
and the Chern character is ) )
ch(EZ) = nenE) = penll,

When BI' admits a compact model, E, can be constructed as a bundle over BI' and
[w] € H?(BI',R). In general, to detect the nontriviality of ¢; (E;/), we pair [w] with 2-homology
classes. This recovers the winding number invariants of the type used in [34], [18] and [17].
The Exel-Loring formula [18] shows the equality of two invariants associated to a pair of almost
commuting unitaries regarded as an almost representation of Z2. A generalization of the Exel-
Loring formula to almost representations of arbitrary discrete groups I' was given in [11] in the
form of an index formula. This formula, which we will review in Theorem 3.1, defines a pairing
(p,r) between sufficiently multiplicative almost representations p : I' — U(k) and elements [r]
of the group homology Hsy(I',Z) realized through the Hopf formula for 2-homology. We write
this symbolically as

{Almost representations} x Hy (L', Z)HPF = 7, (p,[r]) = (p, 7).

Another pairing (p,c), between almost representations p : I' — U(k) and elements of
H>(T",7Z), was introduced in [21] using the bar-resolution definition of Hy(T",Z):

{Almost representations} x Ho(I',Z) = Z, (p,[c]) — (p,c).

We review this second pairing in equation (7) below. In Section 3 we show that the two pairings
can be identified modulo the isomorphism ¢ : Hy(T', Z)#°Pf — H,(T',7Z), in the sense that

(p:7) = (p, o(r))-
Furthermore, we give the following geometric interpretation of the pairings. If BI' admits a

compact model. Then there exist 6 > 0 and a finite set S C I' such that for any (.5,J)-
representation p : I' = U(n), (p, ¢) coincides with the Kronecker pairing between the first Chern
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class of E, and [c] € Hy(BI',7Z):

(p; ) = {er(E,), [d])-
If BT is not compact, we have a similar interpretation that involves ¢; (E;/), where Y is a finite
subcomplex of BI' that supports the 2-cycle ¢, as discussed in the proof of Theorem 4.2.

In the second half of the paper we study the extent to which the bundle E, determines p.
We establish the following stable uniqueness result, showing that the associated vector bundles
classify almost representations up to stable approximate unitary equivalence under suitable
conditions.

Theorem 1.2. Let ' be a torsion-free residually finite countable amenable group. For any finite
set ' C T and any € > 0, there exist a finite set S C I, § > 0 and a compact subspace Y C BT’
such that for any two (S, §)-representations p,p’ : T — U(k) with [EZ] = [E};] in K°(Y), there
is a representation w: I' = U(m) and a unitary w € U(k +m) such that

(2) lu(p(s) @ w(s))u — p/(s) @ m(s)| <, Vs € F

The same conclusion remains valid even if I' is not residually finite; however, in that case
we need to allow 7 to be an (S, d)-representation. To complete the picture, we note that the
following existence result is implicitly contained in [9]. The class of the trivial bundle of rank
k is denoted by [k]|. Fix an exhaustion of BI' by an increasing sequence of finite connected
subcomplexes (Y,),. Kasparov [32], uses the notation LK*(BT") = lim K*(Yy,).

Theorem 1.3. Let I' be a torsion free residually finite countable amenable group. For any
(zn)n € @ko(Yn), there exist an asymptotic representation {p, : T' — U(kyp)}n and finite
dimensional representations {m, : I' = U(kn)}n, such that [E,,] — [kn] = 2, for all n > 1.
Moreover, by Theorem 1.2, {pn}n is unique up to stable approrimate unitary equivalence. Thus,
if {p), : T = Ul(kyn)}n is another lifting of (zn)n, then there exist a sequence of representations
{mn : T = U(¥y)}rn, and unitaries u, € U(k, + £,) such that

1 [|pn(5) ® T (s) — tn (01,(5) © ma(s)) uf| =0, Vs €T,

If T is not residually finite, one can still lift (z,), to a pair of asymptotic homomorphisms
{pn,mn : T — U(kp)}n such that [E, | — [Ex,] = 2, for all n > 1.

Corollary 1.4. Let I" be a residually finite amenable group such that BI' admits a finite CW
complex model.

(1) For any z € I?O(BF) there are g > 0 and a finite set Sg C I' such that for any finite
set So € S C T and any 0 < § < &g there is an (S, 9)-representation p : I' — U(n) such
that [E,] — [n] = z. In particular, for any x € He*"(BT',Q) there is an (S,0)-representation
p:I' = U(n) such that &(Ep) = qz for some q € Q.

(2) For any finite set F C T' and any € > 0, there is a finite set S C T' and 6 > 0 such
that for any two (S,8)-representations p,p' : I' — U(n) with [E,] = [Ey] in K°(BT), there is a
representation m: I' — U(m) and a unitary u € U(n + m) satisfying (2).

Using Theorem 1.1 and Corollary 1.4, we can now address the question of perturbing

multiples of approximate representations to direct sums of projective representations for poly-Z
groups. For a map p: ' — U(n) and r € N, we denote p®" by rp.
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Theorem 1.5. Let I' be a poly-Z group. Consider the following properties:

(1) For every e > 0 and finite subset F' C T', there exist a finite subset S C T and 6 > 0 so
that for any (S, d)-representation p, there are an integer r > 0, representations m and
T, a unitary u, and a projective representation v, so that
lu(rp(s) & mi(s))u® —¥(s) D mef| <&, VseF.

(2) For every ¢ > 0 and finite subset ' C T, there exist a finite subset S C T' and a
0 > 0 so that for any (S, 0)-representation p, there are an integer r > 0, a unitary u, a
representation 7, and a finite family of projective representations (v;), so that

<eg VseF

u(rp(s) @ m(s))u” — GB Yi(s)

(8) For every e > 0 and finite subset F' C T', there exist a finite subset S C T and a 6 > 0 so
that for any (S, d)-representation p, there are an integer r > 0, a unitary u, and finite
families of projective representations (¢;) and () so that

u (rp(s) & @901(8)) u* — @wk(s)
7 k

Then condition (1) is true if and only if H®*(T;Q) = H2(T;Q). Condition (2) is true if
and only if ﬁe”e”(f‘; Q) is spanned by nonnegative linear combinations of elements of the form
e® — 1 with x € H*(T;Q). Condition (3) is true if and only if flevm(F; Q) is spanned by linear
combinations of elements of the form e* with x € H?*(T'; Q).

<e VseF

Let T" be a finitely generated group with a non-torsion 2-cohomology class [w] that corre-
sponds to a central extension where the middle group is residually finite. Motivated by work of
Kazhdan [34], Voiculescu [53] and Eilers, Shulman and Sgrensen [17], the second author provided
in [21] an explicit formula, in terms of the 2-cocycle w, for projective representations of I' that
are almost representations and which are not perturbable to genuine representations.

In the last part of the paper we explore the question of constructing concrete almost repre-
sentations which realize higher dimensional cohomological invariants. More precisely, we consider
tensor products and direct sums of projective representations to construct almost representa-
tions p for which the associated almost flat bundle £, is stably isomorphic to a given bundle
FE over BI' and which in particular will correspond to higher dimensional cohomology classes
in H?*(I",Q). Due to limitations of our approach, we have satisfactory results only for certain
classes of groups where the ring K°(BI') is generated by line bundles. However, Theorem 1.2
shows that almost representations constructed out of projective representations are as general
as any other almost representation, in many cases when the ring K°(BT) is generated by line
bundles. We have satisfactory results only for certain classes of groups where the ring K°(BT)
is generated by line bundles such as I' = 7% T =7 x Hy and ' = Hy x Hs.

For each given element o of K°(BZ9) = A" Z% of virtual rank 0, we construct a concrete
almost representation p : Z¢ — U(n) such that [E,] = n+ a. Furthermore, we exhibit explicit
almost representations p : I' = H3 x H3 — U(n) such that ¢i(E,) = c2(E,) = 0 while c3(E,) # 0.
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In this case, the obstruction to perturbing p into a true representation lies solely in an element
of HY(T',7Z).

2. LOCAL 2-COCYCLES ASSOCIATED TO ALMOST REPRESENTATIONS

We will only use homology and cohomology with coefficients in commutative rings ) such
as Z, Q and R, viewed as trivial [-modules. The reader is referred to [2, Chapter II.3] for more
background information. Let Cy(I'; Q) consist of formal linear combinations of elements of I'*
with coefficients in Q). We write a typical element of Co(T'; Q) as

> kjlaslby)
j=1
with aj,b; € I" and k; € Q. There are boundary maps 0 : Co(I'; Q) — C1(I'; Q) defined by
O2lalb] = [a] — [ab] +- [b]
and 05 : C3(T'; Q) — Co(T; Q) defined by
Oslalblc] = [blc] — [ablc] + [albc] — [alb].
Then Hy(I'; Q) := ker(02)/Im(03). An element of Z(I', Q) := ker(02) is referred to as a 2-cycle
and an element in Im(03) is referred to as a 2-boundary.
Let us recall now the definition of 2-cohomology H?(T', Q). A 2-cocycle o : T? — Q is a
function that satisfies the equation
(3) o(a,b) + o(ab,c) = o(a,bc) + o(b,c), forall a,bcel.
We indicate that o satisfies this condition by writing ¢ € Z?(I", Q). A 2-coboundary is a
2-cocycle that can be written in the form
o(a,b) = 9v(a,b) = ~(a) — y(ab) + 7(b)
for some function v : I' — Q. H?(I';Q) is defined to be the group of 2-cocycles, mod the
subgroup of 2-coboundaries. The group operation is pointwise addition. One can normalize a
2-cocycle ¢ by adding to it a boundary element. Specifically, by replacing ¢ by ¢ + 0+, where
~v: T — @ is defined by y(a) = —o(e,a) for a € I, we obtain a 2-cocycle satisfying
o(a,e) =o(e,a) =0.

The Kronecker pairing between a 2-homology class ¢ and a 2-cohomology class x is a bilinear
map H2(T'; Q) x Ho(T;Z) — Q defined by the formula

(z,0) = <a,2k:j[aj|bj]> = kjo(az,b))
o i=1

where o is a 2-cocycle representing z, and Z;n:l kjla;]b;] is a 2-cycle representing c¢. The value
does not depend on the choice of representatives.

For a discrete group I', we will use the construction of its classifying space BI' based
on the notion of A-complex. A-complexes are defined in [24, Ch.2§2.1] and the construction
of BT if given in [24, Example 1B.7]. An n-cell of BI' which is the image of the simplex
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[1,a1,a1a9,...,a1 - - - ay) is labeled by [a1]az]...|ay]. The chain complex which defines the simplicial
homology of the A-complex of BT, denoted by C2(BI'; Q), coincides with the non-homogeneous
bar complex that defines the homology of I' as discussed in [2, p.36] via the bijection which maps
the element [a1|az|...|a,] of the basis of C2(BT; Q) to the element [ay|az|...|an] of Cp(T; Q). This
allows us to identify H2(BT;Q) with H,(T';Q) and HR(BT;Q) with H"(T; Q). Furthermore,
the simplicial homology (cohomology) is isomorphic to the singular homology (cohomology).
At the level of chains this isomorphism is induced by the map which takes an n-cell to its
characteristic map A™ — BI'. We will make no notational distinction between the simplicial
homology (cohomology) of a subcomplex Y of BI" and its singular homology (cohomology).

Let I' = {a1, ag, ... } be a fixed enumeration of ', and let S,, = {a1,...,ay}. Foreachn > 1,
define Y,, as the smallest CW subcomplex of BI' that contains all cells of the form [b1]b2] ... |bk],
where b; € S,,, 1 < k < n. It is then clear that Y;, is a finite subcomplex of BI' of dimension n.
Moreover, Y;, C Y41 and |J,—, Y, = BT.

BT is endowed with the direct limit topology (the weak topology). In particular any
compact subspace of BT is contained in some Y;, [24, Proposition A.1]. In this model BT is not
locally finite, hence not locally compact in general. For a locally finite model one replaces Y,
by Y, x [0, 1] and employs the usual telescope construction where Y,, x {1} is identified with the
corresponding subspace of Y, 11 x {0}. It is this latter model that we will use in Section 6 in
order to appeal to Kasparov’s theory RK K (BT'; A, B).

Let Y be a finite A-subcomplex of BT and let @ be an abelian group. We have a natural
map of chain complexes C2(Y;Q) — C2(BT; Q).

Lemma 2.1. Denote by Z,(T;Q)y the n-cycles in C2(Y;Q).

(a) Every simplicial cycle c € Za(T'; Q)y can be directly viewed as a cycle ¢ € Z3(T'; Q).

(b) Any map w : {(a,b) € I' x I' | [a]b] € Yjg} — Q, that satisfies the 2-cocycle equation
(3) for all 3-simplices [alblc] € Y3, defines a 2-cocycle in ZX(Y;Q) and hence an element
[w] € H2(Y, Q). We callw a local 2-cocycle and the set of all such maps is denoted by Z*(T'; Q)y .

(c) For any ¢ € Zy(T',Z), there is a finite A-subcomplex Y of BT that supports c. If w €
Z2(T;Q)y is as in (b), then we have a pairing (w,c) given by the Kronecker pairing H*(Y, Q) x
Hy(Y,Z) > Q.

Proof. (a) Since Y C BT as A-complexes, we have C2(Y;Q) € C£(BTI';Q). The boundary
operator 93 is simply the restriction of A8', so cycles remain cycles under this inclusion:
Z5(Y;Q) C Zy(BT';Q). The isomorphism C2(BT;Q) = CP*(T; Q) identifies the A-complex
of BI" with the bar resolution chain complex used in group homology, [2, p.18].

(b) The cocycle condition requires that for every 3-simplex [a|b|c] € V3

w(b,c) —w(ab, c) +w(a,bc) — w(a,b) = 0.

Since Y is a subcomplex, whenever a 3-simplex belongs to Y, all its 2-dimensional faces are also
in Y. This guarantees that w is well-defined on all terms appearing in the cocycle equation,
and the extension to a 2-cochain w : Co(Y; Q) — Q via w([a|b]) = w(a,b) automatically satisfies
62 (w) = 0, so that w € Z%(Y, Q).

(c) This follows from the previous discussion. O
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Lemma 2.2. If BI' admits a compact model X, then the standard CW model of BI' has a finite
subcomplex Y that contains a compact space homotopy equivalent to X, so that if « : Y — BT
is the inclusion map, then * : HF(BT;Q) — H*(Y;Q) is injective, and 1. : Hp(Y;Q) —
Hy(BI'; Q) is surjective.

Proof. Let f: X — BI' be a homotopy equivalence then let Y be a finite subcomplex containing
f(X). Then f* and f, are isomorphisms that factor through the cohomology and homology of
Y. O

The upshot is that if BT has any compact model, we can understand the cohomology of T,
by seeing what it does on the finite subset that is needed to build Y as a CW complex.

We will prove the following facts for matrices, but using the de la Harpe-Skandalis deter-
minant, they may be generalized to any tracial Banach algebra; see [14]. Many results in this
section follow from results in [14], but we are providing alternate proofs that lead to explicit
numerical bounds.

Definition 2.3. Let S be a finite subset of I" and let 6 > 0. A unital map p : I' = U(n) is
called an (S, ¢)-representation if

lp(st) = p(s)p()]| < 6, Vs,t € 5.

Definition 2.4. If p is an (S, 0)-representation with 0 < § < 1, then for a,b € S we define the
local 2-cocyle associated to p by the formula

@) ) = wp(a,b) = 5T (1o (pla)p(b)o(ab) ")) .

where log is defined to be the usual power series centered at 1. The terminology is justified by
Proposition 2.6 below.

Lemma 2.5. [21, Lemma 3.2] If u1, us are unitary matrices each within % of the identity then
Tr(log(ujuz)) = Tr(log(ui)) + Tr(log(uz)).

Proposition 2.6. Suppose that p is an (S, d)-representation. If a,b,c,ab,bc € S and § < %,
then w satisfies the coycle equation at a,b,c:

w(a,b) + w(ab, c) = w(a,bc) + w(b, c).

Proof. Note that
Tr((zy)") = Tr(z(yz)"'y) = Tr((yx)" yz) = Tr((y)").



ALMOST REPRESENTATIONS 9

Since log is a power series, it follows that Tr(log(xy)) = Tr(log(yx)). Using Lemma 2.5 and the
observation above,

w(a,b) +w(ab,c) = QL(Tr(log(p(a)p(b)p(ab)‘1)) + Tr(log(p(ab)p(c)p(abe) )

!

= o Te(los(p(a)p(B)o(c)plabe) ™))

™

= L Te(log(p(B)p(c)plabe) " p(a)))

21

- %<Tr<10g<p<b>p<c>p<bc>—1>> + Tr(log(p(be) p(abe) ~ p(a))))

1

= 27”.(Tr(log(p(b)p(C)p(bc)‘l)) + Tr(log(p(a)p(be)p(abe) ™))

= w(a,bc) + w(b,c).
U

Thus for a given subcomplex Y C BT, w, defines a local 2-cocycle in Z 2(T,R)y, whenever
S is sufficiently large and ¢ is sufficiently small. We say that w, is the local cocycle associated
to p.

Denote by Rep(y 5 (') the set of (S, d)-representations p : I' — U(n) and let Rep(g 5)(I') be
the disjoint union | ], Rep{ 5 (I').

Proposition 2.7. For any finite subcomplex Y C BT there are a finite subset S C T and § > 0
such that the correspondence p — wy is a well-defined map Rep( 5 (I') — Z%(T,R)y.

Proof. This follows from Lemma 2.1(b) and Proposition 2.6. O

3. PAIRINGS IN TRACIAL C*-ALGEBRAS

We confine our discussion of pairing to matrix-valued approximate representations. The
general case of tracial algebras is discussed in [12]. The Exel-Loring [18] formula establishes
the equality of two invariants associated to a pair of almost commuting unitaries regarded as
an almost representation of Z2. A generalization of the Exel-Loring formula to almost repre-
sentations of arbitrary discrete groups I' is given in [11]. The index formula, which we review
in Theorem 3.1 below, defines a pairing (p, ) between sufficiently multiplicative almost repre-
sentations p : I' — U(k) and elements [r] of the group homology Ha(T',Z) realized through the
Hopf formula, see equation (6) below.

{Almost representations} x Hy(I', Z)HPF — 7, (p,[r]) = (p, 7).

Another pairing (p,c), between almost representations p : I' — U(k) and elements of
H>(T',7Z), was introduced in [21] using the bar-resolution definition of Hy(I',Z), see equation (7)
below.

{Almost representations} x Ho(I',Z) — Z, (p,[c]) — (p,c).

We show that the two pairings can be identified via the isomorphism ¢ : Hy(T,Z)7rf —
Hy(T',Z), in the sense that

(o) = (py (7).
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While this fact can be derived from [12, Prop. 4.1], in the sequel, we will give a proof
that allows for quantitative estimates. The isomorphism of the two pairings is useful because,
depending on the context, it can be advantageous to use the form of the pairing that is best
suited to the task at hand.

Furthermore, we give a geometric interpretation of the pairings. This is easier to explain
if BI' admits a compact model. Under that assumption, there exist § > 0 and a finite set
S C T such that for any (S, 0)-representation p : I' — U(k), the pushforward of the Mishchenko
line-bundle is a vector bundle E, on BT, see [8], [9]. In this situation we show that (p,c)
coincides with the Kronecker pairing between the first Chern class of E,, ¢1 (Ep) € H? (BT, Q)
and [c] € Hy(BT', Z):

(p.0) = (c1(E)p), [c])-
This equality will be derived as a consequence of Theorem 1.1 which shows that ¢;(E,) = [w,],
where w,, is the local 2-cocycle associated to p.
Hopf’s formula expresses the second homology of I' in terms of a free presentation

1—>R—>Fi>1“—>l,

RN [F, F]

(R, F]
Each element r € Hy(I',Z) can be represented by a product of commutators []7_,[a;, b;] with
ai,b; € F, for some integer g > 1, such that [[?_,[a;, b;] = 1. Recall the canonical isomorphisms
H?(I',Q) — H?*(BT,Q) and Hy(I',Z) — Hy(BT,Z). The following composition of maps will
play a role in the sequel.

Hy (T, z)Herf =

Hy(T,Z)Horf 2 Hy(T',Z) —— Hy(BT,Z)
The Chern character in K-homology yields an isomorphism
ch, ®idg : K, (BT) ®z Q = H,(BT;Q) = H,(T'; Q)
Matthey [41], [42], see also [1], constructed a natural rationally injective homomorphism
8y« Hy(BT;Z) — Ko(BT),
which is rationally a right-inverse of the Chern character:
(5) (ch®idg) o (8 ®idg) = idp,(sr.0)

For simplicity we will write 5* in place of ﬂg and denote by BY its restriction to subspaces Y
of BT.
Let o! : Ho(T', Z) — Ko(£(T")) be the composition ol = u! o B¢

Hy(BT, Z) —2— Ko(BT) —“s Ko(¢1(I))

where p! is the ¢!-version of the assembly map of Lafforgue [39]. We abbreviate the winding
number of a closed loop L in C\ {0} by wn(L). The linear extension p : £}(T') — M(C) of a
sufficiently multiplicative unital map p : I' — U(k) satisfies the following generalization of the
Exel-Loring formula:
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Theorem 3.1 ([11]). Let r € HQ(F,@HOM be represented by a product of commutators
[19_,la;, b;] with a;,b; € F and []Y_,[a;, b;] = 1. There exist a finite set S C I and § > 0 such
that if p: I' — U(k) is an (.5, §)-representation, then

g - 1 g -
(0" (p(r)) = won det ((1 0, +tH[p<ai>,p<bi>1> = gerlog ( [Jln(a). o(bo)
=1 1=1
Here, if we write o (¢(r))) = [po] —[p1], where p; are projections in matrices over ¢}(T"), then
pi(al(o(r)))) = ps(po) — ps(p1), where py(p;) € Z is the rank of the perturbation of (id ® p)(p;)
to a projection via analytic functional calculus.
The right-hand side of Theorem 3.1 defines a pairing

g
(6) (p,7) = %Tr log (H[p(aa,p(bm)
i=1
between almost representations p : I' — U(k) and elements r of the group homology Ha (T, Z)P/
realized through the Hopf formula.

Another pairing (p,c) between almost representations p : I' — U(k) and elements of
H(T', Z) was introduced in [21] using the bar-resolution definition of H>(T',Z). Let ¢ = 302, kj[v;]y;] €
Z>(I',Z) be a 2-cycle. Let p : I' — U(k) be an (S, )-representation such that x;,y; € S and
0 <6 < 1. Then

7) (0:) = 5= kT (108 (ol )olu)olaz0) )
j=1

Remark 3.2. If one replaces r and ¢ by homologous 2-cycles 7' and ¢’ the pairings yield the
same values provided that S is sufficiently large and § is sufficiently small: {p,r') = {(p, '),
and (p,c) = (p,). While the second equality is proved directly in [21], we think that it is
more conceptual to point out that it follows from Proposition 2.6 by using the (local) cocycle
condition. On the other hand, the first equality follows from Theorem 3.1.

We have the following consequence of [14, Prop. 4.1]:

Proposition 3.3. Let T' be a countable discrete group and let o : Ho(T', Z)HoPf — Hy(T',7Z) be
the canonical isomorphism. Let [r] € HQ(F Z) be represented by r = [[7_[ai, bi] and let o([r])
be represented by a 2-cycle o(r) = Z] 1kjlzjly;] in the bar resolution. There exist a finite set
S CT and § >0, such that for any (S, 9)-representation p : ' — U(k) we have

(o) = (pyp(1)).

Proof. This can be established by applying [14, Proposition 4.1] and proceeding via a proof
by contradiction. Nevertheless, we rewrite the proof from [14] to make the computation of an
explicit S and § possible.

By [2, chapter IL5 Exercise 4], if 7 € Hy(I',Z) is represented by []7_;[a;, b;] in the Hopf
formula, then a 2-cycle representative for the class of ¢(r) is the element Y 9_; d;, where

(8) di = [Ii-1|@i) + [Li1@ilbi) — [Liaaibsa; @] — [1i]bi]
and I; = [a1,b1] - [a;, b;]. Let [p(r)] = >9_,[d;] with d; as in (8). Let L(m) = 5Tr(log(m))

and note that if p is sufficiently multiplicative on a sufficiently large finite subset of I' we may
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use Lemma 2.5 to compute

{[o], [di]) =L(p(Li-1)p(ai) p(Li—1@:)~") + L(p(Li—1a3)p(bi) p(Li—1aibi) ™)

+ L(p(Li—1aibi)p(a;) ™ p(Li—1aibia; )71)+L( (Libs)p(bi) " p(L:)™H)
=L(p(Li-1)p(@i)p(bi) p(ai) =" p(Libs) =" p(Libi) p(bs) " p(L:) ™)
=L(p(Li-1)[p(@:), p(bs)]p(L:) ™).

Consequently,
g g
(o). [ )) = 3 Lip(Ti) (@), pBi)]p(F) ™) = L <p<h>(H[p<az->, p@i)])pug)-l) .
i=1 i=1
Since I, = I; = 1, we obtain the desired conclusion. O

Corollary 3.4. For any c € Zs(I',7Z), there exist a finite set S C I' and § > 0 such that if
p:T'—= U(k) is an (S, d)-representation, then

(9) pr(at ([])) = ([w], [€])-

Proof. The cycle c¢ is supported by some finite subcomplex Y of BI'. Having Y fixed, by
Proposition 2.7 there are suitable S and § so that w € Z?(I",R)y is well-defined and ([w], [¢]) is
meaningful as discussed in Lemma 2.1. By equation (7) and definition of w, the pairing (p, c)
coincides with the following Kronecker pairing:

(p0) = ([w], [])-
Substituting ¢ = ¢(r), we rewrite this as (p, ¢(r)) = (w, ¢(r)). By Proposition 3.3, we deduce
that (p,7) = (w,¢(r)). The desired conclusion follows by applying Theorem 3.1, according to

which py(a (p(r))) = {p. 7). 0
4. PROOF OF THE FIRST PART OF THEOREM 1.1

Consider the Mishchenko line-bundle 1 with fiber ¢1(T') defined by ET xp C*(I') — BT,
where I' C ¢}(T") acts diagonally. Let Y be a finite subcomplex Y C BI'. Let (U;)ie; be a
finite covering of Y by open sets such that £ is trivial on each U; and U; N U; is connected.
Using trivializations of restrictions of £ to U; one obtains group elements s;; € G which define a
1-cocycle that is constant on each nonempty set U; NU; and which represents ¢y, the restriction
of ¢ to Y. Thus si_jl = sj; and s;5 - Sjk = S;, whenever U; N U; N Uy, # 0. Let (x;)ier be positive
continuous functions with x; supported in U; and such that Y, ; x7 = 1. Set m = |I| and
let (e;;) be the canonical matrix unit of M,,(C). Then /¢y is represented by the selfadjoint
projection

ey = Z XiX; ® sij ® € € C(Y) @ £H(T") @ My (C).
i,j€1
Definition 4.1. For a unital map p : I' — U(k), we denote again by p its contractive linear
extension ¢}(T") — My (C). Consider a finite set S C T such that {s;; : 4,5 € [} C S and § > 0.
Suppose that [|p(st) — p(s)p(t)|| < 6 for all s,¢t € S. Then the element

hy = (id ® p®1id)(ey) Z XiX; ® p(sij) @ eij € C(Y) @ Mp(C) @ Mp,(C),
1,g€l
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is almost a projection. Using functional calculus, if § is sufficiently small, one finds an projection
ey € C(Y)® My(C) ® M, (C) close to hy. We denote by E}; the vector bundle representing ey
and write EZ:Ep if Y = BI' is compact.

In Proposition 5.1 we verify that EZ is given by a cocycle u;; : U; N U; — U(V') such that
ui; is a small perturbation of p(s;;)

Theorem 4.2. Let I" be a countable discrete group. For any finite subcomplex Y of BL, there
are a finite set S C I' and 6 > 0 such that for any (S, d)-representation p : I' — U(n), the vector
bundle EZ 1s well-defined and

(1) The equation

(10) wl,b) 1= 5= Tr(log(p(@)p(b)p(at) ),

defines a local 2-cocycle w € Z*(T',R)y with the property that c; (EZ) = [w] in H*(Y,R). More-
over, for any integral 2-cycle ¢ € Zy(Y,7Z), the corresponding Kronecker pairing takes integral
values, ([w], [c]) € Z.

If p is a projective representation p : I' — U(n) with cocycle Aa,b) = e2™7@)  for ¢ €
Z3(T',Q) and |o(a,b)| < § for a,b € S, then w(a,b) = no(a,b) for all a,b € S, hence cl(EZ) =
ni*[o], where i* : H?(BT,Q) — H*(Y,Q) is the map induced by the inclusion i : Y — BI.

Proof. By the universal coeflicient theorem it suffices to show that

(e1(Ey), [e]) = ([w], [,
for all ¢ € Zo(Y,Z) C Z5(T,Z). Recall the isomorphism ¢ : Ho(T', Z)7Pf — Ho(T',Z) discussed
earlier. We can write [c] = o(r) for 7 € Hy(T',Z)"°P/. Then ¢(r) € H*(T,Z) = Ho(BT,Z). B
Corollary 3.4 we have

(11) pe(@ (p(r))) = ([w], (1)),
so that it suffices to show that
(12) ps(a" (o(r))) = (er(E) ), (1))

By definition ol = pf o ', By [8, Thm. 3.2], for any z € Ky(Y) and fixed projections qo, q1 in
matrices over £(T) with u1(2) = [qo] — [q1], for all S C T sufficiently large and all § sufficiently
small, then map p : £1(I') — C satisfies

(13) ps(pa(2)) = ([E)], 2).

p
where the right hand is given by the pairing K°(Y) x Ko(Y) — Z. We have a commutative
diagram with vertical maps the Chern characters

K(Y)x Ko(Y) ——— Z
ich ich J,
H®(Y,Q) x Hep(Y,Q) —— Q

It follows from (13)
pe(p1(2)) = (ch(E}), ch(2))
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If we set z = BY (¢(r)), then by (5)
(ch®@idg) (8" (¢(r)) = ¢(r)g € H2(Y,Q)

and hence

pe(at (9(r)) = pp(ua (B (0(r))) = (er(By ), (1)),

as desired. The left hand side is an integer and (ci(E,),[c]) is the image in Q of the integer
(c1(E,)z, [c)z) given by the pairing H(Y,Z) x Hy(Y,Z) — Z.

For the second part of the statement, note that if p is a projective representation with
cocycle A\(a,b) = e2mio(ab) for o € Z5(I',Q), then

1 ,
u&a,m:::§—fTYﬂog&9m“wa1n)::naﬁub)

Yy

0

Corollary 4.3. Let x € H?(TI',7Z) be represented by a 2-cocycle o € Z*(I',Z). For any finite
subcomplex Y of BT, there is ng € N such that if a unital map p : T' — U(k) satisfies the
equation

pla)p(b)p(ab) ™t = en @M1, VabeTl
for some n = ng, then

(By) = St () € HX(Y,0)

Proposition 4.4. Suppose that f : ' — A is a homomorphism of groups and that both BI' and
BA are finite CW-complexes. If p : A — U(k) is sufficiently multiplicative, then [f*(E,)] =
[Epof] in K°(BT) ® Q.

Proof. By the universal coefficient theorem it suffices to check that
<[f*(EP)]7Z> = <[Epof]7z>7 Vz GKO(BF)

Equivalently

([Ep], f+(2)) = ([Eposl; 2), Vz € Ko(BL),
where f, : Ko(BI') — Ky(BA) is the map on K-homology induced by f. Using (13) this is
equivalent to

(14) pi(pa(f+(2)) = (po f)y(2)

Since p; is a natural transformation, w1 (f«(2)) = f«(p1(2)) and hence

pi(pn(fe(2)) = py(fe (1 (2))) = (p o [)3(2).

For a more general version of Proposition 4.4 see Proposition 6.1

5. PROOF OF THE SECOND PART OF THEOREM 1.1

In this section prove the second part of Theorem 1.1, see Theorem 5.4. The proof is obtained
by putting together Propositions 5.1, 5.2 and 5.3, which we believe to be of independent interest,
with Theorem 4.2.
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Let A be a unital C*-algebra and let V' be a finitely generated (projective) right Hilbert
A-module. Let £(V) be the C*-algebra of adjointable A-linear operators acting on V. Let X
be a compact Hausdorff space and let & = (U;);er be a finite open cover of X. Let (x;)ier be
positive continuous functions with x; supported in U; and such that »_,_; x? =1. Set m = |I|
and let (e;;) be the canonical matrix unit of M,,(C) = L(C™). Let e; : C — C™ be the inclusion
on the ith—component and let e : C™ — C be its adjoint. Thus e} oe; = ¢;; and e; 0 e;f = 6; jidc.

The proof of the following proposition, which perturbs an approximate 1-cocycle to a true
cocycle, is based on an idea of Kubota from [37, Lemma 4.4]. A different but more involved
proof is due to Phillips and Stone [44], [45], see also [9] and [3].

We use the following two elementary perturbation properties. Let h be a self-adjoint element
in a unital C*-algebra D with ||h|| < 1 and ||h? — h|| < € < 2/9. By functional calculus, there
exists a self-adjoint projection p € D such that:

(15) lp — Rl < 3e/2

If p is a self-adjoint projection in D and w € D is a contraction with [|[w*w — 1|| < € and
|lww* — p|| < e < 1/15, then by functional calculus, there is a partial isometry u € D such that
(16) |lu —wl| < 12¢, and w'u =1, uu* = p.

Proposition 5.1. Suppose that vij : Uy N U; — U(V) is continuous, v;; = v;-‘i, vii = 1 and

(17) max  sup  [|vij(z)vje(z) — vii(z)| < & < 1/40m>.
i,jel IGUiﬁUjﬁUk

Then there exists a continuous I-cocycle u;; : Uy NU; — U(V), uij(x)ujp(x) = up(x) for all
z € U;NU; NUy, such that

HUZJ(.’E) — UZJ(LU)H < 66m25, VreU;N Uj.
Proof. Consider the selfadjoint contractive element

(18) h=Y" xix; ® vij @ ey5.
1,5€l
of the C*-algebra C'(X) ® L(V) ® M, (C). Then

R =nh=> | e ®xixwx] @ (vijvje — vik)
and hence ||h? — h|| < m2§ < 1/10. It follows from (15) that there is a self-adjoint projection
peC(X)®L(V)® My,(C) with
(19) lp — Rl < 3m?5/2.
For each i € I and z € U; define the isometry v;(z) : V — V @ C™ by
vi(r) = ZXr@) ® vpi(x) ® €.
Its range projection is denoted p; = v;vf € Cyp(U;) @ L(V) @ M, (C), and

(20) i = Z XrXs @ UriVis @ €ps.

7,8
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If we denote the restriction of h to U; by h as well, we obtain from (17) and (18) that
|h — pi|| < m?.

Consequently,

(21) lp = pill < llp = Rl + b = pil| < 3m*6/2 +m?s = 5m?6 /2.

Next perturb each v; to an isometry u; with range projection p|y, as follows. We denote the
restriction of p to U; by p as well. Let w; = pv;. Then

[vi — wil| = [|psvi — pui| < 5m?6/2
[wiw; — 1] = [Jvf (p — po)vil| < 5m>6/2
|wiw; = pl| = lpvivip — p| = [lp(pi — p)p|| < 5m?s/2.
Since 5m?6/2 < 1/15 by hypothesis, it follows from (16) that there is a isometry u; such that

5
lu; —wi|| < 12- §m25 = 30m?6,

and

(22) uiu; =1, wug = ply,.
Since

(23) viv; = Z X2 ® Vipr; @ 1

r

we obtain from (17) and (23)

(24) |lvij(z) — vi(z) v;(2)|| <9, VreUnUj.
Then
llw; — vsl| < |Jus — wil| + |Jw; — vi]| < 30m26 4+ 5m?5/2 = 65m>5/2
and hence
(25) i (2)*uj(z) — vi(2)*vj(z)|| < 65m?s, Va € U; NU;.

Let u;j : UsNU; = U(V) be defined by
uij(x) = ui(w) " u;(x)
From (24) and (25)
[wij(z) — vij(2)]] < 65m?5 + 6 < 66m?s, Vo€ U;NU;.

Moreover
uij(x)ujp() = uip(x), Vo e UnU;N Uy,

since

() () - uj (@) ug (@) = wi(e) p(e)up(r) = ui(x)” (wilz)ui(@)") up(e) = ui(z) ug(z).
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For G a topological group, a principal G-bundle is flat if it has a set of trivializations with
constant transition functions. Equivalently, the bundle has a reduction to the group Gy, the
underlying discrete group of G, [16].

Proposition 5.2. Let E be a locally trivial hermitian vector bundle of rank n on a paracompact
Hausdorff space X such that the associated projective bundle P(FE) is isomorphic to a flat PU(n)-
bundle. Then the Chern classes of E are cix(E) = n—lk(Z)cl(E)k and the Chern character is

ch(FE) = nen<(B),

We thank Rufus Willet for alerting us that, in the case where X is a manifold, this corre-
sponds to [35, Proposition 2.3.1].

Proof. Consider the commutative diagram:
l1——Z/n —— SU(n) —— PSU(n) —— 1

(26) j jj

H
1——U®1) —% U(m) —=— PU(n) —— 1

and the corresponding fibration of classifying spaces
BZ/n —— BSU(n) —%s BPU(n)

Since the rational cohomology of Z/n vanishes in positive degrees, the Es-page of the Serre
spectral sequence of this fibration is concentrated on the ¢ = 0 row. It follows that the edge
homomorphism

(moj)*: H'(BPU(n);Q) — H*(BSU(n); Q)
is an isomorphism of groups. Consider the commutative diagram
H*(X;Q) +%— H*(BU(n); Q) +"— H*(BPU(n); Q)
(27) lj*
H*(BSU(n); Q)

(a3

Recall that by [50], the map
j*: H*(BU(n); Q) — H*(BSU(n); Q)
is the canonical projection of graded algebras
Qler, ea,¢3, ..y en] = Qlea, e, ..., Cp

which maps ¢; to 0 and ¢ to ¢ if k > 1. Here ¢ are the universal Chern classes, deg(ci) = 2k.

It follows from the diagram (27) that for any x € H?*(BU (n); Q) there are y € H?*(BPU (n); Q)
and e € ker(j*) N H?*(BU(n); Q) = c; H**~2(BU(n); Q) such that 2 = 7*(y) + e. By induction
on k we can thus see that

z=1"(y1) + e (y2) + -+ eF T (ko) + Ak,
for some A € Q. In particular

(28) ck =7 (y1) + e (y2) + - + clfflﬁ*(yk_l) + )\kc]f,



18 MARIUS DADARLAT AND FORREST GLEBE

for a unique constant A\ € Q. Since the map 7 o d is constant, it follows that d* o #* = 0 in all
degrees other than zero. Thus from equation (28) we deduce that

(29) d*(c) = Mpd*(c1)".

Since ¢ is the kth Chern class of the tautological vector bundle W over BU(n), and
H*(BU(1);Q)) = Q[c1] where ¢; is the first Chern class of the tautological line bundle, one sees
that d*(W) is the n-fold direct sum of the tautological line bundle over BU(1). By the Whitney
sum formula for the total Chern class, it follows that

d*(cx) = (Z) ¢ and in particular d*(¢;) = ney.

In conjunction with equation (29) we deduce that A\ = nik (3)-

If f: X — BU(n) is the classifying map of E' we have a diagram
H*(X;Q) «I— H*(BU(n); Q) «™ H*(BPU(n);Q)

If G is a compact Lie group, then by [16, p.145] the canonical inclusion G4 — G induces the
zero map HY(BG;Q) — HY(BGy4;Q), g > 0. The assumption that P(FE) is flat means that the
associated principal PU(n)-bundle is flat. It follows that the classifying map of P(F), namely
mo f: X — BPU(n) factors up to homotopy through the map BPU(n)q — BPU(n) and hence
f*om* =0 in all dimensions k£ > 0. Thus from equation (28) we deduce that

(30) F(er) = e f*(e).
Consequently,
(31) n(E) = Aper (E)F = % <Z> c1(E)*.

The formula for the Chern character is proved via the splitting principle. By this principle, there
exists a space Y and a map p : Y — X such that p* : H*(X,Q) — H*(Y,Q) is injective, and
the pullback bundle splits as p*E =2 L1 ®- - - @ Ly, where L; are line bundles on Y. We will show
that p* ch(F) = p* (ne%‘jl(E)) and this will imply the equality ch(E) = nenci(B) by injectivity of
P

Let 2, = c1(L;) and set z = L(zy + -+ + xz,) € H*(Y,Q). The total Chern class is
c¢(p*E) = (14x1) - - - (14xy,), and hence ¢; (p*(E)) = x1+- - -+, and more generally cx(p*(E)) =
erx(z1,...,oy), where is the k-th elementary symmetric polynomial. On the other hand by (31)

o'E) =al®) = 5 (1) 0 = () (“n”)k - (1)

This shows that ex(x1,...,2,) = ex(y1,-..,Yn), where y; = --- = y,, = z. Since €™ 4 --- + e
is a symmetric function, it follows that

we have

p*ch(E) =ch(p"E) =e" +---+e™ =e + ...+ e = ne”
We conclude the proof by observing that

1 1 * 1
p*(neﬁcl(E)) _ ne;cl(p E) _ ne%(xl.;_n._i_g;n) — ne®.
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0

Let B be a C*-algebra. Let X be a compact metric space, and let (U;);c; be a finite open
cover of X. Let a = (ay;) and S = (f;;) be two 1-cocycles
Qij, ﬁij :U; N Uj — Aut(B).

Let A, and Ag be the C'(X)-C*-algebras of continuous sections in the locally trivial C*-bundles
with fiber B associated to o and (3. Define

dist(c, 8) :=max sup |ai;(z) — Bi;(@)||
t,yel xGUiﬂU]'

Proposition 5.3. Let B be a separable and nuclear C*-algebra. If dist(c, B) < 107, then A,
is isomorphic to Ag as C(X)-C*-algebras. Thus, the Aut(B)-principal bundles constructed from
the cocycles (ayj) and (Bij) are isomorphic.

Proof. Let B act faithfully on a separable Hilbert H space such that BH is dense in H, and let
N be the von Neumann algebra N = B” C B(H). Let Y be a countable set dense in X and set
Y; = U; NY. Consider the von Neumann algebra

M= ey, N) =P M c B(K)

i€l icl
acting on the separable Hilbert space K = @,; 2(Y;) ® H. Let D be the C*-algebra

D =@ Cy(Ui, B) = P D

icl i€l
and let j : D — M be the canonical embedding map induced componentwise by restriction of
functions and the inclusion B C N. We view both D and M as C(X)-C*-algebras. If f € C(X),
d € D and m € M then, (fd); = f|ly,d; and (fm); = fly;m;. Then j is a C(X)-linear map.
Let (x:)ier be a partition of unity subordinated to the cover (U;);e;. Define a map @, :

D — D, where for d = (d;) € D, the components of ®,(d) are given by

Co(d)i(w) = Y xj(w)ayj(x)(dj(x)),
jel
for all x € U;. One verifies immediately that ®, is a contractive completely positive linear map.

Moreover, if 8 = (B;;) is another 1-cocycle, then

@0 — Pp|| < dist(er, ) :=max sup ||aij(x) — Bij(x)|]
i,jel zelU;NU;

Let A, and Ag be the C(X)-C*-subalgebras of D defined by
Aa = {(di)icr : di(x) = aij(z)(d;(x)), Vo € Us NUj},
Ag = {(di)ier : di(z) = B;(x)(dj(z)), Vo € U;NUj}.
Let us note ®,(d) = d for all d € A,. Indeed if d € A,, and z € U;, then

Oo(d)i(x) =Y xj(@)aij(x)(dj () = D xj(x)di(x) = di(x).

jel jel
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By the same argument, the elements of Ag are fixed by ®3. In particular both C*-algebras A,
and Ag are nuclear since D is nuclear and the maps ®, and ®3 are contractive and completely
positive. Let a € A and b € B with ||al|, ||b]| < 1. Then

la = @g(a)]| = [[®ala) = @(a)]| < dist(a, B),  [[Pa(b) — bl < dist(e, 5).

Thus the Hausdorff distance between the unit balls of A, and Ag is at most dist(a, ). If
dist(e, 8) < 6 := 1071, then by Theorem B from [5], there is a unitary u € j(A4, U Ag)” C
M" = M such that uj(Aq)u* = j(Ag). In other words, there is a *-isomorphism 6 : A, — Ag
and a commutative diagram:

AQ%M

% lAdu

Ag $> M
Since the *-homomorphisms j and Ad, are C'(X)-linear and j is an injective map, it follows
that 6 is C(X)-linear. O

Theorem 5.4. Let I' be a countable discrete group and let Y C BI' be a finite subcomplez.
There are a finite set S C T' and § > 0 such that for any projective representation p : T' — U(n),
p(a)p(b)p(ab)™t = X(a,b)1,, with X(a,b) € T for all a,b € T, such that |\(a,b) — 1| < 6, for all
a,b €S, we have
1 /n 1
Yy k Yy = [w even
c(E,) = nk<k> [w]® and ch(E,)= nen“l e He*"(Y,R),

where w € Z2(T,R)y is a local 2-cocycle defined by w(a,b) := 5=Tr(log(\(a,b))).

— 2mi

Proof. For all i,j € I, choose unitaries v;; which are small perturbations of p(s;;) and such that
Vi = vﬁl. Let u;; be the cocycle provided by Proposition 5.1. This is the cocycle corresponding
to E;/. Let 7 : U(n) — PU(n) be the canonical map. Then the cocycle m(u;;) is a small
perturbation of the constant cocycle 7(p(s;;)). It follows from Proposition 5.3 that P(Eg/) is
isomorphic to the flat PU (n)-bundle constructed from the cocycle m(p(si;)), and hence ¢ (E) ) =

L (Da (E})/)k and ch(E)) =n enct®) ¢ He*"(Y,R), by Proposition 5.2. As already shown in

nk

Theorem 4.2, cl(E;/) = [w]. O

Corollary 5.5. If p: I' — U(n) is a projective representation with cocycle \(a,b) = e*7o(@:b)

for o € Z%(T,Q) and |o(a,b)| < § for a,b € S, then w(a,b) = no(a,b) for all a,b € S, so that
cl(E},/) = ni*[o] and ch(E;/) = ne’ 7 where i* - H*(BT, Q) — H*(Y,Q) is the map induced by
the inclusion i : Y — BI.

6. CLASSIFYING ALMOST REPRESENTATIONS UP TO STABLE EQUIVALENCE

Let B be a unital C*-algebra and let X be a locally compact and o-compact space Hausdorff
space. We shall make use of various K-theory groups and follow the notation of Kasparov [31].
The representable K-theory of X with coefficients in B is the group

RK’(X;B) := RKK’(X;C,B) = RKK’(X;Cy(X),Co(X) ® B).
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If X is compact, then RK’(X;B) = K/(X;B) 2 KK(C,C(X) ® B) & K;(C(X) ® B). The
K-homology groups of compact spaces, K;(X) = KK (C(X),C), are extended to non-compact
spaces X by defining

RE(X) = lim I (1),
where Y runs through the compact subspaces of X.

Let K be the C*-algebra of compact operators on an infinite dimensional separable Hilbert
space. Let eg € K be a rank-one self-adjoint projection. We denote by Pr(B @ K) the space of
all self-adjoint projections in B ® K and by Pro(B ® K) its connected component that contains
1p®ep. Recall that Pro(B®K) is a model for BU(B), the classifying space of the unitary group
U(B), see the proof of [15, Cor.2.9]. Let us note that any continuous map e : X — Pr(B®
K) = Pr(K(Hg)) gives rise to a Co(X)-linear *-homomorphism ¢ : Co(X) — K(Heyx)B);
©(f) = f - e, and hence it defines an element of RK K°(X; Co(X),Co(X) ® B) = RK°(X; B).

For a countable discrete group I', one can a choose a model for the classifying space BI'
which is locally compact and o-compact, and in fact a separable locally finite CW complex,
see [31, p.192]. Throughout this section we will considered a fixed representation of BI' as a
countable increasing union of finite CW complexes, Y1 C Yo C.--CY; C ---

(32) BT = Jv.

The principal I-bundle ET' — BT induces a canonical element of RKY(BT, C*(T)), which
we now describe. Mishchenko’s flat line bundle Ly is the canonical bundle ET' xp C*(I') — BT’
induced by the diagonal action of I'. Its fibers are isomorphic to the C*(T')-Hilbert module
C*(T). If+ : T' — U(C*(T)) is the canonical inclusion, then Lr is classified by the map Bu :
BI' — BU(C*(I")). One can describe the classifying map e of Lr as follows. By [30, p.57],
there is a locally finite countable open cover (U, )qcr of BT and positive continuous functions
(Xa)aer such that (x2).es is a partition of unity subordinated to the cover and such that the
covering space ET' — BT is trivial on each open set U,. We denote by sqp : U, N U, — T the
corresponding locally constant cocycle. Then Lr is classified by the map

(33) €= Sab® XaXb @ €ab,
a,bel
where (eq) are matrix units for M, (C) C K. Note that
e: BI' = Pr(ClI'| ® My (C)) N Pro(C*(I') @ K).
We denote by ey the restriction of e to a compact subspace of BI' and by e; the restriction
of e to Y;. Note that

e; = Z Sab @ XaXb D €ab
a,bel(i)
for some finite subset I(i) of I. We view e; as an element of Pr(C[[] ® C(Y;) ® M[(;)(C)).
Consider an asymptotic homomorphism consisting of a sequence of unital maps ¢, : A —
U(ky). This induces a unital x-homomorphism

(34) p:C*(A) = B =[] Mz, (C)/ P My, (C).
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Let £, denote the bundle on BA classified by the map BA Be, BU(B) =Pro(B®K). If

f: T — Aisagroup homomorphism, and Bf : BI' — BA, then by basic properties of classifying
spaces,

(35) (Bf)*(£y) =2 lyoy-

For each compact subspace Z of BA, by functional calculus we lift the restriction of By to Z to
amap p: Z — Pro(([],, Mk,) ® K). If we denote the components of p by (p,) it follows from
the definition of EZ that there is k£ such that the bundle Egn is given by the projection p,, for
all n > k. Using equatlon (35), and the functoriality of the functional calculus, it follows that
for any compact subset of BI', there is k € N such that

[Eznof] = [f*(Ej,f,SY)] e K°%Y), foralln> k.
We restate this property in the following equivalent form.

Proposition 6.1. Suppose that f : I' — A is a group homomorphism, and Y C BI' is a
finite sub-complex. Then there exist a finite subset S C A and € > 0 such that for any (S,9)-
representation p : A — U(n), [E;;f] [f* (E[J:(Y))] in KO(Y).

The element of RK(BT;C*(I')) corresponding to e is denoted by er. Kasparov uses the
product
RK(BT;C*(I')) x KK’(C*(I"), B) -+ RK’(BT; B)
to define the co-assembly map
v: KK’/(C*(T'), B) — RK’(BT; B)
as the cap product with ep. If Y C BI" is compact, we denote by vy the composite map
(36) vy : KKI(C*(T'),B) —— RK’(BT;B) —— RKJ(Y;B)

For each compact subspace Y C BT, there is a map py : K;(Y) — K;(C*(I')) defined as the
cap product with [ey] € K°(Y;C*(T")), the restriction of er to Y. The corresponding inductive
limit homomorphism is the (full) assembly map

i K (BT) = K;(C(T).
The associativity of the Kasparov product, shows that v and u are linked by a duality relation:
(37) vy (2) ®@c(yy 2 = T Qc=ry u(2), = € K;(CH(T)), 2z € K;(Y),

(see [31, Lemma 6.2]). In the sequel we shall use the notation v; = vy, and u; = py;.

Lemma 6.2. The following diagram is commutative

KKI(C*(), B) —— Hom(K.(C*(T)), K.(B))
(38) RKY(BT; B) —% s Hom(K,(BT), K.(B))

| :

lim K9 (¥;; B) —— lim Hom(K. (), K. (B))

‘:
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The maps g,¢g',q" are induced by the natural pairings. The maps 3, are induced by inclusions
Y; € BI'. The Hom—groups are graded according to the parity of j.

Proof. The bottom diagram is commutative by naturality of pairings in topological setting, thus
g" o8 =aog. By equation (37), g’ o fov =aou* og. It follows that
aog ov=aop og.
Since the map « is bijective as it becomes apparent once we describe it as
Hom(K,(BT'), K.(B)) = Hom(ng (Y; ) — LHom ), K«(B))
we deduce that ¢’ ov = p* og. O

Proposition 6.3. Suppose that C*(T") satisfies the UCT. For example I' is a countable amenable
group. Then there is a commutative diagram with exact rows.
(39)

Ext(K,(C*(T), K«(B)) NN KKJ(C*(T), B) I Hom(K,(C*(T)), K«(B))

/’l‘:xt ly /"

Ext(K,(BT), K.(B)) ) RKJ(BT; B) —Y s Hom(K,(BT), K.(B))

Qext lﬁ o

. f//
lim Ext(K. (Y;), K. (B)) =L lim K9(¥;; B) —— lim Hom(K.(Y;), K.(B))
The Hom—groups and the Ext—groups are graded in accord to the parity of j.

Proof. The maps ¢,¢’,¢” are induced by the natural pairings. The maps aey, 3, @ are induced
by inclusions Y; C BI'. The first row is the UCT of [46] which holds for amenable groups by [25]
and [51]. The second row is exact as it represents the universal coefficient theorem expressed
by Lemma 3.4 of [33]. The exactness of the third row follows from the same lemma and the
property that if G is the injective limit of a system (G;) of finitely generated groups, then
@11 Ext(G;, H) = 0 by [47, Thm. 6.2]. The bottom diagram is commutative by the naturality
of the universal coefficient theorem expressed by Lemma 3.4 of [33]. We have seen in Lemma 6.2
that the map « is injective and that

(40) gov=p'og.
It remains to show that
[lowim=vol.
For this we will need to use the naturality of (40) while revisiting the proofs of the two universal

coefficient theorems represented by the top two rows.
Consider a geometric injective resolution of B as in [46].

0 A-r.D s SB 0

The associated K-theory sequences give injective resolutions for K;(B) :

0 —— K;j41(SB) —— K;(A) — K;(D) — 0
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Consider the commutative diagrams that appear in the proof of the UCTs:
Hom(K, (C*(T)), K+ (A)) —2 Hom(K,(C*(T)), K.(D)) — KKi+1(C*(T), B)

ga= gp = =
KKi(C*(I),A) — " KKI(C*(T),D) —— KKi*+1(C*(T'), B)
va VD VB
RKJ(BT, A) he » RKJ(BT',D) ———— RKJ*Y(BI, B)
9= 9p = B

Hom(K,(BT), K.(A)) —"— Hom(K.(BT), K.(D)) — Hom(K.(BT), K.(B))

By (40), p% 0 ga = gy ova and uj, 0 gp = g o vp. It follows that
coker (hy : Hom(K,.(C*(T")), K«(A)) = Hom (K, (C*(I")), K«(D))) = Ext(K.(C*(T"), K«(B)))
identifies with
coker (hy : Hom(K,(BT), K.(A)) — Hom(K,(BT'), K.(D))) = Ext(K.(BT'), K.(B)))
via a map which is exactly ;. g
Following Kasparov [32], we use the notation LK*(BI'; B) = lim K*(Y; B).

Proposition 6.4. Let I" be a countable torsion-free group which admits a y-element equal to
1 and such that C*(I') satisfies the UCT. For example I' is a countable torsion-free amenable
group. Then there is an exact sequence

0 — Pext(K.(C*(1)), K.(B)) —L— KK*(C*(T), B) 2% LK*(BT;B) — 0 .
Proof. Under the assumption vy = 1, it is known that both maps v and p are isomorphisms [31],
[51]. Since the diagram (39) is commutative and the map « is injective, an easy diagram chase (or
the nine lemma) shows that f maps isomorphically the kernel of aeyrop?,, onto the kernel of Sov.
Thus we need to show that the kernel of aey 0 pif,; is the subgroup Pext(K,(C*(I")), K«(B)) of
Ext(K,.(C*(T")), K.(B)). If G is the injective limit of a system (G;) of finitely generated groups,
then by [47, Prop. 5.6]:

0 — Pext(G,H) — Ext(G,H) — @Ex‘c(Gi, H)—0

Thus the kernel of the map apy¢ in diagram (39) is Pext(K.(BT'), K.(D)). By commutativity
of the diagram (39) and naturality of the Pext-functor, Pext(K,(BTI'), K.(D)) coincide with the
image Pext(K,.(C*(T")), K«(D)) of under p,,. If I' is amenable and torsion free, then v = 1 and
C*(I") satisfies the UCT by [25], [51]. This concludes the proof. O

As explained in the prof of Lemma 3.4 from [33], there a Milnor lim!-exact sequence
0—— 1&11 K'=Y(Y;; B) —— RK’(BT; B) —— @KJ(K;B) — 0.

Notation 6.5. Fix a classifying map e for Lt as in equation (33). If Y C BT is compact, S C I’
finite and § > 0, we say that (Y, S,0) is a K-triple for I" if for any unital (.S, §)-representation
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p: T = U(k),

(41) h = Z p(sab) @ XaXb & €ab;

a,bel
satisfies ||h(z)? — h(z)|| < 2/9 for all z € Y. We denote by ez/ € C(Y) ® My (C) the projection
obtained from h|y via functional calculus. The corresponding vector bundle is denoted by EZ,/.
It easy to see that for each compact Y, there are S and ¢ such (Y, S,0) is a K-triple.

Recall that we fixed a decomposition BI' = |, Y, see (32). Consider a sequence of pairs
(Sn,6n) such that I' = J,, S, and d,, \, 0. Consider an asymptotic homomorphism consisting
of a sequence of unital maps p,, : I' = U(k,) which are (S,,, d,)-representations. This induces a
unital x-homomorphism

(42) p: C*(T) = B = [ [ My, (C)/ D My, (C).

Since the subspaces Y; are compact, after passing to a subsequence we may arrange that
for each n, (Y,,, Sy, d,) is a K-triple for T'. Thus if e, := e|y,, then h, = (p, ® id)(e,,) satisfies
|h2 — hy,|| < 2/9. We denote the vector bundle on Y, associated to p, and implicitly to p,
by E,,. For i < n, observe that h,; = (id ® py)(e;) satisfies ||h72” — hnill < 2/9, Vi< n,
since hy; = hyly,. Let p, € My, ® C(Y,) ® K and p,; € My, ® C(Y;) ® K be the projections
pn = X(hyn) and p,; = Xx(hn;) obtained by functional calculus, where x is the characteristic
function of (0.5,1.5). Then ||k, — pp| < 1/3 and ||, — pn.il| < 1/3. Let us note that

(43) Puly; = pn; foralli <n,

by functoriality of the functional calculus. If we have another asymptotic homomorphism {p/, :
I' = U(kn)}n with pl, a (Sp,d,)-representation with the same properties as above, then, we
construct hy, ; and pj, ; similarly. In particular if follows from (43) that if

(44) [pn] = [pn] € Ko(C(Y2))
then
(45) [pni] = [y € Ko(C(Y;)), for all i < n.

Lemma 6.6. If A is a separable and nuclear C*-algebras satisfying the UCT, then the following
natural map s injective.

| [, M, (©)\ L K.(4)
R <A® D, Mm(@) 7@, K.(A)

Proof. Let B =], My, (C)/ @,, Mk, (C). Then K;(B) =0 and K¢(B) is torsion free since

Ky (H M, (C)) = {(zn)n € HZ : (xn/kn)n} is a bounded sequence}.

Using the Kiinneth formula and the property that Ko(B) is a pure subgroup of [[,, Z/€p,, Z, for
7 =0,1, one shows that the map
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is injective. For the injectivity of the map on the right, we use the property that if G is an
abelian groups, then the natural map

z:G@HZ%HG

is injective. Indeed, any x € G®[],, Z is in the image of G, ® [[,, Z, for some finitely generated
subgroup G, of GG, and we have a commutative diagram

G 1,2 — 11,,G»

| |

¢ell,z —11,G

It is routine to verify that the top map is injective, as G, is a finite sum of cyclic groups. This is
also implied by the easy direction of [19, Thm. 8.14]. The map on the right is clearly injective.
It follows that the composition of the map on the left and 2 is injective as well. Thus if z #£ 0,
then 2(x) # 0. O

Lemma 6.7. Consider two asymptotic homomorphisms {pp,pl, : T — My, (C)},, which have
the same approzimate multiplicativity properties as above. Thus for each n, py, pl, are (Sp,0p)-
representations and (Y, Sn, 0n) is a K-triple for T'. Suppose that [p,] = [p,] € Ko(C(Yy,)) for all
n € N. Then with p,p' : C*(I') — B defined as in (42) we have

(52 id)(e)] = [(#/ @ id)(e)] € Ko(B® C(Y)), for alli € N.
Proof. The map 6 in the diagram below is injective by Lemma 6.6.

* : LKL (O
(46) Ko(CH(T) © O(Y)) —L Ko(B o O(1)) —s Ltl00)

Therefore it suffices to show that §[(p®id)(e;)] = 0[(p' ®id)(e;)]. By construction, the projection
(p ®id)(e;) lifts to the element (p ® id)(e;) = (hni)nzi € (15 Mk, (C)) ® C(Y;) ® K and
therefore to the projection (pn i)n>i. Thus 8[(p®id)(e;)] is represented by the sequence ([pn,i])n>i-
Similarly, 0[(p’ @ id)(e;)] is represented by the sequence ([p;, ;])n>i- By assumption, [p,] = [p;,] €
Ko(C(Yy)) for all n and hence [pyi] = [p}, ;] € Ko(C(Y3)), for all n > i, by (45). O

Let F C T be a finite set and let € > 0. For two maps ¢, : I' — U(B), we write

¢E€¢

if there is a unitary u € U(B) such that ||up(s)u* —¢(s)| < e, Vs € F. We shall use a similar
notation to indicate approximate unitary equivalence for maps between C*-algebras.

Theorem 6.8. Let I' be a torsion-free residually finite countable amenable group. For any
finite set F' C ' and any € > 0, there exist a compact subspace Y C BI', a finite set S C " and
d > 0 with (Y, S,8) a K-triple, such that for any two (S, §)-representations p,p’ : T — U(k) with
[E;ﬂ = [E};] in KO(Y), there is a representation © : I' — U(m) and a unitary u € U(k + m)
such that

(47) lu(p(s) ® w(s))u* —p'(s) ®m(s)]| <e, VsePF.
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Proof. We prove this by contradiction. Suppose that there are F' and ¢ for which no S, and Y
satisfy the conclusion of the Theorem. Write BI' = | J, Y}, as in (32). Choose a sequence of pairs
(Sn,6n) such that I' = |J,, Sp, and 6, \, 0 so that each (Y, Sp,6,) a K-triple. Then the vector
bundle E,, as in Notation 6.5 is well defined for any (S, d,)-representation. By assumption,

there are two sequences of (S, d,)-representation py, p), : I' — U(ky), such that [EZ,:TLL] = [EB;"]
in K°(Y,,) and yet
(48) P © Ty % P, & Ty

Fe

for any finite dimensional representation 7.

Let B =[], My, (C)/ D,, My, (C) and let p,p' : T' — U(B) be the x-homomorphisms
induced by the sequences (p,) and (p},). By Lemma 6.7, the condition [Ez,:?] = [E;;’;], for
all n > 1, implies that [p] — [¢/] belongs to the kernel of the map KK*(C*(T'), K.(B)) —
Jim K (Yy; B) and hence [] — [0'] € Pext(K,.(C*(T")), K.(D)) by Proposition 6.4. Since C*(I")
satisfies the UCT, Pext(K,(C*(T')), K«(D)) = {0} by [7, Thm. 4.1]. Since T is residually finite
and amenable, C*(I") is residually finite dimensional. The stable uniqueness result from [7,
Cor. 3.8] implies that for any finite set ' C I" and any £ > 0, there is a finite dimensional
representation 7 : C*(I') — M,,(C) C M,,(Clp) such that

. ~ o
p@wﬁ;p ©® .

This property contradicts (48) for all sufficiently large n. O

Theorem 6.9. Let I' be a torsion-free residually finite countable amenable group. For any
(zn)n € @I?O(Yn) — LK (BT), there exists an asymptotic representation {pn : T — U(kp)}n
such that [Eg:?] — [kn] = 2zn for all m = 1. Moreover, by Theorem 6.8, {pn}n is unique up to
stable approzimate unitary equivalence. Thus, if {p], : T — U(kyn)}n is another lifting of (zn)n,
then there exist a sequence of representations {m, : I' = U(ly)}n and unitaries u, € U(k, + ¢y)
such that

nl;rl;o [ pn(s) ® mp(s) — un (p(s) ® mn(s)) up|| =0, VseT.

Proof. The existence part is proved implicitly in [9]. For the sake of completeness, we review
the argument here. Since I' is amenable and torsion free, the map K K (C*(I'),C) — lim K°(Y,)
is surjective by Proposition 6.4. Therefore there is « € KK(C*(T'),C) such that v,(a) = 2z,
for all n > 1. Represent « as the class of a Cuntz pair a = [p,¢], ¢,¢ : C*(I') - B(H),
vla) — YP(a) € K(H), a € C*(I'). By [48] we can choose 9 to be a fixed faithful essential
representation of C*(T'). Since I' is amenable and residually finite, there is such a v which is
direct sum of finite dimensional representations. Let (p,) be an increasing approximate unit
of KK(H) consisting of projections which commutes with ¢. Then ¢,(a) = ppe(a)p, is an
asymptotic homomorphism and each 1, (a) = pp¥(a)p, is a finite dimensional representation.
After passing to subsequences, Proposition 2.5 of [9] implies that there is ng € N such that for
alln >ng:
zn = vp(a) = [EZZ] - [E};z]
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Since all rational Chern classes of a flat complex bundle do vanish, [16], for each n there is an
integer r, > 1 such that the bundle (EBZZ)@”” is trivial. We conclude the proof by choosing
Pn = @n@wi‘?(rn_l)- O
Remark 6.10. As noted in the introduction, Theorems 6.8 and 6.9 extend to torsion-free
amenable groups that are not necessarily residually finite, at the cost of replacing the represen-
tations 7, with asymptotic representations. The proofs are very similar. For the existence part,
one chooses ¥ = Ar to be the left regular representation of I'. By the Tikuisis—White—Winter
theorem [49], Ar is a quasidiagonal representation, and hence we can choose (p,) to be an in-
creasing approximate unit of JC(H) consisting of projections that commute asymptotically with
both ¢ and . For the uniqueness part, one uses the stable uniqueness theorem from [13], with
Ar playing the role of the absorbing representation. We do not state these more general results
explicitly here, as we find them less elegant.

Corollary 6.11. Let I' be a residually finite countable amenable group such that BT is compact
and let z € I?O(BF). For any finite set S C T' and any 6 > 0 there is an (S, d)-representation
p: ' = U(n) such that [E,] — [n| = z. In particular for any x € He*"(BL,Q) there is an
(S,0)-representation p : T' — U(n) such that c~h(Ep) = qx for some q € Q.

7. APPROXIMATION BY PROJECTIVE REPRESENTATIONS

In this section we prove Theorem 1.5.

Proposition 7.1. Let I' be a virtually polycyclic group and let Y < BT be a compact sub-
space. For any v € H?*(BT,Z) there is an asymptotic representation consisting of projective
representations (¢, : I' — U(my))n such that Cl(E?zfn) = "™i*(z) € H*(Y,Q), and hence

ch(Ey,) = mne%i*(x) € H(Y,Q), for all sufficiently large n € N.
Proof. We are using a method from [21]. Let = be represented by a 2-cocycle o € Z2(T',Z) and
construct the corresponding central extension

0 y 7 —— T, r 1,

so that for a set-theoretic splitting v : I' — I'y, v(a)y(b)y(ab)~ = i(o(a,b)), for all a,b € T.
For each n > 1, the cyclic subgroup (¢(1)") generated by the central element ¢(1)"™ is a normal
subgroup. Clearly, I';/(¢(1)™) is virtually polycyclic and thus residually finite by [26]. It follows
that there is a finite quotient G,, of I', where the image of ¢(1) generates a central subgroup
isomorphic to Z/n. Let A, be the representation of G,, induced by the character of Z/n that
maps the generator to 2™/™. The restriction of A, to Z/n is a multiple of that character, with
multiplicity m,, = [G,, : Z/n]. The composition

T — 15 T, Gn —22 U(my),

2me

is a projective representation of I' that satisfies 1, (@)1 (b)1by (ab) ™1 = en {(@O) 1 Tt follows
by Theorem 1.1 that ¢1(Ey,) = 222 € H*(BI,Q). Note that ||o||p = sup, ycr |o(a,b)| then
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for sufficiently large n:
4
sup {|9n(a)yn(0) = Yn(ab)ll < —=llolp- O

a,beF

When we will use this proposition in the sequel, we will write m}, for m,,, to indicate that
the sequence is associated to x. Now that a sequence (mi) was found, it is clear that the
conclusion of the statement remains true if we replace each (m?) by a sequence (my,) where each

my, is a multiple of m:..

Lemma 7.2. Let Y be a finite CW complez.

(1) ﬁe”en(Y; Q) is spanned by nonnegative linear combinations of elements of the form e*—1
with x € H*(Y; Q) if and only if for any y € Heven(Y: Q) there are finitely many elements
z; € H3(Y,Z) and natural numbers k; such that ry = Y, ki(e® — 1) for some integer
r>1.

(2) ﬁe”‘""(Y; Q) is spanned by linear combinations of elements of the form e* — 1 with x €
H2(Y;Q) if and only if for any y € ﬁe”e”(Y; Q) there are finitely many elements x; €
H2(Y,Z) and integers k; such that ry =, ki(e® — 1) for some integer r.

(3) Observe that if y € H*(Y;Z), k > 1 and ry = >, ki(e*" — 1) as in (1) above, then
rmFy =", ki(e™®i — 1) for any m € Q.

Proof. (3) For x € H®**(Y;Q) we will let []2), denote the component of z that is in H2*(Y; Q).
Then for j # k,

rmFlyla; = 0= rmyly; = kile™ ]y,

and one can easily see that rm¥[ylor, = >, k;[€™%i]ax. Thus, the desired equality holds for all j.
(1) We will only show the “only if” direction since the “if” direction is obvious. It is
sufficient to show this for y € H**(Y;Q) for some k > 0. By assumption y = Y, ri(eXi — 1)
with r;,x; € Q. Let d be the least common multiple of the denominators of the y; terms, and
observe that by (3), d*y = > r;i(eXi? —1). Multiplying both sides by the least common multiple
of the denominators of the k; terms, we get the desired result.
The proof of (2) is identical to that of (1). O

It is known that every polycyclic group is a virtually poly-Z group. An exact sequence of
discrete groups 1| — N — G — Q — 1 gives a locally trivial fiber bundle of classifying
spaces: BN — BG — BQ. From this we see that if I' is a poly-Z group, then BI' can be
realized as a finite CW-complex.

Notation 7.3. If p: T' — U(n) is a function and r € N, we write rp := p®".
The following implies Theorem 1.5 from the introduction.

Theorem 7.4. Let I' be a virtually polycyclic group with BT a finite CW complex. Consider
the following properties:

(1) For every e > 0 and finite subset F' C T, there exist a finite subset S C T and 6 > 0 so
that for any (S,0)-representation p, there are an integer r > 0, representations m and
mo, a unitary u, and a projective representation 1, so that

llu(rp(s) ® w1 (s))u™ —P(s) ®me|| <e, VseF.
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(2) For every ¢ > 0 and finite subset F C T, there exist a finite subset S C T' and a
0 > 0 so that for any (S, d)-representation p, there are an integer r > 0, a unitary u, a
representation 7, and a finite family of projective representations (v;), so that

<e VsePF.

u(rp(s) & m(s))u’ — EB bi(s)

(8) For every e > 0 and finite subset F' C ', there exist a finite subset S CT' and a 6 > 0 so
that for any (S,0)-representation p, there are an integer r > 0, a unitary u, and finite
families of projective representations (¢;) and () so that

u <rp(s) & @%(@) ut — EBW(S)
i k

Then condition (1) is true if and only if H**T;Q) = H2(I; Q). Condition (2) is true if
and only if fIEUC”(F; Q) is spanned by nonnegative linear combinations of elements of the form
e — 1 with x € H2(T; Q). Condition (3) is true if and only if H®*(T'; Q) is spanned by linear
combinations of elements of the form e* with x € H?(I"; Q).

<e VsePF.

Proof. Suppose that condition (1) holds. Let z € H?*(BT,Q) for some k > 1. By Corollary 6.11,
see also [9], there is an asymptotic representation (py, ), such that &(Epn) = gnz, for some ¢, € Q,
for all n € N. By assumption, there are positive integers (r,), representations (m,)") and (r})
and projective representations (1)2) so that

1700 () ® T () = Yn(s) ®ma]] — 0, Vs €T

Note that (¢,,) is necessarily an asymptotic representation. It follows that for all sufficiently
large n, r,[Ep,] + [Eq] = [Ey,] + [Ex2]. Since E i is a flat vector bundles, we obtain that
rn&l(Epn) = c~h(E¢n) and in particular ¢y (Ey,) = ci1(£,,) = 0. Since (1,) are projective
representations with ¢i(Fy,) = 0, it follows from Theorem 1.1 that c~h(E¢n) = 0. Therefore
Tn&I(Epn) = rpqz = 0 and hence z = 0.

Conversely, assume now that ﬁe"en(l“;@) = H%*(;Q). Then for F C T finite and ¢ > 0,
pick the S C T finite and 6 > 0 according to Corollary 1.4. Suppose that p is an (S,J)-
representation and set z := ¢1(E,)z € H*(BT,Z). By Proposition 7.1, there is an asymptotic
representation consisting of projective representations (¢, : I' = U(my,)), such that ci(Ey, ) =
Tng € H*(BT,Q), for all sufficiently large n € N. It follows that ch(mn|E,) —n[Ey,]) = 0. Since
the Chern character is a rational isomorphism, it follows that [E,, ] = pn[E)] = qn[Ey, | +kn[1] =
[Eq ) + kn[l] for some integers p,,q, > 0 and k,, € Z. We conclude the proof by applying
Corollary 1.4 for the approximate representations p,p and g,v,, for a suitable large n which
assures that 1, is a (.9, §)-representation.

Suppose that condition (2) holds. Then for any given z € ﬁeve“(F;Q), there is some
asymptotic representation p, and a rational numbers ¢, with z = qnc~h(Epn). By condition

(2), there are sequences of natural numbers N,, and r,, projective representations {@Dfl}ZN:”l and
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representations m,, so that

—0, Vsel.

Np
Un (rnpn(s) © T (s))uy, — @ ﬂ}:z(s)
i=1

Thus, for large enough n it follows that
Nnp
Tnz = Z CAB(E% )
i=1
and so the desired result follows from Theorem 1.1.

Conversely, let € > 0 and let F' C IT" be finite. Pick the § > 0 and S C T finite according to
Corollary 1.4 and suppose that p is an (.S, §)-representation. Let z = c~h(Ep). Let z = (3~11k(Ep) €
H?F(BT', 7Z) for some k > 1. By Lemma 7.2, there are finitely many elements x; € H?(Y,Z) and
natural numbers k; such that gz =, k;(e” — 1) for some integer ¢ > 1. For each n > 1, let
my = [[; m& where m}i are given by Proposition 7.1. Then m,qz = nk > mnki(e%xi —1). By
applying Proposition 7.1 and selecting a large enough n, we find a finite family (¢;) of projective
representations which are (.5, §)-multiplicative and such that ch(Ey,) = mne%”. Repeating this
process for each k > 0 with chy(E,) # 0 and replacing k; with n* - k; we get, mngh(Ep) =
> mnki(e%“ —1). Thus, if we set p = myg/n", then [E,,] — [D;, Ey,] is a torsion element plus
a trivial bundle of K°(BT). Thus there is a multiple 7 of p such that if we set ' = r/p, then
[Erp] = [@D, Ery,] in K°(BL). We apply Corollary 1.4 to conclude the desired result.

Suppose that condition (3) holds. Following the same reasoning as above, we get that for
any z € H®*(I'; Q), we can write

N M
rz = Zch(E%) - Zch(E‘pj)
i=1 k=1

for projective representations ¢; and ¢; and an integer r > 1. Then the desired result follows
from Theorem 1.1.

The proof of the converse is similar to proof of part (2) above. Let ¢ > 0 and let FF C T’
be finite. Pick the § > 0 and S C I finite according to Corollary 1.4 and suppose that p is
an (S,0)-representation. We may assume that z = CTl(Ep) € H?(BT,Z) for some k > 1. By
Lemma 7.2, there are finitely many elements x;,y; € H 2(Y,Z) and natural numbers k;, ¢; such
that gz = >, ki(e® —1) — 3, £;(e¥ — 1) for some integer ¢ > 1. Let my, =[], ;
mZi, my’ are given by Proposition 7.1. Then Trgzt) @mn(e%yf -1)=>" k‘i(mne%ﬂfi —1). By
applying Proposition 7.1 and selecting a large enough n, we find finite families (¢;) and (¢;) of

mZim;y? where

projective representations which are (.5, §)-multiplicative and such that ch(Ey,) = mne%xi and
ch(E,;) = Mpents Reasoning as above the K-theory classes [E,, & D, Ey;] and [P, Ey,] differ
by a torsion element plus a trivial bundle. We conclude the proof by applying Corollary 1.4 to
a common multiple of these almost representations, just as in (2) above. O

8. EXAMPLES OF ALMOST REPRESENTATIONS OBSERVING HIGHER INVARIANTS

In this section we assume that BT is compact. Let us denote by Rep](“S o) (T") the set of unital
maps such that ||p(st) — p(s)p(t)|| < € for all s,t € S with the property that the vector bundle
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E, = Efr associated to p as in Definition 4.1 is well-defined. Let Rep(g.)(I') be the disjoint
union | |, Repé“s 8)(F). Henceforth, we will consider only groups with compact classifying space,

and we introduce the following more concise notation in that case.

Definition 8.1. For p € Rep(g ) (T") define its Chern character by
(49) ch(p) = ch(E,) € H**"(BI',Q) = H"(I", Q).

The purpose of this section is to develop techniques to construct almost representations p
with the following property: chy(p) # 0 and ch;(p) = 0 for 1 < j < k. This implies that cx(p) is
the first non-vanishing Chern class of p. Our focus will be on certain classes of nilpotent groups.

Lemma 8.2. (i) Suppose that p1,ps € Repg,) (') are such that p1 & ps € Repg.(I') and
p1 @ p2 € Rep(g.)(I'). Then ch(py @ p2) = ch(p1) + ch(p2), ch(p1 ® p2) = ch(p1) - ch(pz), and
chy(p) = (=1)*chp(p). (i) If f : T — A is a homomorphism of groups, under the assumptions
of Proposition 4.4,

f* (ch(p)) = ch(po f)
in K°(BT') ® Q.

Proof. Part (1) follows from basic properties of the Chern character, while part (2) is a conse-
quence of Proposition 4.4. O

The following fact is established in the proof of [11, Thm. 1.2].

Proposition 8.3. Suppose that BT is a finite complex. Let {p, : T' — U(ky)} be a sequence of
unital maps such that

lim [on(st) — pu(s)on (Dl =0, for all st €T,

and ch(pp) — kn # 0, for alln > 1. Then there exists no sequence of homomorphisms {m, : I' —

U(kn)} such that
lim ||¢n(s) —mp(s)|| =0, forallseTl.

n—oo

Let us recall that Voiculescu’s example of a nontrivial asymptotic representation 1, : Z> —
U(n) is defined by (z,y) — uZvj, where u,, and v, are the n x n matrices,

0 0 0 1 en 0 0 0 0
1 00 0 e 0 0 0
1 00 0 0 0 e 0 0
Up=\|. . . .. .| and v, =
00 -~ 100 0 0 0 ... =
00 -~ 010 0o 0 0 0 1

Proposition 8.4. Let x € fleve”(Zd;Z). Then there is an asymptotic representation py, : Z% —
U(my) so that ch(pn) = x. Furthermore, p, can be built from tensor products and direct sums
of Voiculescu’s example. In particular, it follows that every asymptotic representation of Z¢ is
stably equivalent to one built from tensor products and direct sums of Voiculescu’s example.



ALMOST REPRESENTATIONS 33

Proof. From the Kiinneth formula, H*(Z%;Z) is the exterior algebra generated by H'(Z%;Z) =
Hom(Z%; Z). Let é; be the dual basis to the standard basis of Z¢. Then Heven(7%: 7)) is generated
by cup products of elements of the form é; — ¢;. Let pilj : Z¢ — U(n) be the asymptotic
representation defined by sending e; and e; to Voiculescu’s unitaries and the rest of the generators
to the identity. From Theorem 1.1 we see that ch(pfzj) = ¢; — ¢; +n. Note that by Lemma 8.2
we can use tensor products and direct sums of pif to represent any polynomial with non-negative
coefficients in é; — ¢€; 4+ n. It is then sufficient to show that any element of the form

z = H €; — éj + (371)'5‘
(i,7)€S
is expressible as such a polynomial with non-negative coefficients in e; — e; +n for any S C
{1,...,d}% Note that since é; — é; = —¢&; — ¢é;, it follows that if we may express all such z
this way, then we may also express 2(3n)!S| — 2 this way as well. We will show this by induction
on |S|. For the base case, we have S = (), and what we want to show is trivially true. For the
inductive step

[T é&—é&+6ns=
(4 €S (Lm)}

e—emtn) | J[ =&+ —n| ] &—é—@n)S| — 6Pl — én—n).
(1,5)€S (i,9)es

By the inductive hypothesis, all the terms on the right-hand side may be expressed in the desired

form.

For the last claim, we can use the Kiinneth formula to show that the Chern character
ch : Ko(T%) — H*"(T? Q) induces an isomorphism onto H*V*"(T% Z) c H**"(T% Q). Thus,
by Corollary 1.4 it follows that all asymptotic representations are stably equivalent to one of
the above. O

Remark 8.5. In particular, we can construct explicit asymptotic representations p, : Z2¢ —
U(my,) such that chy(py,) is the generator of H24(Z??;Z) but ch;(p,) =0 for 0 < j < d.

Remark 8.6. In the examples coming from 8.4, with chy # 0, the defect for any two of the
27k

n
are built out of up to k-fold tensor products and direct sums of these. It is possible to calculate
the asymptotics of the dimension of the asymptotic representation as well. To approximate an
element in the 2d cohomology, the dimension is the zeroth Chern character, and can thus be

picked to be (3n)?. This is not the lowest possible dimension, as we illustrate by Example 8.10.

generators is bounded above by , since this is true for Voiculescu’s example and our examples

Notation 8.7. If p : I' — U(n) then let p denote the pointwise complex conjugate of p. As
noted in Lemma 8.2, if p is sufficiently multiplicative for E, to exist, then E; = E,, and thus
che(7) = (~1)* chy(p).

Example 8.8. Let 7,7 : Z* — Z? be projections onto the first two and last two coordinates,
respectively. Let v, : Z2 — U(n) be Voiculescu’s example of an asymptotic representation. Let
Qn = 1P o and B, = 9y, o 2. Define ¢, : Z* — U(3n?) by the formula

n = (an ® Br) ® (1, @ ) © (1, ® Bn)
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Using Lemma 8.2, and the Kiinneth formula, we see that cha (i) is the generator of H*(Z*,7Z),
while chy(¢,,) = 0.

Example 8.9. Note that o, ® £, is itself a projective representation. By Lemma 8.2, one can
check that chy (o, ® 3,,) generates H*(Z*). Thus, if we define

©n = (Oén X 571) 7 (@n ® Bn)7
we obtain an asymptotic representation of ¢, : Z* — U(2n?) so that cha(yp,) is twice the

generator of H*(Z*,Z) but ch;(p,) = 0.

Example 8.10. Using analogous notation as above, we define 7y, o, w3 : Z% — Z? as projections
onto the first two, middle two, and last two coordinates, respectively. Then let «,, = v, o 7y,
Bn = 1y 0 T2, and 7, = Y, o m3. We define ¢, : Z5 — U(Tn3) by
©n :(Oén ® Bn 02y P)/n)
D (1n®An ®Bn) & (10 ® Bn ®7n) @ (1n ® Fn ® o)
D (1y2 ® an) @ (Inz ® Bn) @ (1n2 @ Tn)
One verifies by a straightforward computation that
chs(¢n) = chi(an) chi(By) chi(yn),
and that the other Chern classes vanish. By the Kiinneth theorem, chs(¢,) generates H®(Z%, Z).
Concrete almost representations for the group I' = Hj3. Here Hjs is the discrete
Heisenberg group generated by a,b,c with the relations ba = abc, ca = ac, and cb = be.
Each element of the group may be represented uniquely as a triple of integers as follows: z =

(z1,22,23) = a™b*2c". First, we will describe the cohomology ring of Hjs in terms of explicit
generators in terms of the bar resolution.

Definition 8.11. For 1 < j < n let e; be the standard basis element of C" and extend the
symbol by the convention that eji, = e;. For odd n consider the map p, : Hy — U(n)
determined by the equation

2mi S
pn(z)ej = exp -, (37 + 5332](] — 1)) ) €jtar-

This is equivalent to the almost representation due to Eilers, Shulman, and Sgrensen in [17].
We also define

~ 27 A
pn(x)ej = exp (n ((wm —3)j +5215(J — 1))) €j+a
which is p,, composed with the automorphism of Hs defined by (z1, x2, x3) — (2, 21, T122 — X3).
Note that the functions in the exponent are

1
Bi(z,y) = z3y1 + SP2Y1 (y1 —1)

1
Ba(z,y) = (2172 — 23)y2 + §$1y2(y2 - 1),
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which generate H?(Hs;Z) by Proposition A.2, so this example is also equivalent to the example
formula in [20, Proposition 4.1]. Then by Proposition 4.3 ¢i(p,) = [51] and c1(pn) = [B2)-
Because H3 has a cohomological dimension of 3, all higher Chern classes and characters of [E,, |
vanish, or by Theorem 1.1.

Concrete almost representations for the group I' = Hs x Z. Let m; : I' — Hgs and
mg : I' = Z be the obvious maps. Let a; : Hy — Z and a9 : H3 — Z by (x1,x2,z3) — x1 and
(21,22, 73) — X9 respectively. Note that ¢ = (ag o 7y, 7m2) is a map from T to Z2. Suppose that
©n : Z2 — U(n) is Voiculescu’s example of an asymptotic representation of Z2.

Proposition 8.12. Using the notation above, for odd n define n, : I' — U(3n?) by

M= (pnom) @ (@not)® (Pnom) @1y & (pnot) @ 1y
Let vy be the generator of H*(Hs;Z) from Proposition A.2. Then c1([Ey,]) = 0 and c2([Ey,]) =
75 ([y]) — 2. Here my € Hom(T',Z) = HY(T,Z).

2751

Proof. 1t is easy to check that p, is a projective representation with cocycle e and ¢, o ¥

is a projective representation with cocycle e2™(m2=@20m1)  Uging Theorem 1.1, Lemma 8.2, and
Proposition A.2 the result follows from a straightforward computation. O

Note that by the Kiinneth formula, and Proposition A.2, 7} ([y]) — w2 generates H*(T').

Concrete almost representations for the group I' = Hjz x Hs. Let m; and e be
the projections from I' to the first and second coordinates, respectively. Define ¢ : I' — Z2 as
(g o T2, g 0 7). Define ¢, : Z? — U(n) as in the previous subsection.

Proposition 8.13. Using the notation above, define

M =(pn 0 m1) ® (on 0 ¥) @ (pn 0 m2)
S (Pnom) @ (Pn o) @1n & (Pnot) ® (pnoma) @1y @ (pnom) ® (pn 0 m2) ® 1n
D (Prnom) @12 D (Prot) @12 ® (Prom) @ 1,2.
Then ex([Ey]) = 0, cal[By,) = 0, and cs((Ey,) = 25(1]) — w3(3).

Proof. The proof is the same as the proof of Proposition 8.12. O

Note that 7 ([y]) — 73([]) is the generator of H®(T',Z), by the Kiinneth formula, and
Proposition A.2.

APPENDIX A. COHOMOLOGY RING OF Hj

The cohomology ring has been computed elsewhere [28], but generators are given in terms
of a resolution other than the bar-resolution, which is not well-suited for our present context
because our formula for the first Chern class uses the bar resolution. All (co)homology in this
appendix is assumed to have coefficients in Z. In particular, our computation of higher invariants
relies on the fact that [31] — [ae] # 0 for the specific cocycles 81 and ag defined below; this
does not follow from simply knowing the isomorphism class of the cohomology ring.
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Proposition A.1 ([28],[40]).

H'(H3) = Hy(H3) = 72
H?(H3) = Hy(H3) = 72
H3(H3) = H3(H3) = Z

Proposition A.2. The generators of H'(Hj3) are given by
a1(x) =1
as(x) = .

The generators of H?(H3) are given by

1
Bi(z,y) = v3y1 + 3%241 (y1 —1)

1
Bo(x,y) = (x1702 — T3)Y2 + §$1y2(y2 —1).

The generator of H3(Hs) is given by

1
Y(w,y, 2) = (z391 + §w2y1(91 —1))z2.

The cohomology Ting is given by the relations

The generators of Ho(Hs) are given by
Bi = [cla] — [alc]
By = [bl¢] — [c[b].
The generator of Hs(Hs,Z) is given by

C = ¢ belab™ e + [belab™ e a o™ + [ab e T he T ad]

+ [a7tbe Hac|e ™Y = [acla™toe Hab e = [a7tbe T ab e bel.

Many of these generators were likely already in the literature. The explicit formula for the

generator of Hs(Hs) may be new.

The formal proof of Proposition A.2 unfortunately involves a lot of brute force calculations
that are not very illuminating. For that reason, we will describe the process by which we
computed each generator. Then the computations in the proof of Proposition A.2 show that

these do in fact generate the (co)homology of Hs.
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One can compute the 2-cocycles by creating a presentation of a central extension by hand,
then computing the multiplication in the extension. These extensions can be built by “blowing
up” the relations ac = ca and be = ca respectively. See [21, Section 7.2] for a similar computation.

For any elements z,y in a group that commute with each other it is a useful fact that
[z]y] — [y|x] is a 2-cycle. For an abstract motivation of this fact; from the isomorphism in [2] we
would get [e|a] + [a|b] — [bla] — [e]b]. Then use the fact that O([e|e|b] — [e|e|a]) = [e|a] — [e]d]

The 3-cycle « is just the cup product of 81 and aso.

One can compute C as follows. Start with the generator of H3(Hs) in the “small resolu-
tion” given by Huebschmann [28]. Following the proof of the independence of resolutions in [2,
Chapter 1.7], one can inductively find chain maps from Huebschmann’s resolution to the stan-
dard resolution. Once the map on the third degree is computed, the image of the generator of
Hs(Hs) in Huebschmann’s resolution is mapped to a generator in terms of the bar resolution.
This computation is long, so we will only provide direct computations that demonstrate that C
generates the 3-homology.

Proof. First we compute the 1-cohomology as, H'(H3) = Hom(Hs, Z) and it is generated by oy
and ao.

The 1-homology is isomorphic to the abelianization, generated by a and b. Following the
isomorphism from the bar resolution to abelianization, a and b map to A; and As [2, Chapter
I1.3].

We first check that 31 satisfies the cocycle equation;

8/81(1'7 Y, Z) :ﬁl(l‘a y) - ﬁl(yz) + /81(:171% Z) - 51(y7 Z)
=3y + %5'3291(3/1 -1)
—x3(y1 +21) — éx2(y1 +21)(y1 +21 — 1)

1
+ (23 + y3 + woy1) 21 + 5(902 + y2)2z2(2z2 — 1)

1
— Y321 — §y221(21 —1).

Noting the identity %(yl +z21)p1+21—1) = %yl(yl -1+ %zl(zl — 1) 4+ y121 one can see that
all terms cancel.
Note that a — b, b +— a, ¢ — ¢~
(z2, 21,102 — x3) and By = n*(51) so Pe is a cocycle as well.
One can see that

1'is an automorphism 7 of Hs, so that n(xy,z2,23) =

9By = [c] — |ac] + [a] = ([a] = [ac] +[c]) = 0

and the computation for B is identical.
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We compute that

We claim that this implies that 31 and (3 generate H?(H3) and that B; and By generate
Hy(Hs). To show this note that the pairing of a cohomology class with both By and Bs induces a
map H?(H3) to Z2. Since this map is surjective, it must also be injective; this relies on previous
computations of the (co)homology groups. Thus, it is an isomorphism and so (51 and S generate
H?(H3). The argument that By and Bo generate Hy(Hs3) is analogous.

To show that [a] — [ae] = 0 we will let fB3(z,y) = az(x)ar(y) = zoy;. Then B3 is a
cocycle representative of [as] — [a1] = —[a1] — [ag]. Consider the function f : H3 — Z defined
by f(x) = —x3. Then

Of(x.y) = f(x) — flay) + f(y)
= —x3+ (zoy1 + 23+ y3) — y3
= T2Y1
= B3(z,y).

One may also deduce that [a1] — [a2] = 0 by using the Gysin sequence [27, Theorem 3, Theorem
4.

Note the identity b='a~' = a~'b~ !¢, in addition to those in the presentation. Using these
relations, we compute that all the terms that appear in dC' are as follows:

+[cbe] —[c7Yac] +[blab~ e —[belab e
+[bclab 1™ —[bele™] +lacla™ b7 —[able Hathe Y
+ab~te ta"the™] —[ab~ e b +[c7Yac] —la"tbe™ac]
+la"tbe ac] —[a= b +[bele] —[ac|c™!]
—lacla=tbe™] +[acle™!] —blab™tc™  +la"tbeab e
—la"toeab e +[a e d] —[c7Ybc] +[ab~te b

One can check that each of these terms cancel out, so 0C = 0.
By construction we can see that [y] = [51] — [a2], and from this deduce that v obeys the
cocycle equation. Going term-by-term, we compute that

(1,0) =0+14+0+0—1—(-1)=1

Because H3(H3) = H3(H3) = Z and (,C) = 1 we can see that (co)homology classes of C' and
7 generate the H3(H3) and H3(Hj3) respectively.
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To show the other facts about the cup product we define

1
(2, y,2) = (z3y1 + 3421 (y1 —1))=1

1
Y2,1(7,y,2) = ((v122 — 23)Y2 + 5331@/2@2 — 1))z

Y2,2(2,y,2) = (2172 — T3)Yy2 + %361:92(.@2 — 1))z
so that 7; ; is a cocycle representative of [3;] — [a;]. Then
(711,C) =0+ (=1)+0+0—(-1)-0=0
(721,C) =1+ (-1)+0+0—(-1)-0=1
(72,2,C) =(=1)+1+0+0—1—(=1)=0.

Since the map given by the universal coefficient theorem from H?3(Hs3) to Hom(H3(Hs), Z)
is an isomorphism in this case we conclude that the cohomology class of 3-cocycles on Hg
is determined by their pairing with C'. In particular, this implies the cup product structure
claimed in the introduction is correct.

O
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