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MARIUS DADARLAT

Abstract. In this article we discuss cohomological obstructions to two kinds of group stability.

In the first part, we show that residually finite groups Γ which arise as fundamental groups of

compact Riemannian manifolds with strictly negative sectional curvature are not uniform-to-local

stable with respect to the operator norm if their even Betti numbers b2i(Γ) do not vanish. In

the second part, we show that non-vanishing of Betti numbers bi(Γ) in dimension i > 1 obstructs

C∗-algebra stability for groups approximable by unitary matrices that admit a coarse embedding

in a Hilbert space.

1. Introduction

For a countable discrete group Γ we consider several natural stability properties relative to

unitary groups U(n) equipped with the uniform norm. We also consider stability properties of

Γ with respect to unitary groups of C∗-algebras. The reader is referred to the survey papers by

Arzhantseva [1] and Thom [54] for an introduction to the approximation and stability properties

of groups. Just like in our earlier paper on this subject [17], we rely on ideas due to Kasparov [35],

Connes, Gromov and Moscovici [14], Gromov [26,27], Tu [56] and Kubota [43]. In addition we use

results of Hanke and Schick [30], [31], Hunger [32] and Baird and Ramras [4].

Definition 1.1. For a countable discrete group Γ we consider sequences {ρn} of unital maps and

sequences {πn} of unitary group representations with ρn, πn : Γ→ U(n).

The sequence {πn} approximates {ρn} locally if

lim
n→∞

∥ρn(s)− πn(s)∥ = 0, for all s ∈ Γ.

The sequence {πn} approximates {ρn} uniformly if

lim
n→∞

sup
s∈Γ
∥ρn(s)− πn(s)∥ = 0.

(a) Γ is locally stable if any sequence {ρn} which satisfies

lim
n→∞

∥ρn(st)− ρn(s)ρn(t)∥ = 0, for all s, t ∈ Γ

can be approximated locally by a sequence {πn} of unitary representations.

(b) Γ is uniformly stable if any sequence {ρn} which satisfies

lim
n→∞

sup
s,t∈Γ

∥ρn(st)− ρn(s)ρn(t)∥ = 0
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can be approximated uniformly by a sequence {πn} of unitary representations.

(c) Γ is uniform-to-local stable if any sequence {ρn} which satisfies the assumption from (b)

can be approximated locally by a sequence {πn} of unitary representations.

(d) Γ is local-to-uniform stable if any sequence {ρn} which satisfies the assumption from (a)

can be approximated uniformly by a sequence {πn} of unitary representations.

One may visualize the conditions (a), (b) and (c) in a diagram:(
sup
s,t∈Γ

∥ρn(st)− ρn(s)ρn(t)∥ → 0

)
uniformly stable+3

uniform-to-local stable

'/

(
sup
s∈Γ
∥ρn(s)− πn(s)∥ → 0

)

∥ρn(st)− ρn(s)ρn(t)∥ → 0 ∀s,t locally stable
+3 ∥ρn(s)− πn(s)∥ → 0 ∀s

The stability properties considered in Definition 1.1 are quite different in nature. Local-to-

uniform stability is not too interesting for it is satisfied only by finite groups. While it is clear that

both uniform stability and local stability imply uniform-to-local stability, the study of these three

properties is more challenging. Local stability is referred to as matricial stability in the paper of

Eilers, Shulman and Sørensen [21]. We showed that the nonvanishing of rational cohomology in

even dimensions is an obstruction to local stability for large classes of groups, including amenable

groups, linear groups and residually finite hyperbolic groups, [17] and [18]. Bader, Lubotzky, Sauer

and Weinberger used the result of showed that lattices in semisimple real Lie groups are typically

not locally stable [3], using [17].

Uniform stability is called Ulam stability in the article of Burger, Ozawa and Thom [9]. By

a classical result of Kazhdan discrete amenable groups are uniformly stable, [39]. In contrast, an

amenable group Γ is not locally stable if H2i(Γ,R) ̸= 0 for some i > 1, [17]. A recent paper of

Glebsky, Lubotzky, Monod and Rangarajan [25] studies uniform stability for cocompact lattices in

semisimple Lie groups by means of asymptotic cohomology.

Uniform stability is a stronger condition than uniform-to-local stability. Indeed, if Γ has a

finite index subgroup isomorphic to a free group Fk, k ≥ 2, then Γ is locally stable [21], [3] and

hence uniform-to-local stable, but Γ is not uniformly stable. More generally, it was shown in [9]

that if the comparison map j : H2
b (Γ,R)→ H2(Γ,R) is not injective, then Γ is not uniformly stable,

and consequently, the non-elementary hyperbolic groups are not uniformly stable, since j is not

injective for such groups [24].

The surface groups Γg of genus g > 1 were the first groups shown not be uniformly stable, [39].

One observes that Kazhdan’s proof, which exploits the nonvanishing of H2(Γg,R), shows that,

in fact, the groups Γg of genus g > 1 are not even uniform-to-local stable. Motivated by this

observation, in the first part of this paper, we point out that many of the cocompact lattices in the

Lorentz group SO0(n, 1), n > 1 are not uniform-to-local stable. This will follow from the following

theorem inspired by an idea of Gromov [28, p.166]:
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Theorem 1.2. Let M be a closed connected Riemannian manifold with strictly negative sectional

curvature and residually finite fundamental group. If b2i(M) ̸= 0 for some i > 0, then π1(M) is

not uniform-to-local stable.

Theorem 1.2 is a direct consequence of Theorem 4.2 from Section 4. Concerning the assumption

on Betti numbers, observe that if M is orientable and dimM = 2m then b2m(M) = 1 while if M

is orientable and dimM = 2m+ 1, then it suffices to require that bi(M) > 0 for some 1 ≤ i ≤ 2m,

since bi(M) = b2m+1−i(M) by Poincaré duality and either i or 2m+ 1− i must be even.

Recall that a cocompact lattice in a semisimple real Lie group G is a discrete subgroup Γ of G

such that the quotient space G/Γ is compact. The n-dimensional hyperbolic space Hn, n ≥ 2, has

constant sectional curvature equal to −1. The connected component of the identity of the group

of orientation preserving isometries of Hn is the Lorentz group SO0(n, 1). Since Hn is isometric to

the symmetric space SO0(n, 1)/SO(n), if Γ is a torsion free cocompact lattice in SO0(n, 1), then

M = Γ \ SO0(n, 1)/SO(n) is an orientable closed connected Riemannian manifold with sectional

curvature = −1. Moreover, Γ = π1(M) is finitely generated by co-compactness and hence it is

residually finite by Malcev’s theorem since SO0(n, 1) ⊂ GL(n,R). Thus one obtains the following:

Corollary 1.3. Let Γ be a torsion free cocompact lattice in SO0(n, 1).

(i) If n is even then Γ is not uniform-to-local stable.

(ii) If n is odd and bi(Γ) > 0 for some i > 0 then Γ is not uniform-to-local stable.

The corollary reproves Kazhdan’s result since Γg ⊂ SO0(2, 1), g > 1. In order to apply the

corollary to other examples, let us note that by Selberg’s lemma, any cocompact discrete subgroup

Λ of SO0(n, 1) has a finite index torsion free subgroup Γ. Thus, in order to apply Corollary 1.3(ii)

to Γ, it remains to realize the condition on Betti numbers.

It was shown in [3] that if Γ is a cocompact lattice in a real semisimple Lie group G which

is not locally isomorphic to either SO(n, 1) for n odd or SL3(R), then b2i(Γ) > 0 for some i > 0,

so that Γ is not locally stable by [17]. Concerning lattices in SO(n, 1), the following nonvanishing

result is established in [3].

Theorem 1.4 (Cor. 3.13 of [3]). Let Λ be a cocompact lattice in SO(n, 1) with n > 1 odd. Suppose

either (i) n = 3 or (ii) n = 4m + 1 or (iii) n = 4m + 3 and Λ is arithmetic but not of the form
6D4 if n = 7. Then there is a finite index subgroup Λ1 ≤ Λ such that for any finite index subgroup

Γ ≤ Λ1 there is i > 0 such that b2i(Γ) > 0. In particular, the group Γ is not locally stable.

By Theorem 1.2, we deduce:

Corollary 1.5. The groups Γ as in Theorem 1.4 are not uniform-to-local stable.

For concrete examples one may consider G = SO0(x
2
1 + · · · + x2n −

√
p x2n+1,R) ∼= SO0(n, 1),

where p is a square free integer. Let O be ring of integers of Q√p. Then O = Z + Z√p if p ̸≡ 1

(mod 4) and O = {a+b
√
p

2 : a, b ∈ Z, a − b ≡ 0 (mod 2)} if p ≡ 1 (mod 4) and GO is a cocompact

arithmetic lattice in G, [6]. By a result of Li and Millson [44], any arithmetic lattice in SO0(n, 1),

n ̸= 3, 7 contains a congruence subgroup Γ such that b1(Γ) > 0.

In the second part of the paper we revisit local stability and discuss C∗-stability of discrete

groups [21], a property which can be viewed as local stability relative to C∗-algebras.
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Definition 1.6. A group Γ is C∗-stable if for any sequence of unital maps {ρn : Γ → U(Bn)}n,
where Bn are unital C∗-algebras such that

lim
n→∞

∥ρn(st)− ρn(s)ρn(t)∥ = 0, for all s, t ∈ Γ,

there exists a sequence of group homomorphisms {πn : Γ→ U(Bn)}n satisfying

lim
n→∞

∥ρn(s)− πn(s)∥ = 0, for all s ∈ Γ.

We note that local stability corresponds to C∗-stability relative to finite dimensional C∗-

algebras. As discussed earlier, nonvanishing of even-dimensional rational cohomology is an ob-

struction to matricial stability for many groups. Prompted by a question of Dima Shlyakhtenko

concerning the possible role of odd-dimensional cohomology in group stability, we show the follow-

ing:

Theorem 1.7. Let Γ be a countable discrete MF-group that admits a γ-element. If Hk(Γ,Q) ̸= 0

for some k > 1, then Γ is not C∗-stable.

Let us recall that a group Γ is MF if it is isomorphic to a subgroup of the unitary group of the

corona C∗-algebra
∏
nMn/

⊕
nMn, [12]. Equivalently, Γ embeds in U/N where U =

∏∞
n=1 U(n)

and N = {(un)n ∈ U : ∥un − 1n∥ → 0}. In other words a group is MF if it admits sufficiently

many approximate unitary representations to effectively separate its elements. In the terminology

of [20] these are the
(
U(n), ∥·∥

)∞
n=1

-approximated groups. It is an open problem to find examples of

discrete countable groups which are not MF. The groups that are locally embeddable in amenable

groups are MF as a consequence of [55].

The class of groups that admit a γ-element is large [38], [34]. It includes the groups that

admits a uniform embedding in a Hilbert space [56]. The amenable groups, or more generally, the

groups with Haagerup’s property are uniformly embeddable in a Hilbert space [13] and so are the

linear groups [29]. Hilbert space uniform embeddability passes to subgroups and products, direct

limits, free products with amalgam, and extensions by exact groups [19].

Theorem 1.7 will be established as a consequence of a result which assumes weaker forms of

stability, see Theorem 5.15 and Theorem 5.17. More precisely, Theorem 1.7 follows from Theo-

rem 5.17(ii), where only stability with respect to C∗-algebras of the form Mn(C(T)) is assumed.

The proof proceeds by an adaptation of the arguments from [17] (and we repeat many of them here

for the sake of completion) with the novelty that one employs a theorem of Baird and Ramras [4]

on vanishing of Chern classes for families of flat bundles in place of a result of Milnor [46].

Moreover, we show in Theorem 5.15 that if a quasidiagonal groups Γ admits a γ-element and

has a nonvanishing Betti number b2k(Γ), then there are sequences {ρn} as in Definition 1.1(a) which

cannot be locally approximated even if we allow for non-unitary representations πn : Γ→ GLn(C).
Similarly, for a finitely generated group Γ as in Theorem 1.7, there is a sequence of unital maps

{ρn : Γ → Un(C(T))} as in Definition 1.6 which cannot be approximated locally by a sequence of

homomorphisms {πn : Γ→ GLn(C(T))}.
For the sake of accessibility, we include in our exposition several facts well-known to the

experts. In Sections 2 and 3 we revisit the topics of flat bundles and almost flat bundles. The
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proof of Theorem 1.2 which relies on the approximate monodromy correspondence for almost flat

bundles is given in Section 4. The proof of Theorem 1.7 is given in Section 5.

2. Flat bundles

Let A be a unital C∗-algebra and let V be a finitely generated (projective) right Hilbert A-

module. Let L(V ) be the C∗-algebra of adjointable A-linear operators acting on V . The unitary

group of L(V ) will be denoted by U(V ). For a compact Hausdorff space M we denote by BdlVA(M)

the set of isomorphism classes of locally trivial bundles with fiber V and structure group U(V ).

If V = A we write BdlA(M) for BdlAA(M). If E ∈ BdlVA(M) we say that E is a Hilbert A-module

bundle with typical fiber V . If M is a smooth manifold, then every E ∈ BdlVA(M) admits a smooth

structure which unique up to isomorphism [51, Thm.3.14]. The C∞(M,A)-module of smooth

sections of E is denoted by C∞(E). If A = C and V = Cr, we write BdlrC(M) for BdlC
r

C (M), the

set of isomorphism classes of hermitian complex vector bundles of rank r.

Definition 2.1. A flat structure on a smooth bundle E ∈ BdlVA(M) is given by a finite cover

U = (Ui)i∈I of M together with smooth trivializations Ui × V → EUi such that the corresponding

transitions functions vij : Ui ∩ Uj → U(V ) are constant functions.

The classic theory of connections on vector bundles extends to smooth Hilbert A-module

bundles as discussed in [51, Sec.3]. Let E be smooth Hilbert A-module bundle over a Riemannian

manifold M . A connection on E is a C-linear map

∇ : C∞(TM ⊗ C)⊗ C∞(E)→ C∞(E), X ⊗ s 7→ ∇X(s)

which satisfies the conditions

(i) ∇X(s · f) = s · (Xf) +∇X(s) · f , (Leibnitz formula)

(ii) ∇fX(s) = f∇X(s)
for every X ∈ C∞(TM ⊗C), f ∈ C∞(M,C), f ∈ C∞(M,A) and s ∈ C∞(E). The connection ∇ is

compatible with the metric of E if

X⟨s, s′⟩ = ⟨∇Xs, s′⟩+ ⟨s,∇Xs′⟩.

The importance of having a connection is that allows one to lift smooth paths γ(t) between points

p, q ∈ M to isomorphisms between fibers Ep and Eq via parallel transport Pγ : Ep → Eq. Recall

that a section s along γ is parallel if it satisfies the differential equation ∇∂tγs = 0. This equation

has a unique solution for each initial value s(p) ∈ Ep and thus determines uniquely the value of

s(q) ∈ Eq so that one defines Pγ(s(p)) = s(q). Compatibility of ∇ with the metric implies that Pγ
is a unitary operator, this is why such a connection ∇ is also called a unitary connection.

The curvature of ∇ is the tensor R∇ ∈ Ω2(M,EndE) defined by the equation

R∇(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].

Definition 2.2. A couple (E,∇) consisting of a bundle E ∈ BdlVA(M) and a unitary connection

is flat if the curvature of the unitary connection vanishes, R∇ = 0.

For our discussion of flat bundles, it is convenient to adopt a setup from [30, Sec.3]. Let P1(M)

be the path groupoid of M with objects points of M and morphisms P1(M)(p, q) the piecewise



6 MARIUS DADARLAT

smooth paths [0, 1] → M connecting p to q. The product γ · γ′ of two paths is the path obtained

by first traversing γ′ and then γ, thus it is given by the concatenation γ′ ∗ γ. One endows P1(M)

with its natural topology. As it is usual, we let Ω1(M,p) stand for P1(M)(p, p). Denote by Π1(M)

the fundamental groupoid of M obtained from P1(M) by taking homotopy classes of paths with

fixed endpoints and let Γ = π1(M,p) be the fundamental group of M .

For a bundle E ∈ BdlVA(M), we denote by T (E) the transport groupoid of E with objects

the points of M and morphisms T (E)(p, q) = IsomA(Ep, Eq). Following [30, p.288], we endow the

groupoid T (E) with its natural topology, where the set of morphisms is topologized by using local

trivializations in order to identify nearby fibers of E and IsomA(Ep, Eq) is given the uniform norm.

A holonomy representation on the bundle E is a continuous morphism of groupoids

(1) h : P1(M)→ T (E)

By a classic result, if E is smooth and it is endowed with a unitary connection ∇, then the corre-

sponding parallel transport satisfies Pγ·γ′ = Pγ ◦Pγ′ and hence it defines a holonomy representation

γ 7→ h(γ) = Pγ , in the sense discussed above, [41, Thm.9.8].

Definition 2.3. Let π : Γ = π1(M,p) → U(V ) be a group homomorphism. The universal cover

of M is denoted by M̃ . One realizes M̃ as a space of homotopy classes of curves η : [0, 1] → M

with η(0) = p and homotopies preserving the endpoints. The left action of G on M̃ is defined as

follows. If s ∈ π1(M,p) is represented by a loop γ ∈ Ω1(M,p), then s · [η] = [η · γ−1] is represented

by the path given by traversing γ in opposite direction followed by traversing η. The orbit space

of the left action of Γ on M̃ × V , defined by s · ([η], v) = (s · [η], π(s)v), is the total space of a (flat)

Hilbert A-module bundle M̃ ×π V →M denoted by Lπ ∈ BdlVA(M). The map

π 7→ Lπ

was introduced by Atiyah [2] in the context of finite group representations.

If A = C∗(Γ) and ȷ : Γ ↪→ U(C∗(Γ)) is the natural inclusion, then Lȷ is a bundle of free

rank-one Hilbert C∗(Γ)-modules. The bundle Lȷ ∈ BdlC∗(Γ)(M) is called Mishchenko’s flat bundle.

Proposition 2.4 ( [40]). For a smooth bundle E ∈ BdlVA(M) the following are equivalent:

(i) E admits a flat structure.

(ii) E admits a unitary connection ∇ with zero curvature, R∇ = 0, i.e. (E,∇) is flat.

(iii) E is defined by a representation π : π1(M)→ U(V ) in the sense that E ∼= Lπ.

(iv) There is a holonomy representation h : P1(M) → T (E) which descends to a morphism of

groupoids h : Π1(M)→ T (E)

Proof. This is proved in [40] (see Prop.1.2.5 and 1.4.21) for complex vector bundles. The same

arguments work without change in the present context. The holonomy representation h is given

by parallel transport with respect to ∇. Restriction of h to π1(M,p) gives a representation π as in

(iii). □

It is also convenient to work with selfadjoint idempotents e in matrices m ×m over the C∗-

algebra C(M)⊗A that represent bundles E ∈ BdlVA(M), where V ∼= e(p)Am, p ∈M .
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Notation 2.5. Fix a flat structure for the Mishchenko’s bundle Lȷ given by some finite cover

U = (Ui)i∈I of M together with smooth trivializations Ui × C∗(Γ) → (Lȷ)Ui such that all the

corresponding transitions functions sij : Ui ∩ Uj → Γ ⊂ U(C∗(Γ)) are constant. Thus one obtains

group elements sij ∈ Γ which form a 1-cocycle: s−1
ij = sji and sij ·sjk = sik whenever Ui∩Uj∩Uk ̸= ∅.

Let (χi)i∈I be positive smooth functions with χi supported in Ui and such that
∑

i∈I χ
2
i = 1. Set

m = |I| and let (eij) be the canonical matrix unit ofMm(C). Then Lȷ ∈ BdlC∗(Γ)(M) is represented

by the selfadjoint projection

(2) ℓȷ =
∑
i,j∈I

eij ⊗ χiχj ⊗ sij ∈Mm(C)⊗ C(M)⊗ C∗(Γ).

Moreover, the bundle Lπ ∈ BdlVA(M), corresponding to the group homomorphism π : Γ → U(V )

(see Definition 2.3), is represented by the selfadjoint projection

(3) ℓπ =
∑
i,j∈I

eij ⊗ χiχj ⊗ π(sij) ∈Mm(C)⊗ C(M)⊗ L(V ).

3. Almost flat bundles

The goal of this section is to present a proof of Theorem 3.10 on approximate monodromy

correspondence. The corresponding result was noted without proof by Skandalis in a remark on page

313 of [53]. It generalizes a result from [14] according to which ε-flat bundles on simply connected

manifolds are trivial if ε is sufficiently small. In [15], we had used the content of Theorem 3.10 in

conjunction with the Mishchenko-Fomenko index theorem in order to extend an index theorem of

Connes Gromov and Moscovici from [14].

Fix F ⊂ π1(M,p) and m as in Notation 2.5 and the map s 7→ γs as in Notation 3.6.

Definition 3.1 ( [14]). A unitary connection ∇ on a bundle E ∈ BdlVA(M) is called ε-flat, ε > 0,

if its norm

∥R∇∥ = sup
p∈M
{∥R∇

p (X,Y )∥ : ∥X ∧ Y ∥ ≤ 1, X, Y ∈ TMp},

satisfies ∥R∇∥ < ε. In this case, the couple (E,∇) is called ε-flat.

The topological counterpart of ε-flatness is the following.

Definition 3.2. Let U = (Ui)i∈I be an open cover of M . A bundle E ∈ BdlVA(M) is called (U , ε)-
flat if is represented by a cocycle vij : Ui ∩ Uj → U(V ) such that ∥vij(p) − vij(q)∥ < ε for all

p, q ∈ Ui ∩ Uj and all i, j ∈ I.

In the sequel we will occasionally identify a bundle E in BdlVA(M) with the corresponding

bundle in Bdl
L(V )
L(V )(M) constructed from the same cocycle vij : Ui ∩Uj → U(V ) = U(L(V )). A and

L(V ) are Morita equivalent as V is a finitely generated Hilbert A-module. In particular, for A =

Mr(C), we can identify and go back-and-forth between rank-one bundles of HilbertMr(C)-modules

and rank-r hermitian complex vector bundles constructed from the same transition functions.

We are going to explain how Atiyah’s map π 7→ Lπ can be extended to approximate group

representations. Let M , Γ = π1(M,p), (χi)i∈I with |I| = m and F = {sij} be as in Notation 2.5.
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For ε > 0 and V a projective Hilbert A-module, we define

RepV(F,ε)(Γ) = {ρ : Γ→ U(V ) : ∥ρ(st)− ρ(s)ρ(t)∥ < ε, ρ(s−1) = ρ(s)∗, s, t ∈ F, ρ(1) = 1}.

For the next definition, we use the following elementary spectral theory argument. Suppose that

x is a selfadjoint element of a unital C∗-algebra such that ∥x2 − x∥ < ε where ε < 1/λ − 1/λ2

for some 1 < λ < 2. Then the spectrum of x is contained in (−ε, λε) ∪ (1 − λε, ε). Since λε <

λ(1/λ − 1/λ2) < λ/4 < 1/2, the selfadjoint projection ℓ = χ( 1
2
,∞)(x) is an element of A and

∥x− ℓ∥ < λε. In particular, if ∥x2 − x∥ < ε < 1/5, then ∥x− ℓ∥ < 5ε/3 < 1/3, (take λ = 5/3).

Definition 3.3. (a) The map RepV
(F, 1

5m2 )
(Γ)→ BdlVA(M),

ρ 7→ Lρ

is defined as follows. Consider the selfadjoint element xρ =
∑

i,j∈I eij ⊗ χiχj ⊗ ρ(sij) of the C∗-

algebra Mm(C)⊗ C(M)⊗ L(V ). Since

x2ρ − xρ =
∑
i,k

∑
j

eik ⊗ χiχkχ2
j ⊗ (ρ(sij)ρ(sjk)− ρ(sik))


we see that ∥x2ρ− xρ∥ < 1/5 and hence the spectrum of xρ is contained in (−1/5, 1/3)∪ (2/3, 6/5).
It follows by functional calculus that

ℓρ = χ( 1
2
,∞)(xρ)

is a selfadjoint projection in the same C∗-algebra such that ∥xρ−ℓρ∥ < 1/3. The Hilbert A-module

bundle corresponding to ℓρ is denoted Lρ.

(b) Let us note that if φ : C∗(Γ)→ A is a unital completely positive map such that ∥φ(st)−
φ(s)φ(t)∥ < 1

5m2 for all s, t ∈ F, then the selfadjoint element xφ =
∑

i,j∈I eij⊗χiχj⊗φ(sij) satisfies
∥x2φ−xφ∥ < 1/5 so that we can define the projection ℓφ and the corresponding bundles Lφ as above.

The following Lemma shows that approximate representations in close proximity yield isomor-

phic bundles.

Lemma 3.4. If ρ, ρ′ ∈ RepV
(F, 1

5m2 )
(Γ) and sup

s∈F
∥ρ(s)− ρ′(s)∥ < 1

3m2 then ∥ℓρ − ℓρ′∥ < 1 and hence

Lρ ∼= Lρ.

Proof. ∥ℓρ − ℓρ′∥ ≤ ∥ℓρ − xρ∥+ ∥xρ − xρ′∥+ ∥xρ′ − ℓρ′∥ < 1
3 + 1

3 + 1
3 = 1. □

Remark 3.5. The following version of Lemma 3.4 holds. Depending only on the data from Nota-

tion 2.5, there is ε > 0 such that for ρ ∈ RepV
(F, 1

5m2 )
(Γ) and any homomorphism π : Γ → GL(V )

satisfying

sup
s∈F
∥ρ(s)− π(s)∥ < ε,

the idempotent ℓπ defined by the equation (3) is sufficiently closed to the selfadjoint projection ℓρ
so that they are conjugated by an invertible element. In particular, they define the same class in

K0(M). The idempotent ℓπ is not necessarily selfadjoint since π takes values in GL(V ) rather than

U(V ).
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It is now well understood that the monodromy correspondence described in Proposition 2.4

extends to an approximate monodromy correspondence for almost flat bundles. This idea which

was introduced in [14] and was explored in detail in [11], [32] and [42], it is central for our paper.

In the sequel we will use a version of the approximate monodromy correspondence in a smooth

setting.

We will assume that Γ = π1(M,p) does not have elements of order 2. This restriction is not

really necessary, but we make it in order to streamline some of the arguments. In any case, our

main application involves only torsion free groups.

Notation 3.6. For each s ∈ Γ = π1(M,p) choose a piecewise smooth loop γs that represents s

with the provision that γs−1(τ) = γs(1 − τ), τ ∈ [0, 1]. This defines a map γ : Γ → Ω1(M,p).

With γ fixed as above, for each a smooth hermitian vector bundle E on M endowed with a unitary

connection ∇, we consider the map

ρ = ρ(E,∇) : Γ = π1(M,p)→ U(Ep)

ρ(s) = h(γs) = Pγs , s ∈ Γ, where P = P∇ is the parallel transport in E defined by ∇.

Consider two smooth curves f0, f1 : [0, 1]→M from p to q and let (ft), 0 ≤ t ≤ 1, be a smooth

homotopy between f0 and f1 with fixed endpoints. Let Pfi : Ep → Eq be the parallel transport

along fi. Assume for the area of the homotopy (ft) that:∫∫
∥∂tft(s) ∧ ∂sft(s)∥ ds dt ≤ C.

Proposition 3.7 (Buser-Harcher).

∥Pf0 − Pf1∥ ≤
∫∫
∥R∇(∂tft(s), ∂sft(s))∥ ds dt ≤ ∥R∇∥

∫∫
∥∂tft(s) ∧ ∂sft(s)∥ ds dt ≤ ∥R∇∥C.

Proof. This is proved in [10, 6.2.1], see also [32, Prop.2.7]. □

It is routine to extend Proposition 3.7 to piecewise smooth curves.

Lemma 3.8 ( [14]). For M a compact connected Riemannian manifold and F a finite subset of

Γ = π1(M,p), there is a constant C that depends only on M and F such that for any couple (E,∇),

∥ρ(st)− ρ(s)ρ(t)∥ ≤ C∥R∇∥, for all s, t ∈ F.

Proof. For s, t ∈ F, fix a homotopy between γt ∗ γs and γst. Since F is finite, there is a constant

C larger than the areas of all these homotopies. It follows then by Proposition 3.7 that ∥Pγt∗γs −
Pγst∥ ≤ C∥R∇∥, for all s, t ∈ F . Since ρ(s)ρ(t) = Pγs ◦ Pγt = Pγt∗γs , this completes the proof. □

The following Proposition collects several facts from papers of Hanke and Schick [31] and

Hanke [30].

Proposition 3.9 ( [30]). Let M be a compact connected Riemannian manifold and let ε > 0. Let

(En,∇n) be a sequence with En ∈ BdlrnC (M) and ∥R∇n || ≤ ε for all n. Let An = Mrn(C), and set

A =
∏
nAn and B =

∏
nAn/

⊕
nAn. Then

(i) There is EA ∈ BdlA(M) with transition functions in diagonal form and such that the

nth−component of EA is isomorphic to En as Hilbert An-modules bundles.
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(ii) The holonomy representations hn : P1(M) → T (En) defined via parallel transport for

(En,∇n) assemble to a holonomy representation hA : P1(M)→ T (EA).

(iii) If limn ∥R∇n∥ = 0, then the composition hB : P1(M)
hA // T (EA) // T (EA ⊗A B) de-

scends to a morphism of groupoids Π1(M) → T (EA ⊗A B) and hence induces a group

homomorphism ρB : π1(M,p)→ U(B). The Hilbert B-module bundle EA ⊗A B is isomor-

phic to LρB .

Proof. B is viewed as a left A module via the quotient map q : A→ B. In the notation of Kasparov,

EA ⊗A B = EA ⊗q B. The statement of the proposition is the combination of Propositions 3.4,

3.12 and 3.13 from [30]. The proof of the these properties is based on the following fact established

in Proposition 3.4 of [30]. There are constants C, λ > 0 depending only on M such that for any

couple (E,∇) one has

∥Pγ − idEp∥ ≤ C∥R∇∥ · length(γ)
for each closed loop γ ∈ Ω1(M,p) with length(γ) ≤ λ. The above estimate or Lemma 3.8 also

explain why the map hB descends to π1(M,p), when limn ∥R∇n∥ = 0. □

Fix F ⊂ π1(M,p) and m as in Notation 2.5 and the map s 7→ γs as in Notation 3.6.

Theorem 3.10. There is ε = εM > 0 such that for any smooth hermitian vector bundle E on

M which admits a unitary connection ∇ with ∥R∇∥ < ε, the map ρ(s) = P∇
γs , s ∈ Γ = π1(M,p),

defined by parallel transport is an approximate representation ρ ∈ Repr
(F, 1

5m2 )
(Γ), r = rank(E), with

the property that Lρ ∼= E.

Proof. By Lemma 3.8, there is ε0 such that if ∥R∇∥ < ε0, then ρ ∈ Repr
(F, 1

5m2 )
(Γ). Seeking a

contradiction, suppose that the statement is false for all ε > 0. Consequently, if we fix a sequence

(εn) convergent to 0 with εn < ε0, then there is a sequence (En,∇n) such that En ∈ BdlrnC (M),

∥R∇n∥ < εn but En ≇ Lρn for all n ∈ N .

Let EA, hA, hB and ρB be as in Proposition 3.9 so that in particular EA ⊗A B ∼= LρB .

Define ρA : Γ → U((EA)p) ∼= U(A) by ρA(s) = hA(γs). Thus the components of ρA are (ρn) and

q ◦ ρA = ρB, where q : A→ B is the quotient map. Consider the element

xρA =
∑
i,j∈I

eij ⊗ χiχj ⊗ ρA(sij) ∈Mm(C)⊗ C(M)⊗A,

and let ℓρA = χ(2/3,1](xρA) be the projection representing LρA as Definition 3.3. Then (idMm(C)⊗C(M)⊗
q)(ℓρA) = ℓρB is a projection representing LρB . Using Proposition 3.9(iii), it follows that

LρA ⊗A B ∼= LρB
∼= EA ⊗A B.

The components of ℓρA are (ℓρn) by naturality of functional calculus.

This implies that Lρn
∼= (LρA)n

∼= (EA)n ∼= En, for all sufficiently large n, and this contradicts

our assumption. □

4. Uniform-to-local non-stable groups

Let M be a closed connected Riemannian manifold with nonpositive sectional curvature,

K(M) ≤ 0. Fix a base point p ∈ M and consider the fundamental group Γ = π1(M,p). It is
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a classic result that Γ is torsion free and that each homotopy class s ∈ π1(M,p) contains a unique

constant speed geodesic γs : [0, 1] → M , see [7, Thm.4.13, p.200]. In particular γs−1 is γs with

the opposite parametrization, γs−1(τ) = γs(1− τ). Thus, for manifolds with nonpositive sectional

curvature we have a preferred choice for the map Γ = π1(M,p) → Ω1(M,p), s 7→ γs, considered

in Notation 3.6. For an ε-flat couple (E,∇) as in Definition 3.1, parallel transport along these

geodesics define a map ρ : Γ→ U(Ep),

(4) ρ(s) = Pγs , s ∈ Γ.

with ρ(s−1) = ρ(s)−1 for all s ∈ Γ. The map ρ is an approximate unitary representation by

Lemma 3.8. Morever, as indicated by Gromov on page 166 of [28], ρ is a uniform approximate

representation if M has strictly negative sectional curvature.

Proposition 4.1 (Gromov). Let M be a closed connected Riemannian manifold with sectional

curvature K(M) ≤ −κ < 0. Then ∥ρ(st)− ρ(s)ρ(t)∥ ≤ κπ∥R∇∥ for all s, t ∈ Γ.

Proof. Consider the universal cover Φ : M̃ → M . We endowed M̃ with the pullback of the

Riemannian metric from M so that Φ becomes a local isometry. Fix a base point p̃ ∈ M̃ with

ϕ(p̃) = p. Γ acts by isometries on M̃ : Γ×M̃ → M̃ , (t, x̃) 7→ t · x̃. For each t ∈ G, let γ̃t : [0, 1]→ M̃

be the unique geodesic joining p̃ with t · p̃. Then Φ ◦ γ̃t = γt by the uniqueness result mentioned

earlier, see [7, p.201]. Fix s and t in Γ. Let γ̄s be the unique lift of s to a path in M̃ with γ̄s(0) = t·p̃.
Then γt ∗ γ̄s lifts st. Consider the geodesic triangle in M̃ with vertices p̃, t · p̃, and (st) · p̃ and edges

γ̃t, γ̄s and γ̃st. Following [10, p.106], we span a ruled surface S into this geodesic triangle by joining

γ̃t(τ) to γ̃st(τ) by the unique minimizing geodesic for each τ ∈ [0, 1] (geodesics vary continuously

and smoothly on their endpoints). From Gauss’ equation the intrinsic curvature of S is ≤ K(M)

and by A.D. Aleksandrov’s area comparison theorem [10, Prop.6.7], the area of S is less than equal

to the area of the model triangle T with the same edge length. Since the model space has constant

curvature −κ < 0, it follows that area(T ) ≤ κπ by Gauss-Bonnet, and hence area(S) ≤ κπ. This

shows that there is a homotopy (f̃τ ) of area ≤ κπ between the paths and γ̃t ∗ (γ̄s) and γ̃st. Since

Φ is a local isometry, it follows that fτ := Φ ◦ f̃τ is a homotopy of area ≤ κπ between f0 = γt ∗ γs
and f1 = γst. It follows by Proposition 3.7 that

∥Pγs ◦ Pγt − Pγst∥ = ∥Pγt∗γs − Pγst∥ ≤ ∥R∇∥κπ.

□

The dual assembly map of Kasparov ν : K0(C∗(Γ)) → RK0(BΓ) is a generalization of the

Atiyah’s map Rep(Γ) → RK0(BΓ), π 7→ [Lπ]. Kasparov has shown that if Γ has a γ-element,

then ν is surjective, [35]. For the proof of Theorem 4.2 we only use the surjectivity of ν in the

case when Γ is the fundamental group of a closed Riemannian manifold with nonpositive sectional

curvature. This was proven by Kasparov in [35, Thm.6.7] by showing that Γ has a γ-element. By

the Hadamard-Cartan theorem the universal cover of M is contractible and hence M is a model

for BΓ. Moreover, it turns out that for quasidiagonal groups (e.g. residually finite groups), the

map ν remains surjective even if one restricts its domain to quasidiagonal K-homology classes

K0(C∗(Γ))qd, [16], [43], [17]. We will elaborate on this point in the proof of Theorem 4.2 below.
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Theorem 4.2. LetM be a closed connected Riemannian manifold with sectional curvature K(M) ≤
−κ < 0. Assume that Γ = π1(M) is residually finite, and b2i(M) ̸= 0 for some i > 0. Then there

exist a finite subset F ⊂ Γ and C > 0 with the following property. For any ε > 0 there is a unital

map ρ : Γ → U(n), satisfying sups,t∈Γ ∥ρ(st) − ρ(s)ρ(t)∥ < ε, such that for any representation

π : Γ→ GLn(C), sups∈F ∥ρ(s)− π(s)∥ > C.

Proof. Let F ⊂ Γ be the finite set from Notation 2.5. We construct a sequence of unital maps

{ρn : Γ→ U(Hn))}n with Hn finite dimensional Hilbert spaces and

lim
n→∞

sup
s,t∈Γ

∥ρ(st)− ρn(s)ρn(t)∥ = 0,

for which does not exist a sequence of homomorphisms {πn : Γ→ GL(Hn)}n such that

(5) lim
n→∞

∥ρn(s)− πn(s)∥ = 0, for all s ∈ F.

Since M = BΓ and b2k(Γ) ̸= 0, one has H2k(M,Q) ̸= 0. Since the Chern character is

a rational isomorphism, there is a nontorsion element y ∈ K̃0(M). Since the dual assembly map

ν : K0(C∗(Γ))qd → K0(BΓ) = K0(M) is surjective by [17, Thm.4.6], there is x ∈ K0(C∗(Γ))qd such

that ν(x) = y. The following realization of ν on quasidiagonal KK-classes was introduced in [16].

The element x is represented by a pair of unital ∗-representations Φ,Ψ : C∗(Γ)→ L(H), such that

Φ(a) − Ψ(a) ∈ K(H), a ∈ C∗(Γ), and with property that there is an increasing approximate unit

(pn)n of K(H) consisting of projections such that (pn)n commutes asymptotically with both Φ(a)

and Ψ(a), for all a ∈ C∗(Γ). Thus:

(6) lim
n
∥pnΦ(a)− Φ(a)pn∥ = 0, lim

n
∥pnΨ(a)−Ψ(a)pn∥ = 0, a ∈ C∗(Γ).

Moreover, since the group Γ is residually finite, there is a residually finite dimensional C∗-algebra

D which is intermediate between C∗(Γ) and C∗
r (Γ) so that x is in the image of the map K0(D)→

K0(C∗(Γ)). This is explained in [17] (Prop. 3.8 and Thm.4.6) where we used Kubota’s idea

[43] of considering quasidiagonal C∗-algebras which are intermediate between the full and the

reduced group C∗-algebras. This fact allows us to assume that Ψ is given by a direct sum of finite

dimensional unitary representations of Γ, so that we may arrange that each pn commutes with Ψ.

If rn = rank(pn), set An = Mrn(C), A =
∏
nAn, B =

∏
nAn/

⊕
nAn, and let q : A → B be

the quotient map. Define unital maps φ,ψ : C∗(Γ)→ A by

φ(a) = (φn(a))n and ψ(a) = (ψn(a))n,

where φn(a) = pnΦ(a)pn and ψn(a) = pnΨ(a)pn. Then φ is a unital completely positive map with

asymptotically multiplicative components and ψ is a unital ∗-homomorphism. Let Lφ and Lψ be

the corresponding Hilbert A-module bundles, with components Lφn and Lψn , see Definition 3.3.

As we noted in [16] based on work of Phillips and Stone [49, 3.18], [50, Thm.1], the bundles Lφn

are (U , ε′n)-flat with lim ε′n = 0 and each Lψn is flat since ψn is a true representation. Moreover,

by [16]:

y = ν(x) = [Lφn ]− [Lψn ], for all n ≥ 1.

The definition of almost flat bundles based on smooth connections as defined in [14], see Defini-

tion 3.1, is equivalent with the definition based on flatness of transition functions, see Definition 3.2,
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as verified by Hunger [32]. It follows that one can replace the bundles Lφn by smooth bundles En
isomorphic to Lφn and which are endowed with metric compatible connections (En,∇n) such that

∥R∇n∥ ≤ εn where εn ≤ C ′ε′n and hence lim εn = 0. The constant C ′ depends only on M and the

fixed cover U . Let hn : P1(M)→ T (En) be the holonomy representations defined via parallel trans-

port corresponding to (En,∇n) and let ρn(s) = hn(s) = P∇n
γs , s ∈ Γ. It follows from Theorem 3.10

that

Lρn
∼= En ∼= Lφn

for all sufficiently large n. On the other hand, since we work with geodesic loops γs representing

the elements of Γ, it follows by Proposition 4.1 that

sup
s,t∈Γ

∥ρn(st)− ρn(s)ρn(t)∥ ≤ κπεn.

We claim that the sequence (ρn) cannot be perturbed to a sequence of representations satisfying (5).

Seeking a contradiction, assume that there exists a sequence of representations πn : Γ→ GLrn(C)
such that limn ∥ρn(s) − πn(s)∥ = 0 for all s ∈ F . In this case, it follows from Remark 3.5 that

Lρn
∼= Lπn for all sufficiently large n and hence y = [Lρn ]− [Lψn ] = [Lπn ]− [Lψn ] ∈ K̃0(M). By [46],

all Chern classes of a flat complex bundle vanish over Q, so that the Chern character of y is zero as

both πn and ψn are representations. We obtained a contradiction, since y is a nontorsion element

of K̃0(M). □

Remark 4.3. There is a related approach to Theorem 1.2 based on the notion K-area of a Rie-

mannian manifold introduced by Gromov [27, §4]. Indeed, if M is an orientable closed connected

Riemannian manifold with non-positive sectional curvature of dimension dim(M) = 2m and resid-

ually finite fundamental group, thenM has infinite K-area by [27, Ex.(v’) p.25], see also [31]. This

yields a sequence (En,∇n) with limn ∥R∇n∥ = 0 and top Chern class cm(En) ̸= 0. Having this

sequence at hand, one proceeds like in the second part of the proof of Theorem 1.2.

5. Obstructions to C∗-stability

In this section we establish Theorem 1.7 as a consequence of a stronger result which assumes

weaker forms of stability, see Theorem 5.15 and Theorem 5.17.

We refer the reader to [35] for the definitions and the basic properties of the various KK-

theory groups introduced by Kasparov. We will freely employ the same notation as there. Thus

if X is a locally compact group and A, B are separable C∗-algebras we write RKK0(X;A,B) for

RKK(X;C0(X)⊗A,C0(X)⊗B) and RK0(X;B) for RKK0(X;C, B).

Let EΓ be the classifying space for proper actions of Γ, [5]. It is known that EΓ admits a

locally compact model, [34]. Let us recall that Γ has a γ-element if there exists a Γ − C0(EΓ)-

algebra A in the sense of [35] and two elements d ∈ KKG(A,C) and η ∈ KKΓ(C, A) (called Dirac

and dual-Dirac elements, respectively) such that the element γ = η ⊗A d ∈ KKΓ(C,C) has the

property that p∗(γ) = 1 ∈ RKKΓ(EΓ;C0(EΓ), C0(EΓ)) where p : EΓ → point, [56]. Let B be

a separable C∗-algebra endowed with the trivial Γ-action. Consider the dual assembly map with

coefficients in B:

α : KKΓ(C, B)→ RKK0
Γ(EΓ;C, B)
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defined by α(y) = p∗(y) where p : EΓ → point. As in [35], we write RKK0
Γ(EΓ;C, B) for

RKKΓ(EΓ;C0(EΓ), C0(EΓ)⊗B). .

We need the following result which is essentially due to Kasparov, [35, Th.6.5]. It was discussed

in [45, Thm.7.1], [22, Thm.23] and [23, Lem.10.1].

Theorem 5.1 (Kasparov). If Γ is a countable discrete group that admits a γ-element, then the dual

assembly map α : KKΓ(C, B)→ RKK0
Γ(EΓ;C, B) is split surjective with kernel (1− γ)KKΓ(C, B).

By universality of EΓ, there is a Γ-equivariant map (unique up to homotopy) σ : EΓ → EΓ.

It induces a map σ∗ : RKK0
Γ(EΓ;C, B)→ RKK0

Γ(EΓ;C, B). Recall that Q =
⊗

nMn is universal

UHF algebra and K0(Q) = Q and K1(Q) = 0. We can identify the representable rational K-theory

group RK0(X;Q) with RK0(X;Q), as in [36]. We view Q as a trivial Γ-algebra.

Corollary 5.2. Let Γ be a countable discrete group that admits a γ-element. Let B be a separable

trivial Γ-algebra such that B ∼= B ⊗Q. Then the composition

γKKΓ(C, B) ↪→ KKΓ(C, B)
α−→ RKK0

Γ(EΓ;C, B)
σ∗
−→ RKK0

Γ(EΓ;C, B)

is a surjective map.

Proof. It was shown in [5, p.275-6] that σ induces a rationally injective homomorphism

σ∗ : RK
Γ
0 (EΓ)→ RKΓ

0 (EΓ).

It follows that the map (σ∗)
∗ : Hom(RKΓ

0 (EΓ),K0(B)) → Hom(RKΓ
0 (EΓ),K0(B)) is surjective

since K0(B) ∼= K0(B)⊗Q. By the universal coefficient theorems stated as Lemma 2.3 of [33] and

Lemma 3.4 of [38] applied for the coefficient algebra B, the horizontal maps in the commutative

diagram

RKK0
Γ(EΓ;C, B)

σ∗

��

// Hom(RKΓ
0 (EΓ),K0(B))

(σ∗)∗

��
RKK0

Γ(EΓ;C, B) // Hom(RKΓ
0 (EΓ),K0(B))

are bijections. It follows that the restriction map σ∗ : RKK0
Γ(EΓ;C, B) → RKK0

Γ(EΓ;C, B) is

surjective. The statement follows now from Theorem 5.1. □

Let us recall that a set of operators S ⊂ L(H) on a separable Hilbert space H is quasidiagonal

if there exists an approximate unit of projections (pn)n of K(H) such that

lim
n→∞

∥[a, pn]∥ = 0, for all a ∈ S.

A representation π : A → L(H) of a separable C∗-algebra A is quasidiagonal if the set π(A) is

quasidiagonal. A C∗-algebras A is quasidiagonal if it admits a faithful quasidiagonal representation.

Let A, B be separable C∗-algebras. Any class x ∈ KK(A,B) is represented by some Cuntz

pair, i.e. a pair of ∗-homomorphisms φ,ψ : A→M(K(H)⊗B), such that φ(a)−ψ(a) ∈ K(H)⊗B,

for all a ∈ A. Assume that B is unital.

Definition 5.3 ( [16], [17]). An element x ∈ KK(A,B) is quasidiagonal if it is represented by a

Cuntz pair (φ,ψ) with the property that there exists an approximate unit of projections (pn)n of
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K(H) such that limn→∞ ∥[ψ(a), pn ⊗ 1B]∥ = 0, for all a ∈ A. The quasidiagonal elements form a

subgroup of KK(A,B), denoted by KK(A,B)qd. For other contexts it will be useful to modify the

definition by asking for the existence of an approximate unit of K(H)⊗B consisting of projections

(qn) such that limn→∞ ∥[ψ(a), qn]∥ = 0, for all a ∈ A.

Remark 5.4. (a) If θ : A→ D is a ∗-homomorphism, then θ∗[φ,ψ] = [φ ◦ θ, ψ ◦ θ] and hence

θ∗(KK(D,B)qd) ⊂ KK(A,B)qd.

(b) Let D,B be separable unital C∗-algebras with B nuclear. Fix a faithful unital representa-

tion ψ0 : D →M(K(H)) such that ψ0(D)∩K(H) = {0}. Then any element x ∈ KK(D,B) is repre-

sented by a Cuntz pair (φ,ψ) where ψ = ψ0⊗1B : A→M(K(H)⊗B), [52]. Therefore, if D is qua-

sidiagonal, then ψ0(D) is a quasidiagonal subset ofM(K(H)) and henceKK(D,B) = KK(D,B)qd.

Let us recall that a countable discrete group Γ is quasidiagonal if there is a faithful unitary

representation π : Γ → U(H) such that the set π(Γ) is quasidiagonal. Note that residually finite

groups or more generally maximally periodic groups (abbreviated MAP) are quasidiagonal. Resid-

ually amenable groups are quasidiagonal by [55]. Quasidiagonality of a group Γ is at least formally

weaker than quasidiagonality of the full group C∗-algebra C∗(Γ). For example, the question of

quasidiagonality of C∗(Γ) is completely open for all residually finite, infinite, property T groups.

Proposition 5.5 ( [17]). For a countable discrete group Γ, the following assertions are equivalent:

(i) Γ is quasidiagonal.

(ii) λΓ is weakly contained in a quasidiagonal representation π of Γ.

(iii) The canonical map qΓ : C∗(Γ)→ C∗
r (Γ) factors through a unital quasidiagonal C*-algebra.

Let jΓ and jΓ,r be the descent maps of Kasparov [35, Thm.3.11]. Thus γ ∈ KKΓ(C,C) gives
an element jΓ(γ) ∈ KK(C∗(Γ), C∗(Γ)) which induces a map

jΓ(γ)
∗ = jΓ(γ)⊗C∗(Γ) − : KK(C∗(Γ), B)→ KK(C∗(Γ), B).

The image of jΓ(γ)
∗ is usually denoted by γKK(C∗(G), B), while γrKK(C∗

r (Γ), B) is defined

similarly as the image of jΓ,r(γ)
∗. Since G is discrete and acts trivially on B, there is a canonical

isomorphism (called dual Green-Julg isomorphism), [35],

κ : KKΓ(C, B)
∼=−→ KK(C∗(Γ), B)

which is compatible with the module structure over the group ring of Γ. Moreover, by [48, Lemma

11], for every x ∈ KKΓ(C,C), the following diagram is commutative.

(7) KKΓ(C, B)
κ //

x⊗−
��

KK(C∗(Γ), B)

jΓ(x)⊗−
��

KKΓ(C, B)
κ
// KK(C∗(Γ), B)

Kasparov [35, 3.12] has shown that the canonical surjection qΓ : C∗(Γ) → C∗
r (Γ) induces an

isomorphism of γ-parts q∗Γ : γrKK(C∗
r (Γ), B)

∼=−→ γKK(C∗(Γ), B). In particular:
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Proposition 5.6 (Kasparov [35]). If Γ is a discrete countable group that admits a γ-element, then

γKK(C∗(Γ), B) ⊂ q∗Γ(KK(C∗
r (Γ), B)).

We gave an exposition of Proposition 5.6 in [17]. By [35, Thm.3.4], see also [38, p.313], there

is natural descent isomorphism

λΓ : RKK0
Γ(EΓ;C, B)

∼=−→ RKK0(BΓ;C, B).

Let ν : KK0(C∗(Γ), B)→ RK0(BΓ;B) be the map

ν = λΓ ◦ σ∗ ◦ α ◦ κ−1 : KK(C∗(Γ), B) ∼= KKΓ(C, B)→ RKK0
Γ(EΓ;C, B) ∼= RKK0(BΓ;C, B).

Note that σ∗ ◦ α = p∗ where p : EΓ→ point. Abusing terminology, we shall also refer to ν as the

dual assembly map.

As in [17], we rely on Kubota’s idea [43] of using a quasidiagonal C∗-algebra intermediate

between C∗
r (Γ) and C

∗(Γ) which strengthens significantly the construction of almost flat K-theory

classes based on K-quasidiagonality of C∗(Γ), introduced in [16].

In particular Thm. 4.6 from [17] admits a version with coefficients:

Theorem 5.7. Let Γ be a countable discrete quasidiagonal group and let B be a separable nuclear

unital C∗-algebra. If Γ admits a γ-element, then γKK(C∗(Γ), B)) ⊂ KK(C∗(Γ), B)qd. It follows

that ν(KK0(C∗(Γ), B)) = ν(KK(C∗(Γ), B)qd) and hence ν(KK(C∗(Γ), B)qd) = RK0(BΓ;B) if

B ∼= B ⊗Q.

Proof. The factorization C∗(Γ)
qD−→ D → C∗

r (Γ) of qΓ with D unital and quasidiagonal given by

Proposition 5.5 in conjunction with Remark 5.4 implies that

q∗Γ(KK(C∗
r (Γ), B)) ⊂ q∗D(KK(D,B)) = q∗D(KK(D,B)qd) ⊂ KK(C∗(Γ), B)qd.

From this and Proposition 5.6 we obtain that γKK(C∗(Γ), B)) ⊂ KK(C∗(Γ), B)qd.

By Theorem 5.1, α vanishes on (1 − γ)KKΓ(C, B)). Since the diagram (7) is commutative,

this group is mapped to (1− γ)KK0(C∗(Γ), B) by κ and hence

ν(KK0(C∗(Γ), B)) = ν(γKK0(C∗(Γ), B)) = ν(KK(C∗(Γ), B)qd).

By Corollary 5.2, the map ν is surjective if B ∼= B ⊗Q. □

Definition 5.8. Let Γ be a countable discrete group and let B be a class of unital C∗-algebras.

(a) Γ is called locally GL(B)-stable if for any sequence of unital maps {φn : Γ→ U(Bn)} with
Bn ∈ B and

(8) lim
n→∞

∥φn(st)− φn(s)φn(t)∥ = 0, for all s, t ∈ Γ,

there exists a sequence of homomorphisms {πn : Γ→ GL(Bn)} such that

(9) lim
n→∞

∥φn(s)− πn(s)∥ = 0, for all s ∈ Γ.

(b) Γ is called locally U(B)-stable if for any sequence of unital maps {φn : Γ → U(Bn)} that
satisfies (8), there exists a sequence of homomorphisms {πn : Γ→ U(Bn)} satisfying (9).

(c) If B = {Bn : n ≥ 1}, property (a) will be also called local {GL(Bn) : n ≥ 1}-stability and

property (b) local {U(Bn) : n ≥ 1}-stability
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Remark 5.9. The following observations are immediate.

(i) If Γ is locally U(B)-stable, then Γ is locally GL(B)-stable.
(ii) If B is the class of all unital separable C∗-algebras, then Γ is locally U(B)-stable if and only

if Γ is C∗-stable in the sense [21] or equivalently C∗(Γ) is weakly semiprojective.

(iii) If B = {Mn(C) : n ∈ N}, then Γ is locally U(B)-stable if and only if Γ is matricially stable

in the sense of [21], [17], or locally stable in the sense of Definition 1.1.

(iv) Let X be a compact metrizable space. It is easily verified that if an MF group Γ is locally

{GLn(C(X)) : n ∈ N}-stable, then Γ is also locally {GLn(C) : n ∈ N}-stable.

Lemma 5.10. Let Γ be a countable discrete MF group.

(i) If Γ is locally {Un(C) : n ∈ N}-stable, then Γ is MAP and hence quasidiagonal.

(ii) If Γ is finitely generated and Γ is locally {GLn(C) : n ∈ N}-stable, then Γ is residually finite

and hence quasidiagonal.

Proof. (i) Since Γ is MF, it embeds in U(
∏
nMn/

⊕
nMn). By local {Un(C) : n ∈ N}-stability we

obtained an embedding of Γ in
∏
n U(n). (ii) By local {GLn(C) : n ∈ N}-stability we obtained an

embedding of Γ in
∏
nGLn(C). If Γ is finitely generated, it follows by Malcev’s theorem [8, 6.4.13]

that Γ is residually finite and hence quasidiagonal. □

Notation 5.11. For a compact space Y, let RK0(Y ;B)flat be the subgroup of RK0(Y ;B) generated

by locally trivial bundles with typical fiber projective B-modules fBk, f2 = f = f∗ ∈Mk(B), con-

structed from finite open covers U = (Ui)i∈I of Y and 1-Cech cocyles vij : Ui∩Uj → GL(fMk(B)f)

with the property that each function vij is constant. Recall that we identify RK0(Y ;B) with the

operator K-theory group K0(C(Y ) ⊗ B). For a compact subspace Y of BΓ, we denote by νY the

composition of the dual assembly map ν : KK(C∗(Γ), B)→ RK0(BΓ;B) with the restriction map

RK0(BΓ;B)→ RK0(Y ;B). For B = C(T)⊗Q, we will use the natural isomorphisms

(10) RK0(Y ;B) ∼= K0(C(Y )⊗ C(T)⊗Q) ∼= RK0(Y × T;Q).

Proposition 5.12. Let B be a class of unital separable C∗-algebras such that if B ∈ B, and

f2 = f = f∗ ∈ Mk(B) for k ∈ N, then fMk(B)f ∈ B. Let Γ be a discrete countable group and let

Y ⊂ BΓ be a finite connected CW-complex. If Γ is locally GL(B)-stable, then for any B ∈ B,

(11) νY (KK(C∗(Γ), B)qd) ⊂ RK0(Y ;B)flat

More generally, if (Bk) in an increasing sequence of C*-algebras in B sharing the same unit and B

is the C∗-completion of
⋃
k Bk, then

(12) νY (KK(C∗(Γ), B)qd) ⊂ lim−→k
RK0(Y ;Bk)flat ⊂ RK0(Y ;B)flat.

Proof. We prove (11) first. Let ȷ : Γ ↪→ U(C∗(Γ)) be the natural inclusion. The orbit space of the

left action of Γ on ẼΓ × C∗(Γ), defined by s · (p̃, v) = (s · p̃, ȷ(s)v), is the total space of a (flat)

Hilbert C∗(Γ)-module bundle EΓ×ȷ C∗(Γ)→ BΓ denoted by Lȷ.

The restriction of Lȷ to Y , denoted LY , yields a self-adjoint projection p = pY in matrices over

the ring C(Y )⊗ C[Γ] constructed as follows. Let (Ui)i∈I be finite covering of Y by open sets such

that Lȷ is trivial on each Ui and Ui ∩Uj is connected. Using trivializations of Lȷ on Ui one obtains

group elements sij ∈ G which define a 1-cocycle that is constant on each nonempty set Ui ∩Uj and
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which represents LY . Thus s−1
ij = sji and sij · sjk = sik whenever Ui ∩ Uj ∩ Uk ̸= ∅. Let (χi)i∈I

be positive continuous functions with χi supported in Ui and such that
∑

i∈I χ
2
i = 1. Set m = |I|

and let (eij) be the canonical matrix unit of Mm(C). Then LY is represented by the selfadjoint

projection

(13) p =
∑
i,j∈I

eij ⊗ χiχj ⊗ sij ∈Mm(C)⊗ C(Y )⊗ C∗(Γ).

It was shown by Kasparov [35, Lemma 6.2], [37], that the map

νY : KK(C∗(Γ), B)
ν−→ K0(BΓ;B)→ K0(Y ;B) ∼= K0(C(Y )⊗B)

is given by νY (x) = [p]⊗C∗(Γ) x.

The restriction of νY to quasidiagonal KK-classes can be described as follows, see [16]. Each

element x ∈ KK(C∗(Γ), B)qd is represented by a pair of nonzero ∗-representations Φ(r) : C∗(Γ)→
M(K(H) ⊗ B), r = 0, 1, such that Φ(0)(a) − Φ(1)(a) ∈ K(H) ⊗ B, a ∈ C∗(Γ), and with the

property that there is an increasing approximate unit (pn)n of K(H) consisting of projections

such that (pn⊗ 1B)n commutes asymptotically with both φ(0)(a) and φ(1)(a), for all a ∈ C∗(Γ). It

follows that the compressions φ
(r)
n (·) = (pn⊗1B)Φ(r)(·)(pn⊗1B) are completely positive asymptotic

homomorphisms φ
(r)
n : C∗(Γ) → K(H) ⊗ B, r = 0, 1. Let 1 denote the unit of C∗(Γ). It is

routine to further perturb these maps to completely positive asymptotic homomorphisms such that

f
(r)
n := φ

(r)
n (1) are selfadjoint projections in matrices over B. Hence we can view these maps as

unital completely positive maps φ
(r)
n : C∗(Γ) → D

(r)
n , where each D

(r)
n = f

(r)
n (K(H) ⊗ B)f

(r)
n is

Morita equivalent to B. As argued in [16, Prop.2.5], if id = idMm(C(Y )),

(14) νY (x) = [p]⊗C∗(Γ) x = (id ⊗ φ(0)
n )♯(p)− (id ⊗ φ(1)

n )♯(p),

for all sufficiently large n. Here (id ⊗ φ
(r)
n )♯(p) ∈ K0(C(Y ) ⊗ B) is the class of the projection

χ(1/2,1](x
(r)
n ) obtained by continuous functional calculus from the approximate projection x

(r)
n =∑

i,j∈I eij⊗χiχj⊗φ
(r)
n (sij). Since φ

(r)
n (s) are almost unitary elements and since Γ is countable, there

exist sequences of unital maps σ
(r)
n : Γ→ U(D

(r)
n ) such that limn ∥φ(r)

n (s)−σ(r)n (s)∥ = 0 for all s ∈ Γ.

The sequences (σ
(r)
n ), r = 0, 1 are asymptotically multiplicative in the sense of (8). If Γ satisfies

Definition 5.8 (b), then there exist sequences of group homomorphisms {π(r)n : Γ → GL(D
(r)
n )},

r = 0, 1, such that

(15) lim
n
∥σ(r)n (s)− π(r)n (s)∥ = 0

for all s ∈ Γ.

Note that the projections e
(r)
n , r = 0, 1, defined by

e(r)n = (id ⊗ π(r)n )(p) =
∑
i,j∈I

eij ⊗ χiχj ⊗ π(r)n (sij) ∈Mm(C)⊗ C(Y )⊗D(r)
n ,

correspond to flat bundles since they are realized via the constant cocycles π
(r)
n (sij) and hence

[e
(0)
n ] − [e

(1)
n ] ∈ RK0(Y,B)flat. From (13), (14) and (15) we deduce that νY (x) = [e

(0)
n ] − [e

(1)
n ] for

all sufficiently large n, since ∥σ(r)n (sij) − π(r)n (sij)∥ → 0. We conclude that νY (x) ∈ RK0(Y,B)flat,

as desired.
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The proof for (12) is similar. One makes a small adjustment to the previous argument. By

assumption,
⋃
k Bk is dense in B. Enumerate Γ = {gn}n and modify the maps (σ

(r)
n ), r = 0, 1

as follows. Choose selfadjoint projections h
(r)
n in K(H) ⊗ Bk(n,r) for sufficiently large k(n, r) ∈ N

such that h
(r)
n approximate f

(r)
n and dist(φ

(r)
n (s), U(h

(r)
n (K(H) ⊗ Bk(n,r))h

(r)
n )) < 1/n for all s ∈

{g1, ..., gn}. Letting D
(r)
n = h

(r)
n (K(H) ⊗ Bk(n,r))h

(r)
n , we can now construct σ

(r)
n : Γ → U(D

(r)
n )

with the property that limn ∥φ(r)
n (s)− σ(r)n (s)∥ = 0 for all s ∈ Γ. The rest of the proof is as in (i).

Note that [e
(0)
n ]− [e

(1)
n ] ∈ RK0(Y,Bk(n,r))flat. □

Let X be a finite connected CW complex. Let Γ be a discrete countable group and let ρ : Γ→
GLr(C(X)) be a group homomorphism. Consider the flat bundle Lρ defined as EΓ×ρC(X)r → BΓ

whose typical fiber is C(X)r. Let Y ⊂ BΓ be a finite CW complex. We can view the restriction of

Lρ to Y , denoted Lρ|Y , as a rank r complex vector bundle over Y ×X.

Theorem 5.13 (Baird-Ramras, [4]). Suppose that Hk(X;Q) = 0 for k > d Then for all m > 0,

the Chern classes cd+m(Lρ|Y ) ∈ H2d+2m(Y ×X;Z) map to zero in H2d+2m(Y ×X;Q).

We shall apply Theorem 5.13 for X = {point} with d = 0 and for X = T with d = 1.

Lemma 5.14. Let X be a topological space with H2(X,Q) = 0 and such that Heven(X × T,Q) is

generated as a ring by H0(X × T,Q)⊕H2(X × T,Q). Then Hk(X,Q) = 0 for all k > 1.

Proof. Let π1 : X × T→ X and π2 : X × T→ T be the canonical projections. By [47, Thm.61.6],

the cross product (x, y) 7→ x× y = π∗1(x) ∪ π∗2(y) induces an isomorphism of algebras

(16) θ : H∗(X,Q)⊗Q H
∗(T,Q)→ H∗(X × T,Q).

Since H2(X,Q) = 0, we must have H1(X,Q)⊗Q H
1(T,Q) ∼= H2(X × T,Q).

By [47, Thm.61.5], in the cohomology ring H∗(X × T,Q), we have

(α× β) ∪ (α′ × β′) = (−1)(degβ)(degα′)(α ∪ α′)× (β ∪ β′)

for α, α′ ∈ H∗(X,Q) and β, β′ ∈ H∗(T,Q). It follows that in our situation γ ∪ γ′ = 0 for all

γ, γ′ ∈ H2(X × T,Q) as β ∪ β′ = 0 for β, β′ ∈ H1(T,Q). Since Heven(X × T,Q) is generated as a

ring by H0(X × T,Q)⊕H2(X × T,Q) we deduce that H2k(X × T,Q) = 0 for all k ≥ 2. Since

H2k(X,Q)⊕H2k−1(X,Q) ∼= H2k(X × T,Q)

by (16), it follows that Hj(X,Q) = {0} for all j ≥ 2. □

The following is the main result of the second part of our paper. Its first part (i) strengthens

(at least formally) the main result of [17], since in principle, local {GLn(C) : n ∈ N}-stability is

weaker than local {Un(C) : n ∈ N}-stability.

Theorem 5.15. Let Γ be a countable discrete group that admits a γ-element. Suppose that Γ is

either MF and finitely generated or that Γ is quasidiagonal.

(i) If Γ is locally {GLn(C) : n ∈ N}-stable, then H2k(Γ,Q) = 0 for all k > 0.

(ii) If Γ is locally {GLn(C(T)) : n ∈ N}-stable, then Hk(Γ,Q) = 0 for all k > 1.
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Remark 5.16. Theorem 5.15 applies to finitely generated linear groups and to residually finite

hyperbolic groups, among others. Indeed, linear groups are MF by [17] and exact by [29] and hence

they admit a γ-element by [56]. In particular, since it was shown in [3] that if Γ is a cocompact

lattice in a real semisimple Lie group G which is not locally isomorphic to either SO(n, 1) for n

odd or SL3(R), then b2i(Γ) > 0 for some i > 0, and since Γ is finitely generated by cocompactness,

we deduce that Γ is not {GLn(C) : n ∈ N}-stable. Hyperbolic groups are exact by [8]. It is not

known whether there exists a hyperbolic group which is not residually finite.

Proof. (for Thm. 5.15) By Lemma 5.10 and Remark 5.9 (iv), MF finitely generated groups that

satisfy the assumptions from (i) or from (ii) are quasidiagonal. Thus we may assume that Γ is

quasidiagonal for the remainder of the proof.

Let B = Q or B = C(T)⊗Q. By Theorem 5.7 we have a surjective map

ν : KK(C∗(Γ), B)qd → RK0(BΓ;B).

If BΓ is written as the union of an increasing sequence (Yi)i of finite CW complexes, then as

explained in the proof of Lemma 3.4 from [38], there is a Milnor lim←−
1 exact sequence which gives

(17) RK0(BΓ;B) ∼= lim←−RK
0(Yi;B)

since K0(B) is divisible. We denote by νi the composition of the map ν defined above with the

restriction map RK0(BΓ;B)→ RK0(Yi;B).

(i) For B = Q, using the naturality of the Chern character, we have a commutative diagram

KK(C∗(Γ),Q)qd

(νi) ((

ν // RK0(BΓ;Q)

��

ch // Heven(BΓ;Q)

��
lim←−RK

0(Yi;Q)
ch // lim←−H

even(Yi;Q)

with bijective vertical maps. Recall that we identify RK0(Y ;Q) with RK0(Y ;Q), [36]. Write Q
as inductive limit of matrix algebras Bk ∼= Mk!(C). By Proposition 5.12, the image of each νi is

contained in lim−→k
RK0(Yi;Bk)flat and hence by Theorem 5.13 applied for X = {point}, the image

of the map ch ◦ νi : RK0(Yi;Q)→ Heven(Yi;Q) is contained in H0(Yi;Q). Since ν is surjective, it

follows that ch(RK0(BΓ;Q)) = Heven(BΓ;Q) and hence H2k(Γ,Q) = 0 for all k ≥ 1.

(ii) Now let B = C(T) ⊗Q and write B as the inductive limit of Bk = C(T) ⊗Mk!(C). Just

as above, we denote by νi the composition of the map ν with the restriction map RK0(BΓ;B)→
RK0(Yi;B) ∼= RK0(Yi × T;Q). By (10) and (17), we have

RK0(BΓ;B) = RK0(BΓ;C(T)⊗Q) ∼= lim←−RK
0(Yi;C(T)⊗Q) ∼=

lim←−RK
0(Yi × T;Q) ∼= lim←−RK

0(Yi × T;Q) ∼= RK0(BΓ× T;Q).

Abusing the notation, we denote the map KK(C∗(Γ), B)qd → RK0(BΓ× T;Q) obtained by com-

posing ν with the isomorphism RK0(BΓ;B) ∼= RK0(BΓ× T;Q) from above, again by ν.

We are going to argue that each map νi : KK(C∗(Γ), B)qd → RK0(Yi×T;Q) has the property

that the rational Chern classes satisfy cm(νi(y)) = 0 for all y ∈ KK(C∗(Γ), B)qd and m ≥ 2.

Indeed, by Proposition 5.12, the image of each νi is contained in lim−→k
RK0(Yi;Bk)flat and hence
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by Theorem 5.13 applied for X = T, we deduce the desired property. It follows that, for all

y ∈ KK(C∗(Γ), B)qd, the Chern character of νi(y) can be computed as

ch(νi(y)) = exp(c1(νi(y))).

Using the commutative diagram with bijective vertical arrows

KK(C∗(Γ), C(T)⊗Q)qd

(νi) **

ν // RK0(BΓ× T;Q)

��

ch // Heven(BΓ× T;Q)

��
lim←−RK

0(Yi × T;Q)
ch // lim←−H

even(Yi × T;Q)

we deduce that ch(ν(y)) = exp(c1(ν(y))) for all y ∈ KK(C∗(Γ), B)qd and hence ch(z) = exp(c1(z))

for all z ∈ RK0(BΓ×T;Q), by surjectivity of ν. Since the Chern character is a rational isomorphism

and the image of the first Chern class has degree two, it follows that Heven(BΓ×T,Q) is generated

as a ring by H0(BΓ × T,Q) ⊕ H2(BΓ × T,Q). The conclusion of the theorem follows now from

Lemma 5.14 since H∗(BΓ,Q) ∼= H∗(Γ,Q) and we already know that H2(BΓ,Q) = 0 by part (i)

above and Remark 5.9 (iv). □

The first part of the theorem below was already proved in our earlier paper [17]. We include

the statement for the sake of completeness.

Theorem 5.17. Let Γ be an MF countable discrete group that admits a γ-element.

(i) If Γ is locally {Un(C) : n ∈ N}-stable, then H2k(Γ,Q) = 0 for all k > 0.

(ii) If Γ is locally {Un(C(T)) : n ∈ N}-stable, then Hk(Γ,Q) = 0 for all k > 1.

Proof. By Lemma 5.10(i), Γ is quasidiagonal. Since local U(B)-stability implies local GL(B)-
stability, Theorem 5.17 follows from Theorem 5.15. □
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