QUASI-REPRESENTATIONS OF SURFACE GROUPS

JOSE R. CARRION AND MARIUS DADARLAT

ABSTRACT. By a quasi-representation of a group G we mean an ap-
proximately multiplicative map of G to the unitary group of a unital
C™-algebra. A quasi-representation induces a partially defined map at
the level K-theory.

In the early 90s Exel and Loring associated two invariants to almost-
commuting pairs of unitary matrices v and v: one a K-theoretic in-
variant, which may be regarded as the image of the Bott element in
Ko(C(T?)) under a map induced by quasi-representation of Z* in U(n);
the other is the winding number in C\ {0} of the closed path t —
det(tvu+ (1 —t)uv). The so-called Exel-Loring formula states that these
two invariants coincide if |Juv — vul| is sufficiently small.

A generalization of the Exel-Loring formula for quasi-representations
of a surface group taking values U(n) in was given by the second-named
author. Here we further extend this formula for quasi-representations of
a surface group taking values in the unitary group of a tracial unital
C™-algebra.

1. INTRODUCTION

Let G be a discrete countable group. In [34] the second-named author
studied the question of how deformations of the group G (or of the group
C*-algebra C*(()) into the unitary group of a (unital) C*-algebra A act on
the K-theory of the algebras ¢!(G) and C*(G). By a deformation we mean
an almost-multiplicative map, a quasi-representation, which we will define
precisely in a moment. Often, matrix-valued multiplicative maps are inade-
quate for detecting the K-theory of the aforementioned group algebras. In
fact, if a countable, discrete, torsion free group G satisfies the Baum-Connes
conjecture, a unital finite dimensional representation m: C*(G) — M, (C)
induces the map r - ¢, on Ko(C*(G)), where ¢ is the trivial representation
of G (see |3 Proposition 3.2]). It turns out that almost-multiplicative maps
detect K-theory quite well for large classes of groups: one can interpolate
any group homomorphism of Ky(C*(G)) to Z on large swaths of Ko(C*(G))
using quasi-representations (see [3, Theorem 3.3]).

Knowing that quasi-representations may be used to detect K-theory, we
turn to how it is that they act. An index theorem of Connes, Gromov and
Moscovici in [2] is very relevant to this topic, in the following context. Let
M be a closed Riemannian manifold with fundamental group G and let D
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be an elliptic pseudo-differential operator on M. The equivariant index of
D is an element of Ko(¢!(G)). Connes, Gromov and Moscovici showed that
the push-forward of the equivariant index of D under a quasi-representation
of G coming from parallel transport in an almost-flat bundle E over M is
equal to the index of D twisted by E.

At around the same time, Exel and Loring studied two invariants associ-
ated to pairs of almost-commuting scalar unitary matrices u,v € U(r). One
is a K-theory invariant, which may be regarded as the push-forward of the
Bott element 3 in the Ko-group of C(T?) = C*(Z?) by a quasi-representation
of Z? into the unitary group U(r). The Exel-Loring formula proved in [6]
states that this invariant equals the winding number in C\ {0} of the path
t > det ((1—t)uv+tvu). An extension of this formula for almost commuting
unitaries in a C*-algebra of tracial rank one is due to to H. Lin and plays
an important role in the classification theory of amenable C*-algebras. In a
different direction, the Exel-Loring formula was generalized in [4] to finite
dimensional quasi-representations of a surface group using a variant of the
index theorem of [2].

In [4], the second-named author used the Mishchenko-Fomenko index the-
orem to give a new proof and a generalization of the index theorem of
Connes, Gromov and Moscovici that allows C*-algebra coefficients. In this
paper we use this generalization to address the question of how a quasi-
representation m of a surface group in the unitary group of a tracial C*-
algebra acts at the level of K-theory. We extend the Exel-Loring formula to
a surface group I'y (with canonical generators «;, ;) and coefficients in a uni-
tal C*-algebra A with a trace 7. Briefly, writing Ko(¢}(Ty)) = Z[1] ® Zu[S,)
we have

(o) =y (g (T] (e m(anl ) )

=1

where [¥,] is the fundamental class in K-homology of the genus g surface
3, and pu: Ko(3,) — Ko(¢1(Q)) is the ¢!-version of the assembly map of
Lafforgue. For a complete statement see Theorem In the proof we make
use of Chern-Weil theory for connections on Hilbert A-module bundles as
developed by Schick [12] and the de la Harpe-Skandalis determinant [5] to
calculate the first Chern class of an almost-flat Hilbert module C*-bundle
associated to a quasi-representation (Theorem [5.4]).

The paper is organized as follows. In Section 2] we define quasi-representations
and the invariants we are interested in, and state out main result, Theo-
rem The invariants make use of the Mishchenko line bundle, which we
discuss in Section[3] The push-forward of this bundle by a quasi-representation
is considered in Section [d] Section [f] contains our main technical result, The-
orem which computes one of our invariants in terms of the de la Harpe-
Skandalis determinant [5]. To obtain the formula given in the main result,
we must work with concrete triangulations of oriented surfaces, and this is
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contained in Section [f] Assembling these results in Section [7] yields a proof
of Theorem (2.6

2. THE MAIN RESULT

In this section we state our main result. It depends on a result in [4] that
we revisit. Let us provide some notation and definitions first.
Let G be a discrete countable group and A a unital C*-algebra.

Definition 2.1. Let ¢ > 0 and let F be a finite subset of G. An (F,¢)-
representation of G in U(A) is a function 7: G — U(A) such that for all
s,t € F we have

o 1(l) =1,
o ||m(s71) —w(s)*|| < e, and
o [[m(st) —m(s)m(t)]| <e.

We refer to the second condition by saying that 7 is (F,e)-multiplicative.
Let us note that the second condition follows from the other two if we
assume that F is symmetric, i.e. F = F~'. A quasi-representation is an
(F,e)-representation where F and e are not necessarily specified.

A quasi-representation 7: G — U(A) induces a map (also denoted ) of
the Banach algebra £1(G) to A by > Ass — > Agm(s). This map is a unital
linear contraction. We also write 7 for the extension of 7 to matrix algebras

over /1(@).

2.2. Pushing-forward via quasi-representations. A group homomor-
phism 7: G — U(A) induces a map m,: Ko(/1(G)) — Ko(A) (via its Ba-
nach algebra extension). We think of a quasi-representation 7 as induc-
ing a partially defined map my at the level of K-theory, in the following
sense. If e is an idempotent in some matrix algebra over ¢}(G) such that
|7(e) — m(e)?|| < 1/4, then the spectrum of 7(e) is disjoint from the line
{Rez = 1/2}. Writing x for the characteristic function of {Rez > 1/2}, it
follows that x(m(e)) is a idempotent and we set

my(e) = [X(ﬂ'(e))] € Ko(A).

For an element z in K (¢'(G)), we make a choice of idempotents eg and e; in
some matrix algebra over ¢! (G) such that 2 = [eg] —[e1]. If || (e;) —7(e;)?|| <
1/4 for i € {0,1}, write m4(x) = my(eg) — m4(e1). The choice of idempotents
is largely inconsequential: given two choices of representatives one finds that
if 7 is multiplicative enough, then both choices yield the same element of
Ky(A).

Of course, the more multiplicative 7 is, the more elements of Ko(¢'(G))
we can push-forward into Ky(A).
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2.3. An index theorem. Fix a closed oriented Riemannian surface M and
let G be its fundamental group. Fix also a unital C*-algebra A with a tra-
cial state 7. Write Ko(M) for KK (C(M),C). Because the assembly map
p: Ko(M) — Ko(¢*(G)) is known to be an isomorphism in this case [9], we
have
Ko(01(@)) = Z[1] & Zu[M)]

where [M] is the fundamental class of M in Ky(M) |1, Lemma 7.9]. Since
we are interested in how a quasi-representation of G acts on Ko(¢1(G)),
we would like to study push-forward of the generator u[M] by a quasi-
representation.

2.3.1. Let M be a closed connected orientable manifold with fundamental
group G. Consider the universal cover M — M and the diagonal action
of G on M x (}(G) giving rise to the so-called Mishchenko line bundle ¢,

M x¢ 1(G) — G. We will discuss it in more detail in Section [3, where we
will give a description of it as the class of a specific idempotent e in some
matrix algebra over C(M) ® }(Q).

If 7 is a quasi-representation of G in U(A), then idg(pr) ®7 is an almost-
multiplicative unital linear contraction on C(M) ® ¢'(G) with values in
C(M) ® A. Assuming that 7 is sufficiently multiplicative, we may define
the push-forward of the idempotent e by idg(yr) @, just as in @ We set

Ur == (o) @m)3(0) := (idear) ®m)g(e) € Ko(C(M) ®@ A).

Let D be an elliptic operator on M™ and let u[D] € Ko(¢*(G)) be its image
under the assembly map. Let ¢y and g; be idempotents in some matrix
algebra over (! (G) such that p[D] = [qo] — [q1] and write my(u[D]) := m3(qo) —
m4(q1)- By [4; Corollary 3.8], if 7 : G — A is sufficiently multiplicative, then

(1) 7(m(u[D]) = (=1)" V2 ((pr ch(a(D)) UTA(TM © C) Uchy (6x), [M]),

where p: TM — M is the canonical projection, ch(c (D)) is the Chern char-
acter of the symbol of D, Td(TcM) is the Todd class of the complexi-
fied tangent bundle, and [M] is the fundamental homology class of M. Set
a = (=1)"+)/2(pich(o(D)) U Td(TM @ C). Then () becomes

r(my(uD)) = (@ U chr (), [M]) = ( chr (), 1 [M]),

On the other hand, it follows from the Atiyah-Singer index theorem that
the Chern character in homology ch : Ko(M) — H.(M;Q) is given by

ch[D] = ((—1)""* /2y, ch(o(D)) U TA(TeM)) N [M] = o N [M].
It follows that
(2) T(Trﬁ(lu’[D]) = <Ch7'(€7r)7 Ch[DD

In the case of surfaces this formula specializes to the following statement.
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Theorem 2.4 (cf. [4, Corollary 3.8]). Let M be a closed oriented Riemann-
ian surface of genus g with fundamental group G. Let qy and q1 be idempo-
tents in some matriz algebra over £*(G) such that u[M] = [qo] — [q1]. Then
there exist a finite subset G of G and w > 0 satisfying the following.

Let A be a unital C*-algebra with a tracial state 7 and let m: G — U(A)
be a (G,w)-representation. Write my(u[M]) := my(qo) — m4(q1). Then

7 (s (u[M])) = {ch (L), [M]).

Here ch,: Ko(C(M) ® A) — H?*(M,R) is a Chern character associated
to 7 (see Section[5), and [M] € Ha(M,R) is the fundamental class of M.

Proof. Given another pair of idempotents ¢, ¢ in some matrix algebra over
?Y(G) such that u[M] = [g}] — [¢}], there is an wy > 0 such that if 0 <
w < wo, then for any (G,w)-representation m we have m4(qo) — m4(q1) =
m4(qp) — m(q1). We are therefore free to prove the theorem for a convenient
choice of idempotents.

It is known that the fundamental class of M in Ky(M) coincides with
[04] 4+ (g — 1)[¢] where 9, is the Dolbeault operator on M and ¢: C(M) — C
is a character (see [1, Lemma 7.9]). Let ey, e1, fo, f1 be idempotents in some
matrix algebra over /!(G) such that

p[0g) = leo] = [ea] and  pule] = [fo] = [f1].

(This gives an obvious choice of idempotents ¢ and ¢} in some matrix
algebra over £(G) so that u[M] = [g}] — [¢}].) We want to prove that

7(my((2))) = (chr(fx), ch(2))

for z = [M] € Ko(M). Because of the additivity of this last equation, the
fact that [M] = [0g] + (¢ — 1)[¢], and , it is enough to prove that

(3) T(Wﬁ(u["])) = <Ch7'(€7r)a0h[b]>'
By [4, Corollary 3.5]

7(my(ple])) = 7((lr, [[] ® 14))

We can represent £, by a projection f in matrices over C(M, A). The defi-
nition of the Kasparov product implies that

([bz], [t] @ 1a) = wlf] = [f(z0)] € Ko(A).

On the other hand, the definition of ch; (see [12, Definition 4.1]) implies
that ch,(f) = 7(f(x0)) + a term in H?(M,R). Since ch[] = 1 € Ho(M,R),
we get

(4) {chr(f), ch[e]) = 7(f (x0))-
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2.5. Statement of the main result. We will often write X, for the closed
oriented surface of genus g and I';, for its fundamental group. It is well known
that I'y has a standard presentation

ﬁ[aiyﬁi]>7

i=1

I_‘g - <a17617"'7a97/89

where we write [, 8] for the multiplicative commutator aBa~15~1.
Our main result is the following.

Theorem 2.6. Let g > 1 be an integer and let qo and q1 be idempotents in
some matriz algebra over €*(Ty) such that u[X,] = [q0] — [¢1] € Ko(¢*(Ty)).
There exists eg > 0 and a finite subset Fo of I'y such that for every 0 < e < g
and every finite subset F 2 Fq of I'y the following holds.

If A is a unital C*-algebra with a trace T and m: T'y — U(A) is an (F,¢€)-
representation, then

1 g
(5) T(m(u[X])) = 57| lo m(aq), m(Bi)] ) ),
(rtutsaD) = gz (roe (11 )
where my(pu[X4]) := m(q0) — m(q1)-
The rest of the paper is devoted to the proof.

Remark 2.7. The case g = 1 recovers the Exel-Loring formula as well as its
extension by H. Lin [10] for C*-algebras of tracial rank one. Lin’s strategy
was a reduction to the finite-dimensional case of [6] using approximation
techniques.

The following proposition says that we may associate quasi-representations
with unitaries that nearly satisfy the group relation. The proof is in Sec-
tion [7

Proposition 2.8. For every e > 0 and every finite subset F of I'y there is a
0 > 0 such that if A is a unital C*-algebra with a trace T and uy,v1, ..., ug, vy
are unitaries in A satisfying

g

[T, vl - 1” <6,

=1

then there exists an (F,e)-representation w: I'y — U(A) with m(a;) =
and 7(Bi) = v;, foralli € {1,...,g}.
Example. To revisit a classic example, consider the noncommutative 2-
torus Ay, regarded as the universal C*-algebra generated by unitaries u and
v with [v,u] = €2™ . 1. This is a tracial unital C*-algebra. If @ is small
enough, we may apply Proposition and Theorem [2.6] to obtain
1 ,
- — (1 —2m16 —_0
r(my(8)) = 5 (loge ")
where 8 € Ko(C(T?)) is the Bott element, 7 is a unital trace of Ay, and
7 72 — U(Ap) is a quasi-representation obtained from Proposition .
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3. THE MISHCHENKO LINE BUNDLE

Recall our setup: M is a closed oriented surface with fundamental group
G and universal cover p: M — M. In this section we give a picture of the
Mishchenko line bundle that will enable us to explicitly describe its push-
forward by a quasi-representation. s

The Mishchenko line bundle is the bundle M xg ¢1(G) — M, obtained
from M x ?1(G) by passing to the quotient with respect to the diagonal
action of G. We write ¢ for its class in Ko(C(M) ® (1(QG)).

3.1. Triangulations and the edge-path group. We adapt a construction
found in the appendix of [11]. It is convenient to work with a triangulation
A of M. Let A® = {x,...,25_1} be the O-skeleton of A and A(M) be the
1-skeleton. To each edge we assign an element of G as follows. Fix a root
vertex zp and a maximal (spanning) tree T in A. Let 7; be the unique path
along T' from zg to x;, and for two adjacent vertices x; and x; let x;x; be the
(directed) edge from z; to x;. For two such adjacent vertices, write s;; € G
for the class of the loop v; * z;x; * 'yj_l

Let F be the (finite) set {s;;}. For example, if M = T? so that G = Z* =
(o, B : [, B] = 1), we have F = {1,a*!, BF!, (aB)*'} for the triangulation
and tree pictured in Figure 3| (on page

Definition 3.2. For a vertex z;, in a 2-simplex o = (xj,, Zi;, Zi,) of A,
define the dual cell block to x;,

2 2
Ug = {Ztml 4> 0,) t =1, and t;, >t for all l}.
=0 =0

Define the dual cell to the vertex z; € A® by
Ui=UW{U; :z; €0}
Let U7 = U7 NUY ete. (See Figure )

Since p: M — M is a covering space of M, we may fix an open cover of
M such that for every element V' of this cover, p~ (V) is a disjoint union of
open subsets of M , each of which is mapped homeomorphically onto V' by
p. We require that A be fine enough so that every dual cell U; is contained
in some element of this cover.

Lemma 3.3. The Mishchenko line bundle M x ¢ (Y(G) — M is isomorphic
to the bundle E obtained from the disjoint union | |U; x £1(G) by identifying
(x,a) with (z, s;ja) whenever x € U; N Uj.

Proof. Lift xg to a vertex Ty in M. By the unique path-lifting property,
every path ~; lifts (umquely) to a path 7; from zg to a lift x; of x;. In this
way lift 7" to a tree T in M. Each U; also lifts to a dual cell to z;, denoted
UZ, which p maps homeomorphically onto U;.
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Vo U1 V2 Vo
on V4
V3 U3
Vo U1 V2 Vo

(B)

FIGURE 1. (A) Dual cell blocks in a simplex o =
(Vig, iy, Viy). (B) A triangulation of T? with the dual cell
structure highlighted.

We first describe the cocycle (transition functions) for the Mishchenko
line bundle. Identify the fundamental group G of M with the group of deck
transformations of M ; see for example | Proposition 1.39]. Use this to write
p~1(U;) as the disjoint union L{sU; : s € G}. Consider the isomorphism
®;: p~H(U;) xg £1(G) — U; x £1(Q) described by the following diagram:

(52,a) ——— (p(),s 'a)

pil(UZ‘) x EI(G) = |_| SUi X él(G) E— UZ' X él(G)
l seG //7
pH(U;) xg (MG ------- )

If U;j == U; N U; # ), we obtain the cocycle ¢;;: U;; — Aut(£H(G)):
o1 .
Uij x £4(G) =2 p 1 (Uy;) % 11(G) 25 Uy; x £4(G)
(z,a) — (2, dij(z)a)

Observe that M X ?}(@) is isomorphic to the bundle obtained from the
disjoint union | |U; x ¢}(G) by identifying (z,a) with (z, ¢;j(z)a) whenever
x € Ujj. We only need to prove that ¢;; is constantly equal to s;;.

Let z € U;; and let = € ﬁj be a lift of z. Then ®;([Z,a]) = (z,a).

Because p(Z) € Uj; there is a (unique) s € G such that z € sU; N U; # 0.
Thus ®;([Z,a]) = (2, s 'a). Now, the path s3;  sT; T; * ”f?j_l, starts at sZo
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and ends at Zo. Its projection in M is the loop defining s;;, so sl = 5ij
(see [7, Proposition 1.39], for example). Thus ¢;;(x) = s4j. O

3.4. The push-forward of the line bundle. We will need an open cover
of M, so we dilate the dual cells U; to obtain one. Let 0 < 6 < 1/2 and
define V7 to be the §-neighborhood of U/ intersected with o. As before, set
Vi=U, V. Let {x;} be a partition of unity subordinate to {V;}.

By Lemma the class of the Mishchenko line bundle in Ky(C(M) ®
¢*(@)), denoted earlier by ¢, corresponds to the class of the projection

e=Y e ®x; X} @ sy € My(C) @ C(M) ® £1(G),
,J

where {e;;} are the canonical matrix units of My (C) and N is the number
of vertices in A.

We may fix a pair of idempotents gg and ¢; in some matrix algebra over
(Y(G) satisfying [qo] — [¢1] = p[M] € Ko(f1(G)). Let w > 0 be given by
Theorem (We may assume that w < 1/4.)

Fix 0 < ¢ < w and an (F,e)-representation m: G — U(A). We recall the
following notation from the introduction.

Notation 3.5. For an (F,¢)-representation 7: G — U(A) as above, let

by = (idC(M) ®7r)ﬁ(e).

4. HILBERT-MODULE BUNDLES AND QUASI-REPRESENTATIONS

As mentioned in the introduction, in [2] a quasi-representation (with
scalar values) of the fundamental group of a manifold is associated to an
“almost-flat” bundle over the manifold. In this section we instead define a
canonical bundle E; over M associated with quasi-representation m. Its class
in Ko(C(M)® A) will be the class £, of the push-forward of the Mishchenko
line bundle by 7. Our construction will be explicit enough so that we can
use Chern-Weil theory for such bundles to analyze ch,({), see [12].

Recall that A is a C*-algebra with trace 7.

Definition. Let X be a locally compact Hausdorff space. A Hilbert A-
module bundle W over X is a topological space W with a projection W — X
such that the fiber over each point has the structure of a Hilbert A-module
V, and with local trivializations W |y — U x V which are fiberwise Hilbert
A-module isomorphisms.

We should point out that the Kyp-group of the C*-algebra C(M) @ A
is isomorphic to the Grothendieck group of isomorphism classes of finitely
generated projective Hilbert A-module bundles over M. We identify the two
groups.
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4.1. Constructing bundles. We adapt a construction found in [11].
First we define a family of maps {u;;: U;; = GL(A)} satisfying

uji(z) = ufl(x), x € Uy,
wik () = uij(z)ujp(x), x € Uyjp.

These maps will be then extended to a cocycle defined on the collection
{Vij}.

Following [11] we will find it convenient to fix a partial order o on the
vertices of A such that the vertices of each simplex form a totally ordered
subset. We then call A a locally ordered simplicial complex. One may always
assume such an order exists by passing to the first barycentric subdivision
of A: if 61 and &9 are the barycenters of simplices o1 and o2 of A, define
01 < 09 if 07 is a face of 9.

Consider a simplex o = (x;,, Ti,, Ti,) (With vertices written in increasing
o-order). Observe that in this case Uz NU; = U7, may be described using
a single parameter t1:

2
1—t
U%i2:{2tzxil o=ty = — Lio<ty g1/3}.

Define

— 3 g
ug;, = the constant function on U7,
g

o .
i, = the constant function on U],

ul (tl) = (1 — 3t1)7‘(‘($1‘0i2) + 3t17T(81'01'1)7T(8i1i2)a 0< t] < 1/3.

1012

equal to m(siyi,)

equal to 7(si,i,)

Define uf ; etc. to be the pointwise inverse of ug ; . For fixed ¢ and j, the
maps uf;: U7 — GL(A) define a map w;j: Uj; — GL(A). Indeed, if z;z; is
a common edge of two simplices o and o', then UZ- N U%/ is the barycenter
of (%, x;), where by definition both uf; and uf]/ take the value m(s;;). By
construction the family {u;;} has the desired properties. (Note that Uj;j, is
the barycenter of a 2-simplex.)

4.1.1. Recall the sets V; etc. from [3.4] To define the smooth transition func-

tion vf ; : V7, — GL(A) that will replace ug ; , let us assume for simplicity
that the simplex o is the triangle with vertices v;, = (—1/2,0), v;; = (0,1),
and v;, = (1/2,0). (It may be helpful to consider Figure [ta.)

Define Ugm as follows:
W(Sioil)ﬂ—(siliz): 1/3 -0 < Y < 1/3 +9

U%iz (.’E, y) = (1 - ﬁ)ﬂ-(sioiz)_}'
AT (8100 )T (si1ia), 0 <y <1/3-6
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(so v, is constant along the horizontal segments in Vj,;,). The remaining
two transition functions remain constant:

U%il = 7T(Sioil)

U;fliz = W(siliz)

Again, for fixed ¢ and j the maps vf;: V;5 — GL(A) define a map v;;: Vi; —
GL(A). Since vf; is constant and equal to 7(s;yi; )7(8iy4y) in Vig N Vi, N Vi,
we indeed obtain a family {v;;} of transition functions.

Definition 4.2. The Hilbert A-module bundle E, is constructed from the
disjoint union | |V; x A by identifying (z,a) with (z,v;;(z)a) for x in Vj;.
Proposition 4.3. The class of E; in Ko(C(M)® A) coincides with {r, the
class of the push-forward of e by idc(yry @7 (see .

Proof. The bundle E; is a quotient of | |V; x A and from its definition it is
clear that for each i the quotient map is injective on V; x A. The restriction of
the quotient map to V; x A has an inverse, call it 1;, and v; is a trivialization
of Erly,. Recalling that N is the number of vertices in A (which is the same
as the number of sets V; in the cover), we define an isometric embedding

0: B, — M x AN
N—-1

N SR C(EN0)) A
Let ex: M — Mpy(A) be the function

v Y ey @ @) @)y ().

irj
Because zpiwj_l(:c, a) = (z,vij(x)a) for x € Vjj, it is easy to check that er(x)
is the matrix representing the orthogonal projection of AN onto 6(Ey,|;). In
this way we see that [E;] = [ex] € Ko(C(M) ® A).
Since F = {sj;} and 7 is an (F, €)-representation, it follows immediately

that the transition functions v;; satisfy ||vi;(z) — 7(si;)| < € for all z € V;;.
Thus

1/2 1/2
er— Y i @ x; P (sig)

]

lex — (1@ m)(e)]| =

<

as well. Recall that ¢, is obtained by perturbing (1 ® 7)(e) to a projection
using functional calculus and then taking its Ky-class (see|2.2). The previous
estimate shows that this class must be [er]. O

Remark 4.4. The previous proposition shows that the class [E;] is inde-
pendent of the order o on the vertices of Ag.

4.5. Connections arising from transition functions. We now define a
canonical connection on E associated with the family {v;;} of transition
functions. This connection will be used in the proof of Theorem



12 JOSE R. CARRION AND MARIUS DADARLAT
4.5.1. The smooth sections I'(E;) of E; may be identified with
{(Sz) S @QO(Vi,EW) 185 = Vji8; on VZ]}
i

Let V;: QY(V;, A) — QY(V;, A) be given by
Vi(s) = ds + w;s Vs € QU(V;, A),

where

—1
w; = Z XkUp; AUk
k

Notice that vy; € Q°(Vi, GL(A)) and so w; may be regarded as an A-valued
1-form on V;, which can be multiplied fiberwise by the values of the section
s.

We define a connection V on E, by

V(Sz) = (VZSZ)
That V takes values in Q!(M, E,) follows from a straightforward computa-
tion verifying

Vij = ’Ujivisi.
It is just as straightforward to verify that V is A-linear and satisfies the
Leibniz rule.

4.5.2. Define Q; = dw;+w; Aw; € Q2(V;, A). One checks that Q; = vj_ilevji
and so (€;) defines an element  of Q?(M,End4(E;,)). This is nothing but

the curvature of V (see |12, Proposition 3.8]).

5. THE CHERN CHARACTER

In this section we prove our main technical result, Theorem It com-
putes the trace of the push-forward of u[M] in terms of the de la Harpe-
Skandalis determinant by using that the cocycle conditions almost hold for
the elements 7(s;;),

5.1. The de la Harpe-Skandalis determinant. The de la Harpe-Skandalis
determinant |5] appears in our formula below. Let us recall the definition.
Write GLo(A) for the (algebraic) inductive limit of (GL;,(A)),>1 with stan-
dard inclusions. For a piecewise smooth path &: [¢1,t2] = GLx(A), define

to
~ 1

A = 5 / ¢t ar) = oo [ e ar

2ms
t1
We will make use of some of the properties of &T stated below.

Lemma 5.2 (cf. Lemme 1 of [5]).
(1) Let &1,&: [t,ta] — GL2 (A) be two paths and & be their pointwise
product. Then A-(£) = A (&) + Ar(&).
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(2) Let &: [t1,ta] — GLY (A) be a path with ||E(t) — 1| < 1 for all t.
Then

2mi - A (€) = 7(log £(t2)) — 7 (log £(t1)).

(3) The integral KT(f) is left invariant under a fixed-end-point homotopy
of &.

5.3. The Chern character on Ky(C(M) ® A). Assume 7 is a trace on
A. Then 7 induces a map on Q2(V;, End4(Ey|y;)) and by the trace property
7(;) = 7(2;) on V;;. We obtain in this way a globally defined form 7(Q2) €
O%(M,C).

Since the fibers of our bundle are all equal to A, and our manifold is 2-
dimensional, the definition of the Chern character associated with 7 (from
[12, Definition 4.1], but we have included a normalization coefficient) reduces
to

© ot =7 (o () = ( 3 A AT

k=0

A

=7 <Z> € Q2(M, C).
27

This is a closed form whose cohomology class does not depend on the choice

of the connection V (see |12, Lemma 4.2]).

A few remarks are in order before stating the next result.

Because A is a locally ordered simplicial complex (recall the partial order
o from , every 2-simplex o may be written uniquely as (z;, z;, z) with
the vertices written in increasing o-order. Whenever we write a simplex in
this way it is implicit that the vertices are written in increasing o-order. We
may write o for o along with this order.

The orientation [M] induces an orientation of the boundary of the dual cell
U; and in particular of the segment Uj,. Let s(o) = 0 if the initial endpoint of
U5, under this orientation is the barycenter of o, and let s(o) = 1 otherwise.

Theorem 5.4. For a simplex 0 = (x;,x;,x) of A, let & be the linear path
Eo(t) = (1 —t)m(si) +tm(sij)m(sj), t€[0,1]
in GL(A). Then
7(m(u[M])) = D (=1)" DA (&),

(e

where the sum ranges over all 2-simplices o of A.

Proof. The path &, lies entirely in GL(A) because ||7(s;;) — 7(si;)7(s;i)|| <
e. It follows from Theorem (on page |5) and Equation @ above that

r(my(ulM])) = {chr(C), [M]) = — == [ ().

21
M
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We compute this integral.
First observe that by the trace property of 7 we have 7(w; A w;) = 0 for
every [. Thus

/T(Q) - Z/T(Ql) = Z/T(dwl +wp Awy) =

M lUl lUl

where we used Green’s theorem for the last equality and 0U; has the orien-
tation induced from [M]. Recall that Uj is the dual cell to v;. Write this as
a sum over the 2-simplices of A:

> [r=S% [ =S¥ [
4

L sy, 7 OU)Ne oU)Ne

Exactly three dual cells meet a 2-simplex o = (x;, x;, xx)—U;, Uj, and Uy—
so for each simplex there are three integrals we need to account for. Let us
treat each of these in turn.

The definition of the connection forms (see implies that w; restricted
to o equals

-1 —1 ~1
Wi = XkVg; QUki + X505 dUji = XiUy,; dogi,

where the last equality follows from the fact that v;; is constant. Now, (9U;)N

o is the union of the two segments U and U7 Observe that v;;, is constantly

equal to 7(s;j)m(sjx) on V;NV; NV}, (see . Since UznVvy CVinV;nvy
and xj vanishes outside Vj, we get

T(w;) = /T(kak_ildvki)—i— /T(kak_ildvki) = /T(kak_ildvki).
(0U; )No Ufj Ui";c U,ﬁc

The second integral f(aU-)ﬂU 7(w;) vanishes. This is because v;; and vjj
J
are constant and so

—1 -1
Wj = Xiy; dvi; + Xk dvkj =0.

The third integral may be calculated just as the first, with the roles of ¢
and k reversed. We obtain

[ ren= [ rwogtdon.

(OUg)No Uy,
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Combining the three integrals we get

Zzl: / T(w) =) </T(kakildvki)+/T(Xivikldvik)) =
2 - o

oU;)No U{'L ki

- =L, v ld,

= T(Xkrvki Vki — XiVp 'Uzk:)a
T (e

where the last equality is due to the opposite orientations of the segment
7. in the preceding two integrals.

It follows from v;iv; = 1 that dvgg vlkl + vk_l.ldvki = 0. Therefore, the last
line in the equation above is equal to

Z/T(ka,;ildvki—i-xivk_ildvki) :Z/T(%—ildvki) = _Z/T(Ui_kldvik)~
7 ug 7 ug, 7 g,

To arrive at the conclusion of the theorem, consider the restriction of vy
to the segment U7 . This is the segment between the barycenter of o, where
vji, takes the value m(s;j)m(s;1), and the barycenter of (x;,x1), where v,
takes the value m(s;;) (see [d.1.1)). Then

/T(vkildvki) = (=1)*@2mi - AL(&,).
Uk
This concludes the proof. O

6. ORIENTED SURFACES

For the proof of Theorem 2.6 we will use a convenient triangulation Ay of
the orientable genus g surface ¥, that we proceed to describe. The covering
space of ¥, is the open disc and we may take as a fundamental domain a

regular 4¢g-gon, call it ig, drawn in the hyperbolic plane.
Figure [2f depicts a procedure to obtain Yo by gluing together two copies
of ¥1. (We will give a more explicit description of ¥, in a moment). It also

illustrates the labeling we use for the (oriented) sides of ¥, and Y. To
obtain X, for example, we identify the side a with *a and the side b with
xb. To obtain the double torus o, we identify a; with xa; and by with xby
for k € {1,2}.

6.1. Triangulations. Let us first define a triangulation Kg of the funda-
mental domain f]g. We do this by gluing ¢g triangulated copies of ¥ to-
gether. Figure 4lA on page [20[ shows the triangulation for the kth copy of o
(with a hole), call it K’f Ignore the labels on the edges and the highlighted
edges for now. The vertex labeling also indicates how to glue K'f to 7\’1“*1
and K’f“, with addition modulo g. Figure illustrates the result of this
gluing, the end-result being /~\g by definition.



16 JOSE R. CARRION AND MARIUS DADARLAT

*a1 xby

by ai

az bo

+bs *ay

(a) (B)

FIGURE 2. (A) The fundamental domain ¥; (with a hole).
(B) The fundamental domain Xs.

The underlying space of Kg is f]g. Identifying all the vertices vF, as well

as identifying af with *af and b} with =0, for each i € {1,2} and k €
{1,...,n}, yields a triangulation A4 of ¥,.

6.2. Surface groups. We identify the fundamental group I'y of X, with
the group of deck transformations of the universal covering space of ¥X,. We
give a more concrete description of this group now.

The fundamental domain f]g is a regular 4g-gon. We write ay, by *a; and
xbg, k € {1,...,n}, for its (oriented) sides. The triangulation /~\g gives a
subdivision of the side a; into the three edges in the path (vf,a¥, a5, v¥)
(with orientation given by the directed edge (a¥,ak)). The subdivision of
the sides by, *ay and *by is similar. See Figure [.

The group of deck transformations I'y is generated by the hyperbolic
isometries oy and B, k € {1,..., g}, defined as follows: o maps *ay to ay
in such a way that, locally, the half-plane bounded by *aj containing ig

is mapped to the half-plane bounded by aj; but opposite ;. The transfor-
mation [ is defined analogously, mapping *by to by. We refer the reader
to [8, Chapter VII] for more details. When g = 1, for example, the trans-
formations «; and [y are just translations. See Figure [3| where we have
omitted the sub- and superscripts corresponding to k = 1, since g = 1.
For k€ {1,..., g}, let
k
k= | [low: B)

j=1

and let kg = 1. We have that kg = 1.

6.3. Local orders and trees. We need A, to be locally ordered, so we
proceed to fix a partial order on the vertices of A, such that the vertices
of every simplex form a totally ordered set. Let us define an order on the
vertices of /~Xg that drops down to the order we need. On the kth copy K'f ,
the corresponding order is indicated in Figure @A by arrows on the edges,
always pointing from a smaller vertex to a larger one. It is defined as follows:
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e for the “inner” vertices we go “counter-clockwise”: for fixed k& €
{1,. ..,g} wh < wk if 1 < j, except when k = g and j = 4 (in which
case w4 = wo and we already have wg < wk)

e the “inner” vertices are larger than the “outer” ones: w > v a’;
bl *a *bl for all 4, j, k and [;

° for the outer vertices: v < aj,bé,*a *bl for all 4, j, k and [; for
every k, a¥ < af, xa¥ < xak, and similarly for the b’?.

l
J?

Fmally, we will need a spanning tree T, of Ay, and a lift T to the trian-
gulation A of the fundamental domain E Agam We define T first. It is
obtained as the union of the edge between wo and Uo (1nclud1ng those two
vertices) and trees in each copy X¥. The tree in ¥¥ is depicted in Figure
by highlighted (heavier) edges. This drops to a spanning tree T, of ¥,. we

regard these trees as “rooted” at the vertex vf.

7. PROOF OF THE MAIN RESULT

This section contains the proof of Theorem The proof is split into a
number of lemmas.

To apply Theorem we will first compute the group element s;; corre-
sponding to each edge x;x; of A, , in the sense discussed in Equivalently,
we compute group elements corresponding to edges in the cover 1~\g, keeping
in mind that the lifts of any edge of A, will all correspond to the same group
element.

A concise way of stating the result of these computations is to label each
edge in Figure with the corresponding group element.

Lemma 7.1. The labels in Figure[JA are correct.

Proof. We carry out the computations in three separate claims.

k

Claim. An edge of the form akw corresponds to ak c I'y. Similarly, an

edge of the form b’?wl? corresponds to Bk cly.

Consider a; wk first. When we add this edge to the forest that is the
union of all the llfts of T, (that is, translates of Tg), we obtain a unique
path P between v(l), our root vertex, and some translate sv(l), where s € I'y.
We regard P as directed in the direction of the edge afwé-C that we started
with, so it is a path from svo to UO It therefore drops down to a loop
in ¥, whose class is s~!, the group element we want to compute (see [7
Propos1t10n 1.39], for example) Now notice that because *a belongs to Tg,
its translate ay(*a¥) = a¥ belongs to the translate akT of T Thus P is
a path between vf and agvf. The corresponding group element is therefore
a,;l. An entirely similar argument applies to the edge bfw;“.
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Claim. Any edge between inner vertices (vertices of the form wf) corre-
sponds to 1 € T'y. The edges a¥ak, bEvk, xak+ak, and xbyb5 all correspond
tolely.

We proceed as in the previous claim. Any edge between inner vertices is
either in fq or between two vertices that are in fg. The associated path we
get is therefore from vf to itself. The same is true of the edges b}b5 and
xalxak. Tt follows that the corresponding group element is 1. Since a§a% and

kxak are both lifts of the same edge, they correspond to the same element.

*al *a2
Similarly, *b]f*blg corresponds to 1.

Claim. An edge that is incident to vF and to a vertexr z in the tree Tg
corresponds to the element s € Ty such that vy = svF. (The edge is given
the orientation induced by the order on the vertices, as usual.) For k €

{1,...,9},

1 k
Vg = Rk—1" g
1 —1 k
Vo = Kgp—10k[ray, - - vy
1 k
vy = Kg—10k Sk - Vg

1 k
UO - /ikfloék . U3

(Recall that Ky, is the product of commutators [ay, 1], Ba] - - [k, Bk] for
ke{l,...,9}, and that ko =1.)

Observe that, because of how the order was defined, v} < » always holds.
When we add the edge vFz to the tree T we obtain a path from v to v}.
(See Figure I, 4l but keep in mind that in the case k = 1 the edge vjw} belongs
to the tree.) It follows that the corresponding element is the s € I'y such
that vj = svF.

To compute these elements s we argue by induction on k. Assume k = 1.
We observe that

15, i Bi 1 ai 1
vs s ] va—>v3v—>v0.
Indeed, from the definition (see we see that the transformation a; takes
vi to v{—think of the side *xa; = (v3, xad, xal, vd) being mapped to the side
a1 = (v§,al,ad, vi): the vertex xai is mapped to a} and so vl 1s mapped
to vs. We also see from [6.2] and Figure {4l that 8; maps vi to v3, and so
0 =aa15 - v2 A similar argument shows that ’UO = a1f10q 1 vl and that

vé = a161a1_1ﬁ1_1 -vi =K1 'vi.
Assuming the computations hold for k — 1, we prove them for k. In fact,
most of the work is already done. The same argument we used for the case
k = 1 shows that

Bi . a
vfr—)vlf»i)vwﬁ)vlg»—k)vg
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Gk

U1

FIGURE 3. The triangulation /~X1 of f]l. Edges are labeled
with the group element associated with the loop they induce.

The inductive hypothesis implies that

k k—1 1
/‘Ck_llUO = K/k;_l'U4 = Uo,

This ends the proof of the claim.

These three claims prove that the labels in Figure [dA are correct.

(The labels in Figure [3| also follow from these calculations, but may be
obtained by more straightforward arguments because the generators of I'y =2
72 may be regarded as shifts in the plane.) O

Notation 7.2. For k € {1,...,g}, let

Fie={a;t, Bty ki1, Kr—10k, Kr—10kBe, Ke—1058k05 )
and notice that the set F = {s;;} considered in section is equal to the
union JFj U F ! U---UF,UF, ! by Lemma

7.3. Choosing quasi-representations. We want to apply Theorem
using the labels obtained in Lemma and some convenient choice of a
quasi-representation of G in U(A). We begin by proving a slightly stronger
version Proposition[2.8] which guarantees the existence of quasi-representations
(under certain conditions). Let us set up some notation first.
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k—1 k=1 _ k _ . k+1 k+1
wg = wy W_1 = W_1 =wW_y wélf = w0+ Kk

FIGURE 4. (A) The triangulation we use for %%, the kth
copy of 3 (with a hole). Every edge is labeled with the
element of I'y corresponding to the loop it induces. (B) How
the simplicial complex fln is defined. The kth “wedge” is
pictured in (A).
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For certain unitaries ui,v1,...,uq,v4 in A we will need to produce a
quasi-representation 7 satisfying
(7) m(ak) = ug, and 7(Bx) = v VK€ {l,...,g}.

Write Foy = <d1,,5’1, . .,dg,Bg> for the free group on 2¢g generators. Let
q: Fog = T'y and 7: Foy — U(A) be the homomorphisms given by

q(éx) = ok, q(Bk) = Bk
and

#(an) = up,  F(Br) = vi

for all £ € {1,...,g}. Notice that the kernel of ¢ is the normal subgroup
generated by

g
R = | [an, Be]
k=1

1

and therefore consists of products of elements of the form ’y/%;tl’y* where

g€ Fgg.
Choose a set-theoretic section s: I'y — Fa4 of ¢ such that s(1) =1,

s(ag) = dx, and s(By) =Fp Vke{l,...,g}.

Lemma 7.4. For all ¢ > 0 there exists §(¢) > 0 such that if A is a unital
C*-algebra and uy, vy, ..., ug,vy € U(A) satisfy

g

[T vil - 1” < 8(e),

i=1

(8)

then m = T os (with s as constructed above) is an (F,¢c)-representation

satisfying (@
This lemma obviously implies Proposition 2.8

Proof. We only need to check that 7 is (F,e)-multiplicative. Assume that
holds for some ¢ in place of J(e).

Because 7 is a homomorphism, for all 7,7 € T'y we have

7M7) =7y = w(V)7(y)w () = 1] =

1

Now, s(7)s(7")s(yy")~" is in the kernel of ¢ and is therefore a product of the

form
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where m depends on v and 4" and ¢; € {1, —1}. Thus

m
(i) |
i=1

1=

[7(V)7(y) = 7(y)Il =

<m

g
H[ui,vi] - IH < md.
i=1

Since F is a finite set, there is a positive integer M such that if v, € F,
then s(y)s(7/)s(yy')~! is a product of at most M elements of the form
Yikg Vi 1 as above. It follows that 7 is an (F, M§)-representation. Choose
d(e) =¢/M. O

Notation 7.5. Recall the set Fj defined in Let so: I'y — Fay be a
set-theoretic section of ¢ such that

So(afl) = @kﬂa 30( kﬂ) = Aff% 30("’%71) = Rg—1,

so(Kr—10k) = Fr_1Gr,  So(Kr—10%Bk) = Ar—16%

for all k € {1,...,g}, and

N P
so(kr—1akBray, ) = Rg—1Gx by,

forall k € {1,...,g—1}. That such a section exists follows from the fact that

all the words in the list 71 U- - -UF,U{a, B1, . .. ag, By} are distinct, with two

exceptions: a1 = Kooy € JF7 appears twice, as does 3, = /ﬁg,lagﬁgagl € Fy.
Define my = o s9: I'y = U(A).

Lemma 7.6. If (x;, zj, xy) is any 2-simplex in A, different from (v{, a3, w{),
then Wo(sik) = Fo(sij)ﬂ'o(sj'k).
If (@i, xj, xp) = (], ad, wi), then mo(si) = vy and

mo(si)mo(sjk) = ( ﬁ[uz', vJ) Vg.

i=1

Proof. The definition of sy implies that the image under sg of any “word” in
the list F is the word obtained by replacing ockil by ol,fl and ﬁ;ﬂ by Béﬁl,
with one exception: the image of fig_lozgﬂgozg_l = 8, under sg is Bg.

This observation along with inspection of Figure shows that so(s;x) =
s0(sij)s0(sjx) for every 2-simplex in A4 different from (v{,a§, w{). For in-
stance, let [ € {1,..., ¢} and consider the simplex

(vh, al, wh) = (z, xj, Tk).
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The corresponding group elements are
Sij = Kj—10Y
Sjk = a;l, and
Sik = Rl—1-
Then
so(sik) = Ri—1 = Ri—16y - &1 = so(ki—1au) - so(a; ) = so(sij) - s0(8;k)-

The computations in all other 2-simplices but (v{,aj, w{) are very similar.

For this exceptional simplex we get
so(sik) = s0(kg—1098g0, ") = s0(Bg) = By
but
so(sij)so(sjk) = So(ﬁgflagﬁg)SO(O‘;l) = ’%gfldgﬁgdg;l = fgly
Since my = 7 o sg and 7 is a homomorphism, the lemma follows. ([

Recall that w > 0 is given in Theorem [2.4]
Lemma 7.7. If0 < & < w and (§) holds (so that o is an (F,e)-representation),

hen
| T(mos(1[Z])) = 271” <10g<ﬁ[uivvi]>>

i=1
Proof. We apply Theorem For each simplex (z;,z;,x;) we compute
A (&) where &, is the path

§o(t) = (L —t)m(sik) +tm(sig)m(sje), t€[0,1]

Observe that the value of A, on a constant path is 0. Lemma im-
plies that there is only one 2-simplex o such that &, is not constant: oy =
(v{,ad, w]). By Lemma [7.6|it yields the linear path &5, from v, to

(o)

i=1
Using Lemma we obtain

8o g (s [T 1))

Finally, Theorem [5.4] implies

(mox({Zy))) = (~1)"0 <10g (H ))

where the sign (—1)%(°0) depends on the the orientation [%,]. The standard
orientation on X, gives s(og) = 1. O

By putting these lemmas together we can prove Theorem [2.6]
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Proof of Theorem [2.6, Recall that the statement of the theorem fixes a pos-
itive integer g and idempotents gg and ¢; in some matrix algebra over £} (T 9)
such that u[S,] = [go] — [q1] € Ko(¢}(Ty)).

Let Fo be the finite set {s;;} defined in and described explicitly in
Theorem provides an w > 0 so small that if 7: I'; — U(A) is an
(Fo,w)-representation with, then my(u[3,]) := m4(q0) — m4(q1) is defined and

T(ﬂ-ﬁ(u[zg])) = <Ch7(€7r)7 [ZgD‘

By setting u; := 7(a;) and v; := w(5;) for all i € {1,..., g}, we see that
such a quasi-representation 7w may be used to define a quasi-representation
7o as in Section [7.5] The more multiplicative 7 is on Fp, the smaller the
quantity

g

H[ui,vi] — 1”

i=1

is. Lemma shows that by making this quantity smaller we can make
mo more multiplicative on Fy. Therefore, because m and my agree on the
generators of Iy, there exists an 0 < g9 < w so small that if 7 is an (Fo, €9)-
representation, then my and oy agree on {qo, g1} C Ko(¢1(Ty)).

Finally,
1 g
T(m(u[Eg))) = 7(mog(u[Z4]) = 5 =7 lo [us, vi
(rtu54D) = 7(rostptil) = gz (10w ([T
by Lemma [7.7] O
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