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Abstract. By a quasi-representation of a group G we mean an ap-
proximately multiplicative map of G to the unitary group of a unital
C∗-algebra. A quasi-representation induces a partially defined map at
the level K-theory.

In the early 90s Exel and Loring associated two invariants to almost-
commuting pairs of unitary matrices u and v: one a K-theoretic in-
variant, which may be regarded as the image of the Bott element in
K0(C(T2)) under a map induced by quasi-representation of Z2 in U(n);
the other is the winding number in C \ {0} of the closed path t 7→
det(tvu+(1− t)uv). The so-called Exel-Loring formula states that these
two invariants coincide if ‖uv − vu‖ is sufficiently small.

A generalization of the Exel-Loring formula for quasi-representations
of a surface group taking values U(n) in was given by the second-named
author. Here we further extend this formula for quasi-representations of
a surface group taking values in the unitary group of a tracial unital
C∗-algebra.

1. Introduction

Let G be a discrete countable group. In [3, 4] the second-named author
studied the question of how deformations of the group G (or of the group
C∗-algebra C∗(G)) into the unitary group of a (unital) C∗-algebra A act on
the K-theory of the algebras `1(G) and C∗(G). By a deformation we mean
an almost-multiplicative map, a quasi-representation, which we will define
precisely in a moment. Often, matrix-valued multiplicative maps are inade-
quate for detecting the K-theory of the aforementioned group algebras. In
fact, if a countable, discrete, torsion free group G satisfies the Baum-Connes
conjecture, a unital finite dimensional representation π : C∗(G) → Mr(C)
induces the map r · ι∗ on K0(C∗(G)), where ι is the trivial representation
of G (see [3, Proposition 3.2]). It turns out that almost-multiplicative maps
detect K-theory quite well for large classes of groups: one can interpolate
any group homomorphism of K0(C∗(G)) to Z on large swaths of K0(C∗(G))
using quasi-representations (see [3, Theorem 3.3]).

Knowing that quasi-representations may be used to detect K-theory, we
turn to how it is that they act. An index theorem of Connes, Gromov and
Moscovici in [2] is very relevant to this topic, in the following context. Let
M be a closed Riemannian manifold with fundamental group G and let D
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be an elliptic pseudo-differential operator on M . The equivariant index of
D is an element of K0(`1(G)). Connes, Gromov and Moscovici showed that
the push-forward of the equivariant index of D under a quasi-representation
of G coming from parallel transport in an almost-flat bundle E over M is
equal to the index of D twisted by E.

At around the same time, Exel and Loring studied two invariants associ-
ated to pairs of almost-commuting scalar unitary matrices u, v ∈ U(r). One
is a K-theory invariant, which may be regarded as the push-forward of the
Bott element β in theK0-group of C(T2) ∼= C∗(Z2) by a quasi-representation
of Z2 into the unitary group U(r). The Exel-Loring formula proved in [6]
states that this invariant equals the winding number in C \ {0} of the path
t 7→ det

(
(1−t)uv+tvu

)
. An extension of this formula for almost commuting

unitaries in a C∗-algebra of tracial rank one is due to to H. Lin and plays
an important role in the classification theory of amenable C∗-algebras. In a
different direction, the Exel-Loring formula was generalized in [4] to finite
dimensional quasi-representations of a surface group using a variant of the
index theorem of [2].

In [4], the second-named author used the Mishchenko-Fomenko index the-
orem to give a new proof and a generalization of the index theorem of
Connes, Gromov and Moscovici that allows C∗-algebra coefficients. In this
paper we use this generalization to address the question of how a quasi-
representation π of a surface group in the unitary group of a tracial C∗-
algebra acts at the level of K-theory. We extend the Exel-Loring formula to
a surface group Γg (with canonical generators αi, βi) and coefficients in a uni-
tal C∗-algebra A with a trace τ . Briefly, writing K0(`1(Γg)) ∼= Z[ι]⊕Zµ[Σg]
we have

τ
(
µ[Σg]

)
=

1

2πi
τ

(
log

( g∏

i=1

[
π(αi), π(βi)

]))
,

where [Σg] is the fundamental class in K-homology of the genus g surface
Σg and µ : K0(Σg) → K0(`1(G)) is the `1-version of the assembly map of
Lafforgue. For a complete statement see Theorem 2.6. In the proof we make
use of Chern-Weil theory for connections on Hilbert A-module bundles as
developed by Schick [12] and the de la Harpe-Skandalis determinant [5] to
calculate the first Chern class of an almost-flat Hilbert module C∗-bundle
associated to a quasi-representation (Theorem 5.4).

The paper is organized as follows. In Section 2 we define quasi-representations
and the invariants we are interested in, and state out main result, Theo-
rem 2.6. The invariants make use of the Mishchenko line bundle, which we
discuss in Section 3. The push-forward of this bundle by a quasi-representation
is considered in Section 4. Section 5 contains our main technical result, The-
orem 5.4, which computes one of our invariants in terms of the de la Harpe-
Skandalis determinant [5]. To obtain the formula given in the main result,
we must work with concrete triangulations of oriented surfaces, and this is
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contained in Section 6. Assembling these results in Section 7 yields a proof
of Theorem 2.6.

2. The main result

In this section we state our main result. It depends on a result in [4] that
we revisit. Let us provide some notation and definitions first.

Let G be a discrete countable group and A a unital C∗-algebra.

Definition 2.1. Let ε > 0 and let F be a finite subset of G. An (F , ε)-
representation of G in U(A) is a function π : G → U(A) such that for all
s, t ∈ F we have

• π(1) = 1,
• ‖π(s−1)− π(s)∗‖ < ε, and
• ‖π(st)− π(s)π(t)‖ < ε.

We refer to the second condition by saying that π is (F , ε)-multiplicative.
Let us note that the second condition follows from the other two if we
assume that F is symmetric, i.e. F = F−1. A quasi-representation is an
(F , ε)-representation where F and ε are not necessarily specified.

A quasi-representation π : G → U(A) induces a map (also denoted π) of
the Banach algebra `1(G) to A by

∑
λss 7→

∑
λsπ(s). This map is a unital

linear contraction. We also write π for the extension of π to matrix algebras
over `1(G).

2.2. Pushing-forward via quasi-representations. A group homomor-
phism π : G → U(A) induces a map π∗ : K0(`1(G)) → K0(A) (via its Ba-
nach algebra extension). We think of a quasi-representation π as induc-
ing a partially defined map π] at the level of K-theory, in the following
sense. If e is an idempotent in some matrix algebra over `1(G) such that
‖π(e) − π(e)2‖ < 1/4, then the spectrum of π(e) is disjoint from the line
{Re z = 1/2}. Writing χ for the characteristic function of {Re z > 1/2}, it
follows that χ(π(e)) is a idempotent and we set

π](e) =
[
χ(π(e))

]
∈ K0(A).

For an element x in K0(`1(G)), we make a choice of idempotents e0 and e1 in
some matrix algebra over `1(G) such that x = [e0]−[e1]. If ‖π(ei)−π(ei)

2‖ <
1/4 for i ∈ {0, 1}, write π](x) = π](e0)− π](e1). The choice of idempotents
is largely inconsequential: given two choices of representatives one finds that
if π is multiplicative enough, then both choices yield the same element of
K0(A).

Of course, the more multiplicative π is, the more elements of K0(`1(G))
we can push-forward into K0(A).
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2.3. An index theorem. Fix a closed oriented Riemannian surface M and
let G be its fundamental group. Fix also a unital C∗-algebra A with a tra-
cial state τ . Write K0(M) for KK(C(M),C). Because the assembly map
µ : K0(M)→ K0(`1(G)) is known to be an isomorphism in this case [9], we
have

K0(`1(G)) ∼= Z[1]⊕ Zµ[M ]

where [M ] is the fundamental class of M in K0(M) [1, Lemma 7.9]. Since
we are interested in how a quasi-representation of G acts on K0(`1(G)),
we would like to study push-forward of the generator µ[M ] by a quasi-
representation.

2.3.1. Let M be a closed connected orientable manifold with fundamental
group G. Consider the universal cover M̃ → M and the diagonal action

of G on M̃ × `1(G) giving rise to the so-called Mishchenko line bundle `,

M̃ ×G `1(G) → G. We will discuss it in more detail in Section 3, where we
will give a description of it as the class of a specific idempotent e in some
matrix algebra over C(M)⊗ `1(G).

If π is a quasi-representation of G in U(A), then idC(M)⊗π is an almost-

multiplicative unital linear contraction on C(M) ⊗ `1(G) with values in
C(M) ⊗ A. Assuming that π is sufficiently multiplicative, we may define
the push-forward of the idempotent e by idC(M)⊗π, just as in 2.2. We set

`π := (idC(M)⊗π)](`) := (idC(M)⊗π)](e) ∈ K0(C(M)⊗A).

Let D be an elliptic operator on Mn and let µ[D] ∈ K0(`1(G)) be its image
under the assembly map. Let q0 and q1 be idempotents in some matrix
algebra over `1(G) such that µ[D] = [q0]−[q1] and write π](µ[D]) := π](q0)−
π](q1). By [4, Corollary 3.8], if π : G→ A is sufficiently multiplicative, then

(1) τ(π](µ[D]) = (−1)n(n+1)/2
〈
(p! ch(σ(D))∪Td(TM⊗C)∪chτ (`π), [M ]

〉
,

where p : TM →M is the canonical projection, ch(σ(D)) is the Chern char-
acter of the symbol of D, Td(TCM) is the Todd class of the complexi-
fied tangent bundle, and [M ] is the fundamental homology class of M . Set

α = (−1)n(n+1)/2(p!ch(σ(D)) ∪ Td(TM ⊗ C). Then (1) becomes

τ(π](µ[D]) =
〈
α ∪ chτ (`π), [M ]

〉
=
〈

chτ (`π), α ∩ [M ]
〉
,

On the other hand, it follows from the Atiyah-Singer index theorem that
the Chern character in homology ch : K0(M)→ H∗(M ;Q) is given by

ch[D] =
(
(−1)n(n+1)/2p! ch(σ(D)) ∪ Td(TCM)

)
∩ [M ] = α ∩ [M ].

It follows that

(2) τ(π](µ[D]) =
〈

chτ (`π), ch[D]
〉

In the case of surfaces this formula specializes to the following statement.
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Theorem 2.4 (cf. [4, Corollary 3.8]). Let M be a closed oriented Riemann-
ian surface of genus g with fundamental group G. Let q0 and q1 be idempo-
tents in some matrix algebra over `1(G) such that µ[M ] = [q0]− [q1]. Then
there exist a finite subset G of G and ω > 0 satisfying the following.

Let A be a unital C∗-algebra with a tracial state τ and let π : G → U(A)
be a (G, ω)-representation. Write π](µ[M ]) := π](q0)− π](q1). Then

τ
(
π](µ[M ])

)
= 〈chτ (`π), [M ]〉.

Here chτ : K0

(
C(M) ⊗ A

)
→ H2(M,R) is a Chern character associated

to τ (see Section 5), and [M ] ∈ H2(M,R) is the fundamental class of M .

Proof. Given another pair of idempotents q′0, q
′
1 in some matrix algebra over

`1(G) such that µ[M ] = [q′0] − [q′1], there is an ω0 > 0 such that if 0 <
ω < ω0, then for any (G, ω)-representation π we have π](q0) − π](q1) =
π](q

′
0)− π](q′1). We are therefore free to prove the theorem for a convenient

choice of idempotents.
It is known that the fundamental class of M in K0(M) coincides with

[∂̄g] + (g− 1)[ι] where ∂̄g is the Dolbeault operator on M and ι : C(M)→ C
is a character (see [1, Lemma 7.9]). Let e0, e1, f0, f1 be idempotents in some
matrix algebra over `1(G) such that

µ[∂̄g] = [e0]− [e1] and µ[ι] = [f0]− [f1].

(This gives an obvious choice of idempotents q′0 and q′1 in some matrix
algebra over `1(G) so that µ[M ] = [q′0]− [q′1].) We want to prove that

τ
(
π](µ(z))

)
= 〈chτ (`π), ch(z)〉

for z = [M ] ∈ K0(M). Because of the additivity of this last equation, the
fact that [M ] = [∂̄g] + (g − 1)[ι], and (2), it is enough to prove that

(3) τ
(
π](µ[ι])

)
= 〈chτ (`π), ch[ι]〉.

By [4, Corollary 3.5]

τ
(
π](µ[ι])

)
= τ

(
〈`π, [ι]⊗ 1A〉

)

We can represent `π by a projection f in matrices over C(M,A). The defi-
nition of the Kasparov product implies that

〈[`π], [ι]⊗ 1A〉 = ι∗[f ] = [f(x0)] ∈ K0(A).

On the other hand, the definition of chτ (see [12, Definition 4.1]) implies
that chτ (f) = τ(f(x0)) + a term in H2(M,R). Since ch[ι] = 1 ∈ H0(M,R),
we get

(4) 〈chτ (f), ch[ι]〉 = τ(f(x0)).

�
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2.5. Statement of the main result. We will often write Σg for the closed
oriented surface of genus g and Γg for its fundamental group. It is well known
that Γg has a standard presentation

Γg =

〈
α1, β1, . . . , αg, βg

∣∣∣∣
g∏

i=1

[αi, βi]

〉
,

where we write [α, β] for the multiplicative commutator αβα−1β−1.
Our main result is the following.

Theorem 2.6. Let g ≥ 1 be an integer and let q0 and q1 be idempotents in
some matrix algebra over `1(Γg) such that µ[Σg] = [q0]− [q1] ∈ K0(`1(Γg)).
There exists ε0 > 0 and a finite subset F0 of Γg such that for every 0 < ε < ε0

and every finite subset F ⊇ F0 of Γg the following holds.
If A is a unital C∗-algebra with a trace τ and π : Γg → U(A) is an (F , ε)-

representation, then

(5) τ
(
π](µ[Σg])

)
=

1

2πi
τ

(
log

( g∏

i=1

[
π(αi), π(βi)

]))
,

where π](µ[Σg]) := π](q0)− π](q1).

The rest of the paper is devoted to the proof.

Remark 2.7. The case g = 1 recovers the Exel-Loring formula as well as its
extension by H. Lin [10] for C∗-algebras of tracial rank one. Lin’s strategy
was a reduction to the finite-dimensional case of [6] using approximation
techniques.

The following proposition says that we may associate quasi-representations
with unitaries that nearly satisfy the group relation. The proof is in Sec-
tion 7.

Proposition 2.8. For every ε > 0 and every finite subset F of Γg there is a
δ > 0 such that if A is a unital C∗-algebra with a trace τ and u1, v1, ..., ug, vg
are unitaries in A satisfying

∥∥∥∥
g∏

i=1

[ui, vi]− 1

∥∥∥∥ < δ,

then there exists an (F , ε)-representation π : Γg → U(A) with π(αi) = ui
and π(βi) = vi, for all i ∈ {1, . . . , g}.
Example. To revisit a classic example, consider the noncommutative 2-
torus Aθ, regarded as the universal C∗-algebra generated by unitaries u and
v with [v, u] = e2πiθ · 1. This is a tracial unital C∗-algebra. If θ is small
enough, we may apply Proposition 2.8 and Theorem 2.6 to obtain

τ(π](β)) =
1

2πi
τ(log e−2πiθ) = −θ

where β ∈ K0(C(T2)) is the Bott element, τ is a unital trace of Aθ, and
π : Z2 → U(Aθ) is a quasi-representation obtained from Proposition 2.8.
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3. The Mishchenko line bundle

Recall our setup: M is a closed oriented surface with fundamental group

G and universal cover p : M̃ → M . In this section we give a picture of the
Mishchenko line bundle that will enable us to explicitly describe its push-
forward by a quasi-representation.

The Mishchenko line bundle is the bundle M̃ ×G `1(G) → M , obtained

from M̃ × `1(G) by passing to the quotient with respect to the diagonal
action of G. We write ` for its class in K0(C(M)⊗ `1(G)).

3.1. Triangulations and the edge-path group. We adapt a construction
found in the appendix of [11]. It is convenient to work with a triangulation

Λ of M . Let Λ(0) = {x0, . . . , xN−1} be the 0-skeleton of Λ and Λ(1) be the
1-skeleton. To each edge we assign an element of G as follows. Fix a root
vertex x0 and a maximal (spanning) tree T in Λ. Let γi be the unique path
along T from x0 to xi, and for two adjacent vertices xi and xj let xixj be the
(directed) edge from xi to xj . For two such adjacent vertices, write sij ∈ G
for the class of the loop γi ∗ xixj ∗ γ−1

j .

Let F be the (finite) set {sij}. For example, if M = T2 so that G = Z2 =
〈α, β : [α, β] = 1〉, we have F = {1, α±1, β±1, (αβ)±1} for the triangulation
and tree pictured in Figure 3 (on page 19)

Definition 3.2. For a vertex xik in a 2-simplex σ = 〈xi0 , xi1 , xi2〉 of Λ,
define the dual cell block to xik

Uσik :=

{ 2∑

l=0

tlxil : tl ≥ 0,

2∑

l=0

tl = 1, and tik ≥ tl for all l

}
.

Define the dual cell to the vertex xi ∈ Λ(0) by

Ui = ∪{Uσi : xi ∈ σ}.
Let Uσij = Uσi ∩ Uσj etc. (See Figure 1.)

Since p : M̃ → M is a covering space of M , we may fix an open cover of
M such that for every element V of this cover, p−1(V ) is a disjoint union of

open subsets of M̃ , each of which is mapped homeomorphically onto V by
p. We require that Λ be fine enough so that every dual cell Ui is contained
in some element of this cover.

Lemma 3.3. The Mishchenko line bundle M̃ ×G `1(G)→M is isomorphic
to the bundle E obtained from the disjoint union

⊔
Ui× `1(G) by identifying

(x, a) with (x, sija) whenever x ∈ Ui ∩ Uj.

Proof. Lift x0 to a vertex x̃0 in M̃ . By the unique path-lifting property,
every path γi lifts (uniquely) to a path γ̃i from x̃0 to a lift x̃i of xi. In this

way lift T to a tree T̃ in M̃ . Each Ui also lifts to a dual cell to x̃i, denoted

Ũi, which p maps homeomorphically onto Ui.
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vi0

vi1

vi2

Uσi0

Uσi1

Uσi2

(a)

v0 v1 v2 v0

v0 v1 v2 v0

v3

v4

v3

v4

(b)

Figure 1. (a) Dual cell blocks in a simplex σ =
〈vi0 , vi1 , vi2〉. (b) A triangulation of T2 with the dual cell
structure highlighted.

We first describe the cocycle (transition functions) for the Mishchenko
line bundle. Identify the fundamental group G of M with the group of deck

transformations of M̃ ; see for example [7, Proposition 1.39]. Use this to write

p−1(Ui) as the disjoint union t{sŨi : s ∈ G}. Consider the isomorphism
Φi : p

−1(Ui)×G `1(G)→ Ui × `1(G) described by the following diagram:

(sx̃, a) (p(x̃), s−1a)

p−1(Ui) × `1(G)
⊔

s∈G
sŨi × `1(G) Ui × `1(G)

p−1(Ui) ×G `
1(G) Φi

=

If Uij := Ui ∩ Uj 6= ∅, we obtain the cocycle φij : Uij → Aut(`1(G)):

Uij × `1(G)
Φ−1
j−→ p−1(Uij)×G `1(G)

Φi−→ Uij × `1(G)

(x, a) 7−→ (x, φij(x)a)

Observe that M̃ ×G `1(G) is isomorphic to the bundle obtained from the
disjoint union

⊔
Ui × `1(G) by identifying (x, a) with (x, φij(x)a) whenever

x ∈ Uij . We only need to prove that φij is constantly equal to sij .

Let x ∈ Uij and let x̃ ∈ Ũj be a lift of x. Then Φj

(
[x̃, a]

)
= (x, a).

Because p(x̃) ∈ Uij there is a (unique) s ∈ G such that x̃ ∈ sŨi ∩ Ũj 6= ∅.
Thus Φi

(
[x̃, a]

)
= (x, s−1a). Now, the path sγ̃i ∗ sx̃i x̃j ∗ γ̃−1

j , starts at sx̃0
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and ends at x̃0. Its projection in M is the loop defining sij , so s−1 = sij
(see [7, Proposition 1.39], for example). Thus φij(x) = sij . �

3.4. The push-forward of the line bundle. We will need an open cover
of M , so we dilate the dual cells Ui to obtain one. Let 0 < δ < 1/2 and
define V σ

i to be the δ-neighborhood of Uσi intersected with σ. As before, set
Vi =

⋃
σ V

σ
i . Let {χi} be a partition of unity subordinate to {Vi}.

By Lemma 3.3 the class of the Mishchenko line bundle in K0(C(M) ⊗
`1(G)), denoted earlier by `, corresponds to the class of the projection

e :=
∑

i,j

eij ⊗ χ1/2
i χ

1/2
j ⊗ sij ∈MN (C)⊗ C(M)⊗ `1(G),

where {eij} are the canonical matrix units of MN (C) and N is the number
of vertices in Λ.

We may fix a pair of idempotents q0 and q1 in some matrix algebra over
`1(G) satisfying [q0] − [q1] = µ[M ] ∈ K0(`1(G)). Let ω > 0 be given by
Theorem 2.4. (We may assume that ω < 1/4.)

Fix 0 < ε < ω and an (F , ε)-representation π : G → U(A). We recall the
following notation from the introduction.

Notation 3.5. For an (F , ε)-representation π : G→ U(A) as above, let

`π := (idC(M)⊗π)](e).

4. Hilbert-module bundles and quasi-representations

As mentioned in the introduction, in [2] a quasi-representation (with
scalar values) of the fundamental group of a manifold is associated to an
“almost-flat” bundle over the manifold. In this section we instead define a
canonical bundle Eπ over M associated with quasi-representation π. Its class
in K0(C(M)⊗A) will be the class `π of the push-forward of the Mishchenko
line bundle by π. Our construction will be explicit enough so that we can
use Chern-Weil theory for such bundles to analyze chτ (`π), see [12].

Recall that A is a C∗-algebra with trace τ .

Definition. Let X be a locally compact Hausdorff space. A Hilbert A-
module bundle W over X is a topological space W with a projection W → X
such that the fiber over each point has the structure of a Hilbert A-module
V , and with local trivializations W |U ∼−→ U ×V which are fiberwise Hilbert
A-module isomorphisms.

We should point out that the K0-group of the C∗-algebra C(M) ⊗ A
is isomorphic to the Grothendieck group of isomorphism classes of finitely
generated projective Hilbert A-module bundles over M . We identify the two
groups.
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4.1. Constructing bundles. We adapt a construction found in [11].
First we define a family of maps {uij : Uij → GL(A)} satisfying

uji(x) = u−1
ij (x), x ∈ Uij ,

uik(x) = uij(x)ujk(x), x ∈ Uijk.

These maps will be then extended to a cocycle defined on the collection
{Vij}.

Following [11] we will find it convenient to fix a partial order o on the
vertices of Λ such that the vertices of each simplex form a totally ordered
subset. We then call Λ a locally ordered simplicial complex. One may always
assume such an order exists by passing to the first barycentric subdivision
of Λ: if σ̂1 and σ̂2 are the barycenters of simplices σ1 and σ2 of Λ, define
σ̂1 < σ̂2 if σ1 is a face of σ2.

Consider a simplex σ = 〈xi0 , xi1 , xi2〉 (with vertices written in increasing
o-order). Observe that in this case Uσi0 ∩Uσi2 = Uσi0i2 may be described using
a single parameter t1:

Uσi0i2 =

{ 2∑

l=0

tlxil : t0 = t2 =
1− t1

2
: 0 ≤ t1 ≤ 1/3

}
.

Define

uσi0i1 = the constant function on Uσi0i1 equal to π(si0i1)

uσi1i2 = the constant function on Uσi1i2 equal to π(si1i2)

uσi0i2(t1) = (1− 3t1)π(si0i2) + 3t1π(si0i1)π(si1i2), 0 ≤ t1 ≤ 1/3.

Define uσi2i0 etc. to be the pointwise inverse of uσi0i2 . For fixed i and j, the
maps uσij : Uσij → GL(A) define a map uij : Uij → GL(A). Indeed, if xixj is

a common edge of two simplices σ and σ′, then Uσij ∩ Uσ
′

ij is the barycenter

of 〈xi, xj〉, where by definition both uσij and uσ
′
ij take the value π(sij). By

construction the family {uij} has the desired properties. (Note that Uijk is
the barycenter of a 2-simplex.)

4.1.1. Recall the sets Vi etc. from 3.4. To define the smooth transition func-
tion vσi0i2 : V σ

i0i2
→ GL(A) that will replace uσi0i2 , let us assume for simplicity

that the simplex σ is the triangle with vertices vi0 = (−1/2, 0), vi1 = (0, 1),
and vi2 = (1/2, 0). (It may be helpful to consider Figure 1a.)

Define vσi0i2 as follows:

vσi0i2(x, y) =





π(si0i1)π(si1i2), 1/3− δ ≤ y ≤ 1/3 + δ

(1− y
1/3−δ )π(si0i2)+

+ y
1/3−δπ(si0i1)π(si1i2), 0 ≤ y ≤ 1/3− δ
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(so vσi0i2 is constant along the horizontal segments in Vi0i2). The remaining
two transition functions remain constant:

vσi0i1 = π(si0i1)

vσi1i2 = π(si1i2)

Again, for fixed i and j the maps vσij : V σ
ij → GL(A) define a map vij : Vij →

GL(A). Since vσi0i2 is constant and equal to π(si0i1)π(si1i2) in Vi0 ∩Vi2 ∩Vi2 ,
we indeed obtain a family {vij} of transition functions.

Definition 4.2. The Hilbert A-module bundle Eπ is constructed from the
disjoint union

⊔
Vi ×A by identifying (x, a) with (x, vij(x)a) for x in Vij .

Proposition 4.3. The class of Eπ in K0(C(M)⊗A) coincides with `π, the
class of the push-forward of e by idC(M)⊗π (see 3.4).

Proof. The bundle Eπ is a quotient of
⊔
Vi ×A and from its definition it is

clear that for each i the quotient map is injective on Vi×A. The restriction of
the quotient map to Vi×A has an inverse, call it ψi, and ψi is a trivialization
of Eπ|Vi . Recalling that N is the number of vertices in Λ (which is the same
as the number of sets Vi in the cover), we define an isometric embedding

θ : Eπ →M ×AN

[x, a] 7→
(
χ

1/2
i (x)ψi([x, a])

)N−1

i=0
.

Let eπ : M →MN (A) be the function

x 7→
∑

i,j

eij ⊗ χ1/2
i (x)χ

1/2
j (x)vij(x).

Because ψiψ
−1
j (x, a) = (x, vij(x)a) for x ∈ Vij , it is easy to check that eπ(x)

is the matrix representing the orthogonal projection of AN onto θ(Eπ|x). In
this way we see that [Eπ] = [eπ] ∈ K0(C(M)⊗A).

Since F = {sij} and π is an (F , ε)-representation, it follows immediately
that the transition functions vij satisfy ‖vij(x)− π(sij)‖ < ε for all x ∈ Vij .
Thus

‖eπ − (1⊗ π)(e)‖ =

∥∥∥∥eπ −
∑

i,j

eij ⊗ χ1/2
i χ

1/2
j π(sij)

∥∥∥∥ < ε

as well. Recall that `π is obtained by perturbing (1 ⊗ π)(e) to a projection
using functional calculus and then taking its K0-class (see 2.2). The previous
estimate shows that this class must be [eπ]. �

Remark 4.4. The previous proposition shows that the class [Eπ] is inde-
pendent of the order o on the vertices of Λ0.

4.5. Connections arising from transition functions. We now define a
canonical connection on Eπ associated with the family {vij} of transition
functions. This connection will be used in the proof of Theorem 5.4.
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4.5.1. The smooth sections Γ(Eπ) of Eπ may be identified with
{

(si) ∈
⊕

i

Ω0(Vi, Eπ) : sj = vjisi on Vij
}
.

Let ∇i : Ω0(Vi, A)→ Ω1(Vi, A) be given by

∇i(s) = ds+ ωis ∀s ∈ Ω0(Vi, A),

where

ωi =
∑

k

χkv
−1
ki dvki.

Notice that vki ∈ Ω0(Vik,GL(A)) and so ωi may be regarded as an A-valued
1-form on Vi, which can be multiplied fiberwise by the values of the section
s.

We define a connection ∇ on Eπ by

∇(si) = (∇isi).
That ∇ takes values in Ω1(M,Eπ) follows from a straightforward computa-
tion verifying

∇jsj = vji∇isi.
It is just as straightforward to verify that ∇ is A-linear and satisfies the
Leibniz rule.

4.5.2. Define Ωi = dωi+ωi∧ωi ∈ Ω2(Vi, A). One checks that Ωi = v−1
ji Ωjvji

and so (Ωi) defines an element Ω of Ω2(M,EndA(Eπ)). This is nothing but
the curvature of ∇ (see [12, Proposition 3.8]).

5. The Chern character

In this section we prove our main technical result, Theorem 2.6. It com-
putes the trace of the push-forward of µ[M ] in terms of the de la Harpe-
Skandalis determinant by using that the cocycle conditions almost hold for
the elements π(sij),

5.1. The de la Harpe-Skandalis determinant. The de la Harpe-Skandalis
determinant [5] appears in our formula below. Let us recall the definition.
Write GL∞(A) for the (algebraic) inductive limit of (GLn(A))n≥1 with stan-
dard inclusions. For a piecewise smooth path ξ : [t1, t2]→ GL∞(A), define

∆̃τ (ξ) =
1

2πi
τ

( t2∫

t1

ξ′(t)ξ(t)−1dt

)
=

1

2πi

t2∫

t1

τ(ξ′(t)ξ(t)−1)dt.

We will make use of some of the properties of ∆̃τ stated below.

Lemma 5.2 (cf. Lemme 1 of [5]).

(1) Let ξ1, ξ2 : [t1, t2] → GL0
∞(A) be two paths and ξ be their pointwise

product. Then ∆̃τ (ξ) = ∆̃τ (ξ1) + ∆̃τ (ξ2).
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(2) Let ξ : [t1, t2] → GL0
∞(A) be a path with ‖ξ(t) − 1‖ < 1 for all t.

Then

2πi · ∆̃τ (ξ) = τ
(
log ξ(t2)

)
− τ
(
log ξ(t1)

)
.

(3) The integral ∆̃τ (ξ) is left invariant under a fixed-end-point homotopy
of ξ.

5.3. The Chern character on K0(C(M) ⊗ A). Assume τ is a trace on
A. Then τ induces a map on Ω2(Vi,EndA(Eπ|Vi)) and by the trace property
τ(Ωi) = τ(Ωj) on Vij . We obtain in this way a globally defined form τ(Ω) ∈
Ω2(M,C).

Since the fibers of our bundle are all equal to A, and our manifold is 2-
dimensional, the definition of the Chern character associated with τ (from
[12, Definition 4.1], but we have included a normalization coefficient) reduces
to

(6) chτ (`π) = τ

(
exp

(
iΩ

2π

))
= τ

( ∞∑

k=0

iΩ/2π ∧ · · · ∧ iΩ/2π
k!

)
=

= τ

(
iΩ

2π

)
∈ Ω2(M,C).

This is a closed form whose cohomology class does not depend on the choice
of the connection ∇ (see [12, Lemma 4.2]).

A few remarks are in order before stating the next result.
Because Λ is a locally ordered simplicial complex (recall the partial order

o from 4.1), every 2-simplex σ may be written uniquely as 〈xi, xj , xk〉 with
the vertices written in increasing o-order. Whenever we write a simplex in
this way it is implicit that the vertices are written in increasing o-order. We
may write σ for σ along with this order.

The orientation [M ] induces an orientation of the boundary of the dual cell
Ui and in particular of the segment Uσik. Let s(σ) = 0 if the initial endpoint of
Uσik under this orientation is the barycenter of σ, and let s(σ) = 1 otherwise.

Theorem 5.4. For a simplex σ = 〈xi, xj , xk〉 of Λ, let ξσ be the linear path

ξσ(t) = (1− t)π(sik) + tπ(sij)π(sjk), t ∈ [0, 1]

in GL(A). Then

τ
(
π](µ[M ])

)
=
∑

σ

(−1)s(σ)∆̃τ (ξσ),

where the sum ranges over all 2-simplices σ of Λ.

Proof. The path ξσ lies entirely in GL(A) because ‖π(sik)−π(sij)π(sjk)‖ <
ε. It follows from Theorem 2.4 (on page 5) and Equation (6) above that

τ
(
π](µ[M ])

)
= 〈chτ (`π), [M ]〉 = − 1

2πi

∫

M

τ(Ω).
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We compute this integral.
First observe that by the trace property of τ we have τ(ωl ∧ ωl) = 0 for

every l. Thus

∫

M

τ(Ω) =
∑

l

∫

Ul

τ(Ωl) =
∑

l

∫

Ul

τ(dωl + ωl ∧ ωl) =

=
∑

l

∫

Ul

τ(dωl) =
∑

l

∫

Ul

dτ(ωl) =
∑

l

∫

∂Ul

τ(ωl),

where we used Green’s theorem for the last equality and ∂Ul has the orien-
tation induced from [M ]. Recall that Ul is the dual cell to vl. Write this as
a sum over the 2-simplices of Λ:

∑

l

∫

∂Ul

τ(ωl) =
∑

l

∑

σ

∫

(∂Ul)∩σ

τ(ωl) =
∑

σ

∑

l

∫

(∂Ul)∩σ

τ(ωl).

Exactly three dual cells meet a 2-simplex σ = 〈xi, xj , xk〉—Ui, Uj , and Uk—
so for each simplex there are three integrals we need to account for. Let us
treat each of these in turn.

The definition of the connection forms (see 4.5.1) implies that ωi restricted
to σ equals

ωi = χkv
−1
ki dvki + χjv

−1
ji dvji = χkv

−1
ki dvki,

where the last equality follows from the fact that vji is constant. Now, (∂Ui)∩
σ is the union of the two segments Uσij and Uσik. Observe that vik is constantly

equal to π(sij)π(sjk) on Vi∩Vj ∩Vk (see 4.1.1). Since Uσij ∩Vk ⊆ Vi∩Vj ∩Vk
and χk vanishes outside Vk, we get

∫

(∂Ui)∩σ

τ(ωi) =

∫

Uσij

τ(χkv
−1
ki dvki) +

∫

Uσik

τ(χkv
−1
ki dvki) =

∫

Uσik

τ(χkv
−1
ki dvki).

The second integral
∫

(∂Uj)∩σ τ(ωj) vanishes. This is because vij and vjk
are constant and so

ωj = χiv
−1
ij dvij + χkv

−1
kj dvkj = 0.

The third integral may be calculated just as the first, with the roles of i
and k reversed. We obtain

∫

(∂Uk)∩σ

τ(ωk) =

∫

Uσki

τ(χiv
−1
ik dvik).
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Combining the three integrals we get

∑

σ

∑

l

∫

(∂Ul)∩σ

τ(ωl) =
∑

σ

( ∫

Uσik

τ(χkv
−1
ki dvki) +

∫

Uσki

τ(χiv
−1
ik dvik)

)
=

=
∑

σ

∫

Uσik

τ(χkv
−1
ki dvki − χiv−1

ik dvik),

where the last equality is due to the opposite orientations of the segment
Uσik in the preceding two integrals.

It follows from vikvki = 1 that dvik v
−1
ik + v−1

ki dvki = 0. Therefore, the last
line in the equation above is equal to
∑

σ

∫

Uσik

τ(χkv
−1
ki dvki+χiv

−1
ki dvki) =

∑

σ

∫

Uσik

τ(v−1
ki dvki) = −

∑

σ

∫

Uσik

τ(v−1
ik dvik).

To arrive at the conclusion of the theorem, consider the restriction of vik
to the segment Uσik. This is the segment between the barycenter of σ, where
vik takes the value π(sij)π(sjk), and the barycenter of 〈xi, xk〉, where vik
takes the value π(sik) (see 4.1.1). Then

∫

Uσik

τ(v−1
ki dvki) = (−1)s(σ)2πi · ∆̃τ (ξσ).

This concludes the proof. �

6. Oriented surfaces

For the proof of Theorem 2.6, we will use a convenient triangulation Λg of
the orientable genus g surface Σg that we proceed to describe. The covering
space of Σg is the open disc and we may take as a fundamental domain a

regular 4g-gon, call it Σ̃g, drawn in the hyperbolic plane.

Figure 2 depicts a procedure to obtain Σ̃2 by gluing together two copies

of Σ̃1. (We will give a more explicit description of Σ̃g in a moment). It also

illustrates the labeling we use for the (oriented) sides of Σ̃1 and Σ̃2. To
obtain Σ1, for example, we identify the side a with ∗a and the side b with
∗b. To obtain the double torus Σ2, we identify ak with ∗ak and bk with ∗bk
for k ∈ {1, 2}.

6.1. Triangulations. Let us first define a triangulation Λ̃g of the funda-

mental domain Σ̃g. We do this by gluing g triangulated copies of Σ̃1 to-

gether. Figure 4a on page 20 shows the triangulation for the kth copy of Σ̃1

(with a hole), call it Λ̃k1. Ignore the labels on the edges and the highlighted

edges for now. The vertex labeling also indicates how to glue Λ̃k1 to Λ̃k−1
1

and Λ̃k+1
1 , with addition modulo g. Figure 4b illustrates the result of this

gluing, the end-result being Λ̃g by definition.
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∗b∗a

b a

 a

∗b∗a

b

(a)

a1

∗b1∗a1

b1

a2

∗b2 ∗a2

b2

(b)

Figure 2. (a) The fundamental domain Σ̃1 (with a hole).

(b) The fundamental domain Σ̃2.

The underlying space of Λ̃g is Σ̃g. Identifying all the vertices vki , as well

as identifying aki with ∗aki and bki with ∗bki , for each i ∈ {1, 2} and k ∈
{1, . . . , n}, yields a triangulation Λg of Σg.

6.2. Surface groups. We identify the fundamental group Γg of Σg with
the group of deck transformations of the universal covering space of Σg. We
give a more concrete description of this group now.

The fundamental domain Σ̃g is a regular 4g-gon. We write ak, bk ∗ak and

∗bk, k ∈ {1, . . . , n}, for its (oriented) sides. The triangulation Λ̃g gives a

subdivision of the side ak into the three edges in the path (vk0 , a
k
1, a

k
2, v

k
1 )

(with orientation given by the directed edge (ak1, a
k
2)). The subdivision of

the sides bk, ∗ak and ∗bk is similar. See Figure 4a.
The group of deck transformations Γg is generated by the hyperbolic

isometries αk and βk, k ∈ {1, . . . , g}, defined as follows: αk maps ∗ak to ak
in such a way that, locally, the half-plane bounded by ∗ak containing Σ̃g

is mapped to the half-plane bounded by ak but opposite Σ̃g. The transfor-
mation βk is defined analogously, mapping ∗bk to bk. We refer the reader
to [8, Chapter VII] for more details. When g = 1, for example, the trans-
formations α1 and β1 are just translations. See Figure 3, where we have
omitted the sub- and superscripts corresponding to k = 1, since g = 1.

For k ∈ {1, . . . , g}, let

κk =

k∏

j=1

[αk, βk]

and let κ0 = 1. We have that κg = 1.

6.3. Local orders and trees. We need Λg to be locally ordered, so we
proceed to fix a partial order on the vertices of Λg such that the vertices
of every simplex form a totally ordered set. Let us define an order on the

vertices of Λ̃g that drops down to the order we need. On the kth copy Λ̃k1,
the corresponding order is indicated in Figure 4a by arrows on the edges,
always pointing from a smaller vertex to a larger one. It is defined as follows:
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• for the “inner” vertices we go “counter-clockwise”: for fixed k ∈
{1, . . . , g}, wki < wkj if i < j, except when k = g and j = 4 (in which

case wg4 = w1
0 and we already have w1

0 < wik);

• the “inner” vertices are larger than the “outer” ones: wki > vlj , a
l
j ,

blj , ∗alj , ∗blj for all i, j, k and l;

• for the “outer” vertices: vki < alj , b
l
j , ∗alj , ∗blj for all i, j, k and l; for

every k, ak1 < ak2, ∗ak1 < ∗ak2, and similarly for the bkj .

Finally, we will need a spanning tree Tg of Λg, and a lift T̃g to the trian-

gulation Λ̃g of the fundamental domain Σ̃g. Again, we define T̃g first. It is
obtained as the union of the edge between w1

0 and v1
0 (including those two

vertices) and trees in each copy Σk
1. The tree in Σk

1 is depicted in Figure 4a
by highlighted (heavier) edges. This drops to a spanning tree Tg of Σg. we

regard these trees as “rooted” at the vertex vk0 .

7. Proof of the main result

This section contains the proof of Theorem 2.6. The proof is split into a
number of lemmas.

To apply Theorem 5.4 we will first compute the group element sij corre-
sponding to each edge xixj of Λg , in the sense discussed in 3.1. Equivalently,

we compute group elements corresponding to edges in the cover Λ̃g, keeping
in mind that the lifts of any edge of Λg will all correspond to the same group
element.

A concise way of stating the result of these computations is to label each
edge in Figure 4a with the corresponding group element.

Lemma 7.1. The labels in Figure 4a are correct.

Proof. We carry out the computations in three separate claims.

Claim. An edge of the form akiw
k
j corresponds to α−1

k ∈ Γg. Similarly, an

edge of the form bkiw
k
j corresponds to β−1

k ∈ Γg.

Consider akiw
k
j first. When we add this edge to the forest that is the

union of all the lifts of Tg (that is, translates of T̃g), we obtain a unique
path P between v1

0, our root vertex, and some translate sv1
0, where s ∈ Γg.

We regard P as directed in the direction of the edge akiw
k
j that we started

with, so it is a path from sv1
0 to v1

0. It therefore drops down to a loop
in Σg whose class is s−1, the group element we want to compute (see [7,

Proposition 1.39], for example). Now notice that because ∗aki belongs to T̃g,

its translate αk(∗aki ) = aki belongs to the translate αkT̃g of T̃g. Thus P is

a path between vk0 and αkv
k
0 . The corresponding group element is therefore

α−1
k . An entirely similar argument applies to the edge bkiw

k
j .
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Claim. Any edge between inner vertices (vertices of the form wki ) corre-
sponds to 1 ∈ Γg. The edges ak1a

k
2, bk1b

k
2, ∗ak1∗ak2, and ∗bk1∗bk2 all correspond

to 1 ∈ Γg.

We proceed as in the previous claim. Any edge between inner vertices is

either in T̃g or between two vertices that are in T̃g. The associated path we

get is therefore from vk0 to itself. The same is true of the edges bk1b
k
2 and

∗ak1∗ak2. It follows that the corresponding group element is 1. Since ak1a
k
2 and

∗ak1∗ak2 are both lifts of the same edge, they correspond to the same element.
Similarly, ∗bk1∗bk2 corresponds to 1.

Claim. An edge that is incident to vki and to a vertex z in the tree T̃g
corresponds to the element s ∈ Γg such that v1

0 = svki . (The edge is given
the orientation induced by the order on the vertices, as usual.) For k ∈
{1, . . . , g},

v1
0 = κk−1 · vk0
v1

0 = κk−1αkβkα
−1
k · vk1

v1
0 = κk−1αkβk · vk2
v1

0 = κk−1αk · vk3

(Recall that κk is the product of commutators [α1, β1][α2, β2] · · · [αk, βk] for
k ∈ {1, . . . , g}, and that κ0 = 1.)

Observe that, because of how the order was defined, vki < z always holds.

When we add the edge vki z to the tree T̃g we obtain a path from vki to v1
0.

(See Figure 4, but keep in mind that in the case k = 1 the edge v1
0w

1
0 belongs

to the tree.) It follows that the corresponding element is the s ∈ Γg such

that v1
0 = svki .

To compute these elements s we argue by induction on k. Assume k = 1.
We observe that

v1
4

β−1
17−→ v1

1

α−1
17−→ v1

2
β17−→ v1

3
α17−→ v1

0.

Indeed, from the definition (see 6.2) we see that the transformation α1 takes
v1

3 to v1
0—think of the side ∗a1 = (v1

3, ∗a1
1, ∗a1

2, v
1
2) being mapped to the side

a1 = (v1
0, a

1
1, a

1
2, v

1
1): the vertex ∗a1

1 is mapped to a1
1 and so v1

3 is mapped
to v1

0. We also see from 6.2 and Figure 4a that β1 maps v1
2 to v1

3, and so

v1
0 = α1β1 · v1

2. A similar argument shows that v1
0 = α1β1α

−1
1 · v1

1 and that

v1
0 = α1β1α

−1
1 β−1

1 · v1
4 = κ1 · v1

4.

Assuming the computations hold for k − 1, we prove them for k. In fact,
most of the work is already done. The same argument we used for the case
k = 1 shows that

vk4
β−1
k7−→ vk1

α−1
k7−→ vk2

βk7−→ vk3
αk7−→ vk0 .
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v1

v2

v3

v0

w−1 w1

w2

w3

w0

∗a1

∗a2

b1

b2 a2

a1

∗b2

∗b1
11

1 1

β

α
β

α

β
−1

α −
1

β
−1

α −
1

11

β −
1

α
−1

β

αβαβ

α

αβ

β α

αβ

11

1 1

Figure 3. The triangulation Λ̃1 of Σ̃1. Edges are labeled
with the group element associated with the loop they induce.

The inductive hypothesis implies that

κk−1v
k
0 = κk−1v

k−1
4 = v1

0,

This ends the proof of the claim.
These three claims prove that the labels in Figure 4a are correct.
(The labels in Figure 3 also follow from these calculations, but may be

obtained by more straightforward arguments because the generators of Γ1
∼=

Z2 may be regarded as shifts in the plane.) �

Notation 7.2. For k ∈ {1, . . . , g}, let

Fk = {α−1
k , β−1

k , κk−1, κk−1αk, κk−1αkβk, κk−1αkβkα
−1
k },

and notice that the set F = {sij} considered in section 3.1 is equal to the

union F1 ∪ F−1
1 ∪ · · · ∪ Fg ∪ F−1

g by Lemma 7.1.

7.3. Choosing quasi-representations. We want to apply Theorem 5.4
using the labels obtained in Lemma 7.1 and some convenient choice of a
quasi-representation of G in U(A). We begin by proving a slightly stronger
version Proposition 2.8, which guarantees the existence of quasi-representations
(under certain conditions). Let us set up some notation first.
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vk−1
4 = vk0

vk1

vk2

vk3

vk4 = vk+1
0

wk−1
−1 = wk

−1 = wk+1
−1 wk

4 = wk+1
0wk

0 = wk−1
4

wk
1

wk
2

wk
3

bk1

bk2

∗ak1

∗ak2∗bk2

∗bk1

ak2

ak1

1

1 1

1

κk−1

κk
−1
αk
βk
α
−1
k

κ
k
−
1
α
k
β
k

κ
k−

1α
k

κk

α
−1

k

β −1
k

α
−1

k

β −1
k

α−1
k

1 1

β −
1k

κk−
1
αk

κk−
1
αk
βk
α
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Figure 4. (a) The triangulation we use for Σ̃k
1, the kth

copy of Σ̃1 (with a hole). Every edge is labeled with the
element of Γg corresponding to the loop it induces. (b) How

the simplicial complex Σ̃n is defined. The kth “wedge” is
pictured in (a).
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For certain unitaries u1, v1, . . . , ug, vg in A we will need to produce a
quasi-representation π satisfying

(7) π(αk) = uk, and π(βk) = vk ∀k ∈ {1, . . . , g}.

Write F2g = 〈α̂1, β̂1, . . . , α̂g, β̂g〉 for the free group on 2g generators. Let
q : F2g → Γg and π̂ : F2g → U(A) be the homomorphisms given by

q(α̂k) = αk, q(β̂k) = βk

and

π̂(α̂k) = uk, π̂(β̂k) = vk

for all k ∈ {1, . . . , g}. Notice that the kernel of q is the normal subgroup
generated by

κ̂g :=

g∏

k=1

[α̂k, β̂k]

and therefore consists of products of elements of the form γ̂κ̂±1
g γ̂−1 where

γ̂ ∈ F2g.
Choose a set-theoretic section s : Γg → F2g of q such that s(1) = 1,

s(αk) = α̂k, and s(βk) = β̂k ∀k ∈ {1, . . . , g}.

Lemma 7.4. For all ε > 0 there exists δ(ε) > 0 such that if A is a unital
C∗-algebra and u1, v1, . . . , ug, vg ∈ U(A) satisfy

(8)

∥∥∥∥
g∏

i=1

[ui, vi]− 1

∥∥∥∥ < δ(ε),

then π = π̂ ◦ s (with s as constructed above) is an (F , ε)-representation
satisfying (7).

This lemma obviously implies Proposition 2.8.

Proof. We only need to check that π is (F , ε)-multiplicative. Assume that
(8) holds for some δ in place of δ(ε).

Because π̂ is a homomorphism, for all γ, γ′ ∈ Γg we have

‖π(γ)π(γ′)− π(γγ′)‖ = ‖π(γ)π(γ′)π(γγ′)∗ − 1‖ =

=
∥∥π̂
(
s(γ)s(γ′)s(γγ′)−1

)
− 1
∥∥.

Now, s(γ)s(γ′)s(γγ′)−1 is in the kernel of q and is therefore a product of the
form

m∏

i=1

γ̂iκ̂
εi
g γ̂
−1
i



22 JOSÉ R. CARRIÓN AND MARIUS DADARLAT

where m depends on γ and γ′ and εi ∈ {1,−1}. Thus

‖π(γ)π(γ′)− π(γγ′)‖ =

∥∥∥∥π̂
( m∏

i=1

γ̂iκ̂
εi
g γ̂
−1
i

)
− 1

∥∥∥∥

≤
m∑

i=1

‖π̂(γ̂i)π̂(κ̂g)
εi π̂(γ̂i)

∗ − 1‖

≤ m
∥∥∥∥

g∏

i=1

[ui, vi]− 1

∥∥∥∥ < mδ.

Since F is a finite set, there is a positive integer M such that if γ, γ′ ∈ F ,
then s(γ)s(γ′)s(γγ′)−1 is a product of at most M elements of the form
γ̂iκ̂

εi
g γ̂
−1
i as above. It follows that π is an (F ,Mδ)-representation. Choose

δ(ε) = ε/M . �

Notation 7.5. Recall the set Fk defined in 7.2. Let s0 : Γg → F2g be a
set-theoretic section of q such that

s0(α±1
k ) = α̂±1

k , s0(β±1
k ) = β̂±1

k , s0(κk−1) = κ̂k−1,

s0(κk−1αk) = κ̂k−1α̂k, s0(κk−1αkβk) = κ̂k−1α̂kβ̂k

for all k ∈ {1, . . . , g}, and

s0(κk−1αkβkα
−1
k ) = κ̂k−1α̂kβ̂kα̂

−1
k

for all k ∈ {1, . . . , g−1}. That such a section exists follows from the fact that
all the words in the list F1∪· · ·∪Fg∪{α1, β1, . . . αg, βg} are distinct, with two
exceptions: α1 = κ0α1 ∈ F1 appears twice, as does βg = κg−1αgβgα

−1
g ∈ Fg.

Define π0 = π̂ ◦ s0 : Γg → U(A).

Lemma 7.6. If 〈xi, xj , xk〉 is any 2-simplex in Λg different from 〈vg1 , ag2, wg1〉,
then π0(sik) = π0(sij)π0(sjk).

If 〈xi, xj , xk〉 = 〈vg1 , ag2, wg1〉, then π0(sik) = vg and

π0(sij)π0(sjk) =

( g∏

i=1

[ui, vi]

)
vg.

Proof. The definition of s0 implies that the image under s0 of any “word” in
the list Fk is the word obtained by replacing α±1

k by α̂±1
k and β±1

k by β̂±1
k ,

with one exception: the image of κg−1αgβgα
−1
g = βg under s0 is β̂g.

This observation along with inspection of Figure 4a shows that s0(sik) =
s0(sij)s0(sjk) for every 2-simplex in Λg different from 〈vg1 , ag2, wg1〉. For in-
stance, let l ∈ {1, . . . , g} and consider the simplex

〈vl0, al1, wl0〉 = 〈xi, xj , xk〉.
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The corresponding group elements are

sij = κl−1αl

sjk = α−1
l , and

sik = κl−1.

Then

s0(sik) = κ̂l−1 = κ̂l−1α̂l · α̂−1
l = s0(κl−1αl) · s0(α−1

l ) = s0(sij) · s0(sjk).

The computations in all other 2-simplices but 〈vg1 , ag2, wg1〉 are very similar.
For this exceptional simplex we get

s0(sik) = s0(κg−1αgβgα
−1
g ) = s0(βg) = β̂g

but

s0(sij)s0(sjk) = s0(κg−1αgβg)s0(α−1
g ) = κ̂g−1α̂gβ̂gα̂

−1
g = κ̂gβ̂g

Since π0 = π̂ ◦ s0 and π̂ is a homomorphism, the lemma follows. �
Recall that ω > 0 is given in Theorem 2.4.

Lemma 7.7. If 0 < ε < ω and (8) holds (so that π0 is an (F , ε)-representation),
then

τ
(
π0 ](µ[Σg])

)
=

1

2πi
τ

(
log

( g∏

i=1

[ui, vi]

))

Proof. We apply Theorem 5.4. For each simplex 〈xi, xj , xk〉 we compute

∆̃τ (ξ) where ξσ is the path

ξσ(t) = (1− t)π(sik) + tπ(sij)π(sjk), t ∈ [0, 1]

Observe that the value of ∆̃τ on a constant path is 0. Lemma 7.6 im-
plies that there is only one 2-simplex σ such that ξσ is not constant: σ0 =
〈vg1 , ag2, wg1〉. By Lemma 7.6 it yields the linear path ξσ0 from vg to

( g∏

i=1

[ui, vi]

)
vg.

Using Lemma 5.2 we obtain

∆̃τ (ξσ0) =
1

2πi
τ

(
log

( g∏

i=1

[ui, vi]

))
.

Finally, Theorem 5.4 implies

τ
(
π0 ](µ[Σg])

)
= (−1)s(σ0) 1

2πi
τ

(
log

( g∏

i=1

[ui, vi]

))

where the sign (−1)s(σ0) depends on the the orientation [Σg]. The standard
orientation on Σg gives s(σ0) = 1. �

By putting these lemmas together we can prove Theorem 2.6.
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Proof of Theorem 2.6. Recall that the statement of the theorem fixes a pos-
itive integer g and idempotents q0 and q1 in some matrix algebra over `1(Γg)
such that µ[Σg] = [q0]− [q1] ∈ K0(`1(Γg)).

Let F0 be the finite set {sij} defined in 3.1 and described explicitly in
7.2. Theorem 2.4 provides an ω > 0 so small that if π : Γg → U(A) is an
(F0, ω)-representation with, then π](µ[Σg]) := π](q0)−π](q1) is defined and

τ
(
π](µ[Σg])

)
= 〈chτ (`π), [Σg]〉.

By setting ui := π(αi) and vi := π(βi) for all i ∈ {1, . . . , g}, we see that
such a quasi-representation π may be used to define a quasi-representation
π0 as in Section 7.5. The more multiplicative π is on F0, the smaller the
quantity ∥∥∥∥

g∏

i=1

[ui, vi]− 1

∥∥∥∥

is. Lemma 7.4 shows that by making this quantity smaller we can make
π0 more multiplicative on F0. Therefore, because π and π0 agree on the
generators of Γg, there exists an 0 < ε0 < ω so small that if π is an (F0, ε0)-
representation, then π] and π0 ] agree on {q0, q1} ⊂ K0(`1(Γg)).

Finally,

τ
(
π](µ[Σg])

)
= τ

(
π0 ](µ[Σg])

)
=

1

2πi
τ

(
log

( g∏

i=1

[ui, vi]

))

by Lemma 7.7. �
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