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MARIUS DADARLAT

Abstract. The Exel-Loring formula asserts that two topological invariants associated to a pair of

almost commuting unitary matrices coincide. Such a pair can be viewed as a quasi-representation

of Z2. We give a generalization of this formula for countable discrete groups. We also show the

nontriviality of the corresponding invariants for quasidiagonal groups which are coarsely embeddable

in a Hilbert space and have nonvanishing second Betti number.

1. Introduction

Kazhdan [18] and Voiculescu [28] exhibited sequences of pairs of almost commuting unitaries
without commuting approximants. In their proofs, Kazhdan used a winding number argument
and Voiculescu used a Fredholm index argument. Another proof was given later by Loring using
K-theory [21]. For two unitaries u, v ∈ U(n) such that ∥uv−vu∥ is smaller than a positive universal
constant, Loring introduced a K-theory invariant k(u, v) ∈ Z which can be described informally
as follows. The pair u, v gives rise to a group quasi-representation φ : Z2 → U(n) and hence
to a contractive quasi-representation of ∗-algebras φ : ℓ1(Z2) → Mn(C). Then k(u, v) is defined
as the pushforward φ♯(β) of the Bott element, where K0(ℓ

1(Z2)) ∼= K0(C
∗(Z2)) ∼= Z ⊕ Zβ. The

virtual rank of β is 0 and the first Chern class of β is 1. On the other hand, Exel and Loring [11]
rediscovered Kazhdan’s invariant ω(u, v) defined as the winding number in C \ {0} (abbreviated
wn) of the loop t 7→ det((1 − t)1n + t[v, u]) and proved the equality k(u, v) = ω(u, v), [12]. Exel
gave another proof of this equality using the soft torus C*-algebra, see [10]. We extended the
Exel-Loring formula to quasi-representations π : Γg → U(n) of surface groups of genus g ≥ 1 in [6]
and in joint work with Carrión [4] to quasi-representations ρ : Γg → U(A) for A a unital tracial
C∗-algebra, see Theorems 2.5, 2.6 below. A key step in these generalizations was to realize that
the Exel-Loring formula is related to an index theorem of Connes, Gromov and Moscovici [5] and
to its extension studied in [6].

By Hopf’s formula
H2(Γ,Z) = R ∩ [F, F ]/[R,F ],

for the second homology of a discrete group Γ in terms of a free presentation

(1) 0→ R→ F
q−→ Γ→ 0, q(a) = ā,

each element x ∈ H2(Γ,Z) is represented by a product of commutators
∏g

i=1[ai, bi] with ai, bi ∈ F ,
for some integer g ≥ 1, such that

∏g
i=1[āi, b̄i] = 1.

Consider the (rationally injective) homomorphism

βΓ : H2(Γ,Z) ∼= H2(BΓ,Z)→ RK0(BΓ),
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studied in [2], [22], [23] and define the map αΓ : H2(Γ,Z) → K0(ℓ
1(Γ)) as the composition αΓ =

µΓ1 ◦ βΓ where µΓ1 is the ℓ1-version of the assembly map of [19]:

αΓ : H2(Γ,Z)
βΓ

// RK0(BΓ)
µΓ
1 // K0(ℓ

1(Γ)).

We generalize the Exel-Loring formula to arbitrary discrete countable groups Γ as follows.

Theorem 1.1. Let Γ be a discrete countable group. Let x ∈ H2(Γ,Z) be represented by a product
of commutators

∏g
i=1[ai, bi] with ai, bi ∈ F and

∏g
i=1[āi, b̄i] = 1. Let p0 and p1 be projections in

some matrix algebra over ℓ1(Γ) such that αΓ(x) = [p0] − [p1] ∈ K0(ℓ
1(Γ)). There exist a finite set

S ⊂ G and ε > 0 such that if π : Γ → U(n) is unital map with ∥π(st) − π(s)π(t)∥ < ε for all
s, t ∈ S, then

(2) π♯(α
Γ(x)) = wndet

(
(1− t)1n + t

g∏
i=1

[π(āi), π(b̄i)]

)
=

1

2πi
Tr

(
log

(
g∏

i=1

[π(āi), π(b̄i)]

))
.

More generally if A is a unital C∗-algebra with a trace τ and π : Γ → U(A) is unital map with
∥π(st)− π(s)π(t)∥ < ε for all s, t ∈ S, then

(3) τ∗(π♯(α
Γ(x))) =

1

2πi
τ

(
log

(
g∏

i=1

[π(āi), π(b̄i)]

))
.

Here π♯(α
Γ(x)) = π♯(p0)−π♯(p1) where π♯(pi) is the K-theory class of the perturbation of (id⊗π)(pi)

to a projection via analytic functional calculus.

Moreover, we show in Theorem 3.2 that if Γ is a quasidiagonal group which admits a γ-
element and x ∈ H2(Γ,Z) is not of finite order, then there are finite dimensional unitary quasi-
representations π : Γ→ U(n) for which the winding number of the closed loop

t 7→ det

(
(1− t)1n + t

g∏
i=1

[π(āi), π(b̄i)]

)
from Theorem 1.1 is nonzero. In particular these quasi-representations are not perturbable to
genuine representations, see Corollary 3.3. The proof of Theorem 1.1 combines results from [6],[4]
with results of Loday [20] and Matthey [22], [23]. For the proof of Theorem 3.2 we rely on our
previous paper [8].

Eilers, Shulman and Sørensen [9] showed that certain concrete groups with homogeneous
relations are not matricially stable by using winding number invariants of Kazhdan/Exel-Loring
type and quasi-representations constructed ad-hoc. Theorem 1.1 explains how these invariants are
connected to the two-homology of the groups and Theorem 3.2 gives general abstract criteria for
their nonvanishing.

2. two-homology and winding numbers

If s, t are elements of a group Γ, we denote by [s, t] their commutator sts−1t−1. The commu-
tator subgroup of Γ, denoted [Γ,Γ], consists of finite products of commutators.

If ω : [0, 1]→ C\{0} is a loop, ω(0) = ω(1), we denote by wnω(t) its winding number. Let log
be the principal branch of the logarithm defined on C\{z ∈ R : z ≤ 0}, log 1 = 0. Let Tr :Mn(C)→
C be the canonical trace with Tr(1n) = n. Let w ∈ SU(n) with ∥w − 1n∥ < 2. If w is written
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as w = exp(2πih) with h = h∗ = 1
2πi log(w), then Tr(h) ∈ Z since det(w) = exp(2πiTr(h)) = 1.

Define the map κ : {w ∈ SU(n) : ∥w − 1∥ < 2} → Z,

(4) κ(w) =
1

2πi
Tr(log(w)).

The function κ is continuous and hence locally constant as it assumes only integral values.
If A is a unital C∗-algebra with a trace τ , we define κτ : {w ∈ U(A) : ∥w − 1∥ < 1} → R, by

(5) κτ (w) =
1

2πi
τ(log(w)).

It is clear that if A =Mn(C) and τ = Tr, then κτ = κ.

Lemma 2.1 ([10]). If w ∈ SU(n) and ∥w − 1∥ < 2, then wndet ((1− t)1n + tw) = κ(w).

Proof. This is proved in [10, Lemma 3.1] for a commutator w = [u, v] with u, v ∈ U(n). Let us
review the argument. One verifies that if h = h∗ = 1

2πi log(w), then for all 0 ≤ t ≤ 1,

∥ ((1− t)w∗ + t1n)− exp(2πith)w∗∥ = ∥ ((1− t)1n + t exp(2πih)− exp(2πith)) ∥ < 1.

Thus the two paths ω0(t) = (1−t)w∗+t1n and ω1(t) = exp(2πith)w∗ are homotopic with endpoints
fixed as maps into GL(n,C) via the linear homotopy ωs(t) = (1− s)ω0(t) + sω1(t). It follows that

wndet ((1− t)1n + tw) = wndet(exp(2πith)) = wn exp(2πitTr(h))) = Tr(h). □

Lemma 2.2 (Lemma 5, [18]). Let (ui)
g
i=1, (vi)

g
i=1, (u

′
i)
g
i=1, (v

′
i)
g
i=1, be elements of U(n) such that

∥
∏g

i=1[ui, vi]− 1n∥ < 1/5g, ∥ui − u′i∥ < 1/5g and ∥vi − v′i∥ < 1/5g for i = 1, ..., g. Then

κ

(
g∏

i=1

[ui, vi]

)
= κ

(
g∏

i=1

[u′i, v
′
i]

)
.

It follows that if κ (
∏g

i=1[ui, vi]) ̸= 0, then
∏g

i=1[u
′
i, v

′
i] ̸= 1n.

Proof. Kazdan considers the continuous paths in U(n)

ui(t) = ui exp(t log(u
−1
i u′i)), vi(t) = vi exp(t log(v

−1
i v′i)), i = 1, ..., g.

Then ∥ui(t)− 1n∥ < 1/5g, ∥vi(t)− 1n∥ < 1/5g, t ∈ [0, 1]. It follows that w(t) =
∏g

i=1[ui(t), vi(t)] is
a continuous path in SU(n) such that w(0) =

∏g
i=1[ui, vi], w(1) =

∏g
i=1[u

′
i, v

′
i] and ∥w(t)− 1n∥ < 1

for all t ∈ [0, 1]. One concludes that κ(w(0)) = κ(w(1)) since t 7→ κ(w(t)) ∈ Z is continuous. □

Example 2.3. Kazdan’s and Voiculescu’s examples involve the sequence of pairs of unitaries

un =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0

· · ·
0 0 · · · 1 0

 , vn =


λn 0 0 0 0
0 λ2n 0 0 0
0 0 λ3n · 0

· · ·
0 0 0 · · · λnn

 , λn = e2πi/n

[un, vn] = exp(−2πi/n) · 1n, ∥[un, vn]− 1n∥ = | exp(2πi/n)− 1| < 2π/n

κ([un, vn]) = κ(exp(−2πi/n)1n) =
1

2πi
Tr(log(exp(−2πi/n)1n)) = −1.

As noted in [18] and rediscovered in [11], Lemma 2.2 implies that the sequence of pairs of unitaries
un and vn does not admit commuting approximants.
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Remark 2.4. Suppose that {πn : A→ Dn}n is a bounded asymptotic homomorphism of unital C*-
algebras. Thus limn→∞ ∥πn(aa′)− πn(a)πn(a′)∥ = 0 for all a, a′ ∈ A. The sequence {πn}n induces
a unital ∗-homomorphism A →

∏
nDn/

⊕
nDn and hence a group homomorphism K0(A) →∏

nK0(Dn)/
⊕

nK0(Dn). This gives a canonical way to push forward an element x ∈ K0(A) to
a sequence (πn ♯(x))n with components in K0(Dn) which is well-defined up to tail equivalence:
two sequences are tail equivalent, (yn) ≡ (zn), if there is m such that xn = yn for all n ≥ m.
Note that πn ♯(x + x′) ≡ πn ♯(x) + πn ♯(x

′). Of course, if πn are genuine ∗-homomorphisms then
πn ♯(x) = πn ∗(x). One can extend these considerations to Banach algebras. Occasionally it is
convenient to work with a local version of this construction. For instance, if π : A→ B is a unital
linear contraction which is almost multiplicative in the sense that ∥π(aa′) − π(a)π(a′)∥ < ε for
a, a′ in a finite subset S of A, then one can pushforward specific projections p in matrices over
A to projections in matrices over B. Assuming that S is sufficiently large and ε is sufficiently
small, (π⊗ id)(p) is close to a projection (use analytic functional calculus) whose K-theory class is
denoted by π♯(p). Moreover given p and q with [p] = [q] ∈ K0(A), it will follow that π♯(p) = π♯(q)
provided that S is sufficiently large and ε is sufficiently small. Using this observation, we will
sometimes abuse notation and write π♯(x) for π♯(p)− π♯(p′) where x = [p]− [p′] ∈ K0(A) and the
representatives p, p′ are fixed.

Let Γ be a discrete countable group with classifying space BΓ. If BΓ is written as an increasing
union of finite simplicial complexes Yi, then the K-homology of BΓ is RK0(BΓ) ∼= lim−→i

K0(Yi). Let

µΓ : RK0(BΓ) → K0(C
∗(Γ)) denote the full assembly map [15]. Let j : ℓ1(Γ) → C∗(Γ) be the

canonical homomorphism. There is a factorization of µΓ through its ℓ1-version [19]:

(6) RK0(BΓ)

µΓ ''

µΓ
1 // K0(ℓ

1(Γ))

j∗
��

K0(C
∗(Γ))

A unital map π : Γ→ U(n) is call a quasi-representation of Γ. It induces a linear contraction
π : ℓ1(Γ) → Mn. Let S ⊂ Γ be a symmetric finite subset and let ε > 0. We say that π is
(S, ε)-multiplicative if ∥π(st) − π(s)π(t)∥ < ε for all s, t ∈ S. Since S is symmetric we see that
∥π(s−1)− π(s)∗∥ < ε for all s ∈ S. One can use sufficiently multiplicative quasi-representations π
to pushforward K-theory elements of K0(ℓ

1(Γ)) via a partially defined map π♯ : K0(ℓ
1(Γ))→ Z as

discussed in Remark 2.4. By Lemma 3.3. of [6], if x, y ∈ K0(ℓ
1(Γ)) are such that j∗(x) = j∗(y) ∈

K0(C
∗(Γ)), then π♯(x) = π♯(y) provided that π is sufficiently multiplicative.
A one-relator group is a group with a presentation of the form ⟨S; r⟩, where r is single element

in the free group F (S) on the countable generating set S. An important example is the surface
group

Γg = π1(Σg) = ⟨s1, t1, ..., sg, tg ;
g∏

i=1

[si, ti] ⟩,

where Σg = BΓg is a connected closed orientable surface of genus g ≥ 1. We regard si, ti as the
generators of the free group F2g. Their images in Γg are denoted by s̄i, t̄i, so that

∏g
i=1[s̄i, t̄i] = 1.

Let [Σg]K denote the fundamental class of Σg in K-homology. It is independent of the choice

of the spin structure of Σg and K0(Σg) ∼= Z ⊕ K̃0(Σg) ∼= Z ⊕ Z[Σg]K . In [6], we extended the
Exel-Loring formula from Z2 to all surface groups Γg, g ≥ 1 as follows:
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Theorem 2.5 (Thm.4.2, [6]). There exist a finite set S ⊂ Γg and ε > 0 such that if ρ : Γg → U(n)
is any (S, ε)-multiplicative quasi-representation, then

(7) ρ♯(µ
Γg [Σg]) = −

1

2πi
Tr

(
log

(
g∏

i=1

[ρ(s̄i), ρ(t̄i)]

))
The result above was extended to quasi-representations ρ : Γg → U(A) for A a unital tracial

C∗-algebra in [4].

Theorem 2.6 (Thm.2.3, [4]). There exist a finite set S ⊂ Γg and ε > 0 such that if ρ : Γg → U(A)
is any (S, ε)-multiplicative quasi-representation, then

(8) τ∗(ρ♯(µ
Γg [Σg])) = −

1

2πi
τ

(
log

(
g∏

i=1

[ρ(s̄i), ρ(t̄i)]

))
Here τ∗ : K0(A)→ R is the homomorphism induced by τ .

Remark 2.7. The formula (8) was stated in [4] without the negative sign. This was due to an
inadvertent omission of the sign in the statement of Theorem 5.2 from [4], even though the correct
sign was obtained in its proof.

We are going to show that the formulae (7), (8) can be generalized to arbitrary countable
discrete groups, as stated in Theorem 1.1.

For a connected pointed CW complex X there is a natural homomorphism βX : H2(X,Z)→
RK0(X) which is a rational right inverse of the Chern character in the sense that: (ch2 ⊗ idQ) ◦
(βX ⊗ idQ) = idH2(X,Q) and hence it is rationally injective, see [2] and [22]. The map βX is

defined by composing the isomorphisms H2(X,Z) ∼= H2(X
(3),Z) ∼= RK0(X

(3)) with the map

RK0(X
(3))→ RK0(X) induced by the inclusion of the 3-skeleton X(3) ↪→ X.

Let Γ be a countable discrete group. For X = BΓ, we denote by βΓ the corresponding
(rationally injective) homomorphism, [22],

βΓ : H2(Γ,Z) ∼= H2(BΓ,Z)→ RK0(BΓ).

Consider the map αΓ : H2(Γ,Z)→ K0(ℓ
1(Γ)) defined by αΓ = µΓ1 ◦ βΓ:

αΓ : H2(Γ,Z)
βΓ

// RK0(BΓ)
µΓ
1 // K0(ℓ

1(Γ))

Chose a free resolution of Γ:

(9) 0→ R→ F
q−→ Γ→ 0, q(a) = ā,

where F and R are free groups. By Hopf’s formula [3],

H2(Γ,Z) =
R ∩ [F, F ]

[R,F ]
.

Thus each element x ∈ H2(Γ,Z) is represented by a product of commutators,
∏g

i=1[ai, bi] with
ai, bi ∈ F for some integer g ≥ 1 and such that

∏g
i=1[āi, b̄i] = 1.

Proof of Theorem 1.1

Proof. We shall prove only (2). The proof of (3) is entirely similar except that one uses Theorem 2.6
instead of Theorem 2.5 and κτ instead of κ.
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Let x ∈ H2(Γ,Z) be represented by a product of commutators
∏g

i=1[ai, bi] with ai, bi ∈ F with
F as in (9). Let us recall that in the case of surface groups Γg, with resolution

(10) 0→ R2g → F2g
q−→ Γg → 0,

it was shown in [20, 2.2.4] that under the isomorphism

H2(Σg,Z) ∼= H2(Γg,Z) =
R2g ∩ [F2g, F2g]

[R2g, F2g]
,

the fundamental class [Σg] of H2(Σg,Z) corresponds to the element −xg ∈ H2(Γg,Z) where xg is
the class of

∏g
i=1[si, ti]. Following Loday, we consider the homomorphism F2g → F which maps si

to ai and ti to bi. This induces an homomorphism f : Γg → Γ such that f(s̄i) = āi and f(t̄i) = b̄i,
i = 1, ..., g and the corresponding map Bf : BΓg → BΓ. We make the identification Σg = BΓg. If
[Σg] denotes the fundamental class of H2(Σg;Z) then βΣg([Σg]) = [Σg]K , see [23, p.324]. From the
previous discussion we then obtain βΓg(xg) = −[Σg]K and hence we can rewrite equation (7) as

(11) ρ♯(α
Γg(xg)) = κ

(
g∏

i=1

[ρ(s̄i), ρ(t̄i)]

)
.

By naturality of β, [23] and µ, [1], [19], the following diagram is commutative.

H2(Γg,Z)
αΓg
//

f∗
��

K0(ℓ
1(Γg))

f∗
��

(π◦f)♯

$$
H2(Γ,Z)

αΓ
// K0(ℓ

1(Γ))
π♯

// Z

Since xg is the generator of H2(Γg,Z) given by the product
∏g

i=1[si, ti], it follows that f∗(xg) = x.
By fixing representatives of the relevant K-theory classes and by choosing S sufficiently large
and ε sufficiently small we may arrange that π♯(f∗(y)) = (π ◦ f)♯(y) for finitely many elements

y ∈ K0(ℓ
1(Γg)) and in particular for y = αΓg(xg). Thus:

(12) π♯(α
Γ(x)) = π♯(α

Γ(f∗(xg))) = π♯(f∗(α
Γg(xg))) = (π ◦ f)♯(αΓg(xg)).

On the other hand, the formula (11) applied for the quasi-representation ρ = π ◦ f : Γg → U(n)
implies that

(13) (π ◦ f)♯(αΓg(xg)) = κ

(
g∏

i=1

[π(f(s̄i)), π(f(t̄i))]

)
Since f(s̄i) = āi and f(t̄i) = b̄i we obtain from (12) and (13) that

π♯(α
Γ(x)) = κ

(
g∏

i=1

[π(āi), π(b̄i)]

)
.

□

Remark 2.8. The integer wndet
(
(1− t)1n + t

∏g
i=1[π(āi), π(b̄i)]

)
depends only on the class x of∏g

i=1[ai, bi] in H2(Γ,Z). This means that if we represent x by a different product of commutators,
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i=1[a
′
i, b

′
i], then

κ

(
g∏

i=1

[π(āi), π(b̄i)]

)
= κ

 g′∏
i=1

[π(ā′i), π(b̄
′
i)]


for all sufficiently multiplicative quasi-representations π, since both this integers are equal to
π♯(α

Γ(x)) by equation 2.

3. Quasi-representations with nontrivial invariants

Our next goal is to exhibit classes of groups that admit quasi-representations π for which the
invariants from Theorem 1.1 do not vanish. This is addressed in Theorem 3.2.

Let Γ be a discrete countable group. Let Q be the universal UHF-algebra, Q ∼=
⊗

n≥1Mn(C).
Consider the natural pairing

KK(C, C∗(Γ))×KK(C∗(Γ),Q)→ KK(C,Q) ∼= Q,

given by (x, y) 7→ x ⊗C∗(Γ) y. Consider the full assembly map µ : RK0(BΓ) → K0(C
∗(Γ)) and

the dual assembly map with rational coefficients ν : KK(C∗(Γ),Q) → RK0(BΓ,Q), [15], [16].
For each finite CW complex Y ⊂ BΓ, let νY : KK(C∗(Γ),Q) → RK0(BΓ,Q) → K0(Y,Q) be the
composition of ν with the restriction map RK0(BΓ,Q)→ K0(Y,Q). Let µY : K0(Y )→ K0(C

∗(Γ))
be the composition of µ with K0(Y )→ K0(BΓ). By [15, 6.2] these maps satisfy the identity:

(14) νY (y)⊗C(Y ) z = µY (z)⊗C∗(Γ) y

for all z ∈ K0(Y ) and y ∈ KK(C∗(Γ),Q).
If BΓ is written as the union of an increasing sequence (Yi)i of finite CW complexes, then as

explained in the proof of Lemma 3.4 from [17], there is a Milnor lim←−
1 exact sequence which implies

that

(15) RK0(BΓ;Q) ∼= lim←−K
0(Yi;Q).

We denote νYi by νi and µYi by µi. On the other hand RK0(BΓ) = lim−→K0(Yi) and µ is just the

limit of the compatible maps µi : K0(Yi) → K0(C
∗(Γ)). Using (14) we deduce that the following

diagram is commutative

(16) KK(C∗(Γ),Q)

νi
��

// Hom(K0(C
∗(Γ)),Q)

µ∗
i

��
RK0(Yi;Q)

δi

// Hom(RK0(Yi),Q)

where the horizontal arrows correspond to natural pairings of K-theory with K-homology.
Let EΓ be the classifying space for proper actions of Γ, [1]. It is known that EΓ admits a

locally compact model, [14]. Let us recall that Γ has a γ-element if there exists a Γ−C0(EΓ)-algebra
A in the sense of Kasparov [15] and two elements d ∈ KKΓ(A,C) and η ∈ KKG(C, A) (called Dirac
and dual-Dirac elements, respectively) such that the element γ = η ⊗A d ∈ KKΓ(C,C) has the
property that p∗(γ) = 1 ∈ RKKG(EΓ;C0(EΓ), C0(EΓ)) where p : EΓ → point, [27]. We refer
the reader to [15] for the definitions and the basic properties of these groups. The groups which
are coarsely embeddable in a Hilbert space admit a γ-element, [27]. The class of groups which
are coarsely embeddable in a Hilbert space include the amenable groups, the exact (boundary
amenable) groups, the linear groups and the hyperbolic groups.
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Proposition 3.1. Suppose that Γ has a γ-element. Then for any homomorphism h : K0(C
∗(Γ))→

Q there is y ∈ KK(C∗(Γ),Q) such that h(µ(z)) = µ(z)⊗C∗(Γ) y for all z ∈ RK0(BΓ).

Proof. Since RK0(BΓ;Q) ∼= lim←−K
0(Yi;Q) and RK0(BΓ) = lim−→K0(Yi), after passing to limit in

(16), we deduce that the following diagram is commutative

(17) KK(C∗(Γ),Q)

ν
����

// Hom(K0(C
∗(Γ)),Q)

µ∗
����

RK0(BΓ;Q)
δ
// // Hom(RK0(BΓ),Q)

The horizontal arrows correspond to natural pairings of K-theory with K-homology.
The map δ is surjective by Lemma 3.4 of [17]. If Γ has a γ-element it is known that the vertical

maps are surjective as well. Indeed µ is rationally injective by [24], [27] and hence µ∗ is surjective.
For the surjectivity of ν (due to Kasparov) see [8, Cor.4.2]. Let h ∈ Hom(K0(C

∗(Γ)),Q). Then
h ◦ µ ∈ Hom(RK0(BΓ),Q). Since both ν and δ are surjective, there is y ∈ KK(C∗(Γ),Q) such
that δ(ν(y)) = h ◦ µ.

Thus δ(ν(y)) = h ◦µ implies that δi(νi(y)) = h ◦µi for some i0 and hence for all indices i ≥ i0.
Every z ∈ RK0(BΓ) is the image of some zi ∈ K0(Yi) with i ≥ i0. It follows from (14) that

h ◦ µi(zi) = δi(νi(y))(zi) = νi(y)⊗C(Yi) zi = µi(zi)⊗C∗(Γ) y,

and hence h(µ(z)) = µ(z)⊗C∗(Γ) y. □

A countable discrete group G is quasidiagonal if it is isomorphic to a subgroup of the unitary
group of a quasidiagonal C∗-algebra [8]. Equivalently, there is a faithful representation π : Γ →
U(H) on a Hilbert space for which there is an increasing sequence (pn)n of finite dimensional
projections which converges strongly to 1H and such that limn→∞ ∥[π(s), pn]∥ = 0 for all s ∈ Γ.
Thus, a maximally almost periodic group (MAP) is quasidiagonal. Amenable groups, or more
generally, residually amenable groups are also quasidiagonal as a consequence of [25].

If Γ has a γ-element, then it is known that µΓ is rationally injective [26] and therefore so is
the map ᾱΓ : H2(Γ,Z) → K0(C

∗(Γ)) defined by ᾱΓ = µΓ ◦ βΓ = j∗ ◦ αΓ, where j∗ : K0(ℓ
1(Γ)) →

K0(C
∗(Γ)). We shall use notation as in (9).

Theorem 3.2. Let Γ be a quasidiagonal group which admits a γ-element. Suppose that x is a non-
torsion element of H2(Γ,Z) represented by a product of commutators

∏g
i=1[ai, bi] with ai, bi ∈ F

and
∏g

i=1[āi, b̄i] = 1. Then there is an asymptotic homomorphism {πn : Γ→ U(kn)}n such that

wndet

(
(1− t)1kn + t

g∏
i=1

[πn(āi), πn(b̄i)]

)
̸= 0

for all sufficiently large n.

Proof. Let us recall that αΓ = µΓ1 ◦βΓ and ᾱΓ = µΓ◦βΓ. By Theorem 1.1 it suffices to find (πn)n such
that (πn)♯(α

Γ(x)) ̸= 0 for all sufficiently large n. We claim that it suffices to find a unital completely

positive (ucp) asymptotic morphism {ψn : C∗(Γ) → Mkn}n such that (ψn)♯(ᾱ
Γ(x)) ̸= 0 for all

sufficiently large n. Indeed, by functional calculus one can perturb the restriction to Γ of each ψn to
a unital map πn : Γ→ U(kn) such that limn ∥πn(s)−ψn(s)∥ = 0 for all s ∈ Γ. Then the asymptotic
homomorphism {πn : Γ→ U(kn)}n induces ∗-homomorphisms π : ℓ1(Γ)→

∏
nMkn/

⊕
nMkn and
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π : C∗(Γ) →
∏

nMkn/
⊕

nMkn with j ◦ π = π such that π is equal to the ∗-homomorphism
induced by {ψn}n. It follows that (πn)♯(αΓ(x)) = (ψn)♯(ᾱ

Γ(x)) ̸= 0 for all sufficiently large n.

Since x is a non-torsion element and since ᾱΓ is a composition of rationally injective maps (Γ
has a γ-element), there is h : K0(C

∗(Γ)) → Q such that h(ᾱΓ(x)) ̸= 0. Since Γ has a γ-element
and it is quasidiagonal, it follows by [8, Thm.4.6] that ν(KK(C∗(Γ),Q)qd) = ν(KK(C∗(Γ),Q)) =
RK0(BΓ;Q). Therefore in the proof of Proposition 3.1 we can choose y ∈ KK(C∗(Γ),Q)qd such

that h(µ(z)) = µ(z) ⊗C∗(Γ) y for all z ∈ RK0(BΓ). In particular, we obtain that h(ᾱΓ(x)) =

ᾱΓ(x)⊗C∗(Γ)y ̸= 0. Since y ∈ KK(C∗(G),Q)qd, y is represented by a pair of nonzero ∗-representations
φ,ψ : C∗(Γ)→M(K(H)⊗Q), such that φ(a)− ψ(a) ∈ K(H)⊗Q, a ∈ C∗(Γ), and with property
that there is an increasing approximate unit (pn)n of K(H) consisting of projections such that
(pn ⊗ 1Q)n commutes asymptotically with both φ(a) and ψ(a), for all a ∈ C∗(Γ), see [8, Def.4.4].

It is then clear that φ
(0)
n = (pn ⊗ 1Q)φ(pn ⊗ 1Q) and φ

(1)
n = (pn ⊗ 1Q)ψ(pn ⊗ 1Q) are contractive

completely positive asymptotic homomorphisms from C∗(Γ) to K(H) ⊗Q. Let 1 denote the unit
of C∗(Γ). It is routine to further perturb these maps to completely positive asymptotic homomor-

phisms such that φ
(r)
n (1), r = 0, 1, are projections so that we can view this maps as ucp maps into

matrix subalgebras of Q. By [7, Prop.2.5] the Kasparov product ᾱΓ(x)⊗C∗(Γ) y can be computed
as

(18) (φ(0)
n )♯(ᾱ

Γ(x))− (φ(1)
n )♯(ᾱ

Γ(x)) ≡ ᾱΓ(x)⊗C∗(Γ) y ̸= 0.

It follows that there is n0 such that for each n ≥ n0 there is rn ∈ {0, 1} such that (φ
(rn)
n )♯(ᾱ

Γ(x))

is nonzero. Then ψn := φ
(rn)
n has the desired properties. □

Any finitely generated linear group Γ is residually finite by Malcev’s theorem and exact by
[13] and so it satisfies the hypotheses of Theorem 3.2. In particular, this is the case for finitely
generated torsion free nilpotent groups [8].

Corollary 3.3. Let Γ be a quasidiagonal group which admits a γ-element and such that H2(Γ,Q) ̸=
0. Then there is an asymptotic homomorphism {πn : Γ→ U(kn)}n for which there exist no genuine
representations {π′n : Γ→ U(kn)}n such that limn→∞ ∥πn(s)− π′n(s)∥ = 0 for all s ∈ Γ.

Proof. This follows from Theorem 3.2 and Lemma 2.2 as

κ

(
g∏

i=1

[π′n(āi), π
′
n(b̄i)]

)
= 0

for genuine representations π′n of Γ. A more general result proved in [8] asserts that it suffices to
assume the nonvanishing of some H2k(Γ,Q), k ≥ 1. □
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