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Abstract

We examine the question of quasidiagonality for C*-algebras of discrete amenable
groups from a variety of angles. We give a quantitative version of Rosenberg’s
theorem via paradoxical decompositions and a characterization of quasidiagonal-
ity for group C*-algebras in terms of embeddability of the groups. We consider
several notable examples of groups, such as topological full groups associated
with Cantor minimal systems and Abels’ celebrated example of a finitely pre-
sented solvable group that is not residually finite, and show that they have
quasidiagonal C*-algebras. Finally, we study strong quasidiagonality for group
C*-algebras, exhibiting classes of amenable groups with and without strongly
quasidiagonal C*-algebras.
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1. Introduction

In [24] Lance provided a C*-algebraic characterization of amenability for
discrete groups by proving that a discrete group Γ is amenable if and only if
its reduced C*-algebra, C∗r (Γ) is nuclear. Later Rosenberg showed [19] that if
C∗r (Γ) is quasidiagonal (see Definition 1.4), then Γ is amenable, a result which
has absolutely no analog for general C*-algebras (see [12]). The converse to
Rosenberg’s theorem remains open, namely: if Γ is a discrete, amenable group,
is C∗r (Γ) quasidiagonal [33]?

The question of quasidiagonality for amenable groups is tantalizing for a
number of reasons. First, quasidiagonality displays certain “topological” prop-
erties, such as homotopy invariance [32]. On the other hand, one might describe
amenability as a “measure theoretic” property, as one can detect amenability
of Γ in the von Neumann algebras it generates. Hence an affirmative answer
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would provide a nice topological characterization of amenability to complement
its measure theoretic description. Second, this question is a critical test case for
a number of other open questions. Indeed, it is not known if every separable,
nuclear and stably finite C*-algebra is quasidiagonal (a question with important
implications for the classification program) and, much more generally, if every
stably finite C*-algebra is an MF algebra. Thus an answer to the above ques-
tion concerning groups will either provide a chain of counterexamples or some
evidence to the validity of the more general conjectures.

There are some known converses to Rosenberg’s theorem. Recall that a group
Γ is maximally almost periodic (MAP) if it embeds into a compact group. Be-
cause the C*-algebra of an amenable MAP group is residually finite dimen-
sional [4], it follows that the C*-algebra of an amenable group that is the union
of residually finite groups must be quasidiagonal. We generalize this result in
Section 2.6.

Our main results are the following. First, if Γ is not amenable, then the
modulus of quasidiagonality of C∗r (Γ) is controlled by the number of pieces
in a paradoxical decomposition of Γ (Theorem 2.4). Second, if Γ is amenable,
then C∗(Γ) is quasidiagonal if and only if Γ embeds in the unitary group of∏∞
n=1Mn(C)

/∑∞
n=1Mn(C) (Theorem 2.8). We expand this class of groups be-

yond the class of LEF groups of [31]. Third, if Γ and Λ are amenable groups such
that Γ is non-torsion and Λ has a finite dimensional representation other than
the trivial one, then C∗(Λ oΓ) has a non-finite quotient and therefore cannot be
strongly quasidiagonal (Theorem 3.4).

1.1. Organization of the paper

In Section 2.1 we revisit Rosenberg’s previously mentioned result. His result
implies that the modulus of quasidiagonality [30] does not vanish for some finite
subset of a non-amenable group. The modulus of quasidiagonality measures how
badly a C*-algebra violates quasidiagonality. We estimate this number and a
closely related one using paradoxical decompositions, and give some calculations
for free groups.

In Section 2.6 we consider an approximate version of MAP for groups that
characterizes quasidiagonality for discrete amenable groups. We call groups with
this property MF due to their connection with Blackadar and Kirchberg’s MF
algebras [5]. We then show that the groups that are locally embeddable into
finite groups in the sense of Vershik and Gordon [31] (so-called LEF groups) are
MF groups. Kerr had already proved that the C*-algebra of an amenable LEF
group is quasidiagonal [22].

In Section 2.14, we use our characterization of quasidiagonality for amenable
groups to give examples of solvable groups that are not LEF but have quasidiag-
onal C*-algebras. These groups are well known examples due to Abels of finitely
presented solvable groups that are not residually finite.

Finally, in section 3 we discuss groups and strong quasidiagonality (see Def-
inition 1.4). Theorem 3.4 provides examples of group C*-algebras that are not
strongly quasidiagonal, such as the C*-algebra of the lamplighter group. Sec-
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tion 3.8 exhibits some classes of nilpotent groups that have strongly quasidiag-
onal C*-algebras.

1.2. Some consequences

Let X be the Cantor set and T a minimal homeomorphism of X. The topo-
logical full group [[T ]] is the group of all homeomorphisms of X that are locally
equal to an integer power of T . These groups are of interest for several reasons.
For example, they are complete invariants for flip conjugacy [17] and studying
their properties as abstract groups led to the first examples of infinite, simple,
amenable groups that are finitely generated [18, 21, 28]. It follows from the re-
sults of Section 2.6 the C*-algebra of [[T ]] must be quasidiagonal, since [[T ]] is
LEF by [18] and amenable by [21]. Since the previously mentioned examples
of infinite, simple, amenable and finitely generated groups arise as commuta-
tor subgroups of topological full groups associated to certain Cantor minimal
systems, their C*-algebras are quasidiagonal as well.

On the other hand, an example of Abels provides an amenable group that
is not LEF. We observe that if a group is not LEF, then it cannot be a union
of residually finite groups and one cannot obtain quasidiagonality based on the
result of Bekka mentioned above. However, we will see in Section 2.14 that the
C∗-algebra of Abels’ example has a quasidiagonal C*-algebra.

1.3. Definitions and notation

For completeness we record the definition of quasidiagonality. We refer the
reader to the survey article [8] for more information on quasidiagonality.

Definition 1.4. Let H be a separable Hilbert space. A (separable) set Ω ⊂
B(H) is quasidiagonal if there is an increasing sequence of (self-adjoint) pro-
jections (Pn) ⊂ K(H) with Pn → 1H strongly and such that ‖[Pn, T ]‖ → 0 for
every T ∈ Ω. (We write [S, T ] for the commutator ST − TS.)

A separable C∗-algebra A is quasidiagonal if it has a faithful representation
as a set of quasidiagonal operators. We say A is strongly quasidiagonal if σ(A)
is a quasidiagonal set of operators for every representation σ of A.

Theorem 1.5 (Voiculescu [32]). A separable C∗-algebra is quasidiagonal if and
only if there exists a sequence of contractive completely positive maps φn : A→
Mkn(C) such that ‖φn(a)‖ → ‖a‖ and ‖φ(ab)−φ(a)φ(b)‖ → 0 for every a, b ∈ A.

In this paper we only consider discrete countable groups. The left regular
representation of a group Γ on B(`2Γ) maps s ∈ Γ to the operator λs ∈ B(`2Γ)
which is left-translation by s. For t ∈ Γ we write δt ∈ `2Γ for the characteristic
function of the set {t}, so that λsδt = δst. The reduced C*-algebra of Γ is the
sub-C*-algebra C∗r (Γ) of B(`2Γ) generated by λ(Γ). We will usually use e for
the neutral element of a group Γ and Z(Γ) for its center. We also write Z(A)
for the center of a C*-algebra A.
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2. Quasidiagonality and groups

2.1. A quantitative version of Rosenberg’s theorem

In [19] Rosenberg proved that if a group Γ is not amenable, then C∗r (Γ) is
not quasidiagonal. First we reformulate his result.

Definition 2.2. Let P be the set of non-zero finite-rank projections on `2Γ.
Given a finite subset F ⊂ Γ, set

CF := inf
P∈P

sup
x∈F
‖[λx, P ]‖.

It is clear that if C∗r (Γ) is quasidiagonal, then CF = 0 for every finite subset
of Γ. Furthermore, if Γ is amenable, then λ has an approximately fixed vector,
so CF = 0 for all finite subsets as well. Rosenberg [19] has proved that if Γ is
not amenable, then there is a finite subset F ⊆ Γ such that CF > 0. In this
section we give a quantitative version of this statement by estimating (and in
some cases calculating) CF using paradoxical decompositions of Γ.

We point out a very similar concept due to Pimsner, Popa and Voiculescu
[30]. Recall that the modulus of quasidiagonality of a set Ω ⊂ B(`2Γ) is

qd(Ω) := lim inf
P∈P

sup
T∈Ω
‖[T, P ]‖,

where the order on projections is given by P ≤ Q if PQ = P . Clearly CF ≤
qd(λ(F )).

Recall that a group Γ is not amenable if and only if it admits a paradoxical de-
composition: that is, there exist pairwise disjoint subsetsX1, . . . , Xn, Y1, . . . , Ym ⊆
Γ and g1, . . . , gn, h1, . . . , hm ∈ Γ with g1 = h1 = e such that

Γ =

n⊔
i=1

giXi =

m⊔
j=1

hjYj =

( n⊔
i=1

Xi

)
t
( m⊔
j=1

Yj

)
. (1)

In this case we say that the paradoxical decomposition has n + m pieces. A
non-amenable group always has a paradoxical decomposition with at least four
pieces. It is well known that a group contains a copy of the free group on
two generators if and only if one can find a paradoxical decomposition with
exactly 4 pieces. (We refer the reader to [34] for more information on paradoxical
decompositions.)

We will require an elementary lemma.

Lemma 2.3. Let H be a Hilbert space and let Tr denote the usual trace on
B(H). Let X = X∗ ∈ B(H) be finite rank with Tr(X) = 0. Then for any
Q ∈ B(H) with 0 ≤ Q ≤ 1 we have

|Tr(QX)| ≤ 1

2
rank(X)‖X‖.
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Proof. If Y is a finite rank operator, then Tr(Y ) ≤ rank(Y )‖Y ‖. Indeed, if E
is a projection onto the range of Y , then Tr(Y ) = Tr(EY ) ≤ Tr(E)‖Y ‖ =
rank(Y )‖Y ‖.

Write X = X+ − X− with X± ≥ 0 and X+X− = 0. Then Tr(X±) ≤
rank(X±)‖X±‖ ≤ rank(X±)‖X‖. Since rank(X) = rank(X+) + rank(X−) and
Tr(X+) = Tr(X−) we obtain

Tr(X±) ≤ 1

2
rank(X)‖X‖.

Now, since
Tr(QX) = Tr(Q1/2X+Q

1/2)− Tr(Q1/2X−Q
1/2)

and Tr(Q1/2X±Q
1/2) ≤ ‖Q‖Tr(X±) ≤ Tr(X±), it follows that

−1

2
rank(X)‖X‖ ≤ −Tr(X−) ≤ Tr(QX) ≤ Tr(X+) ≤ 1

2
rank(X)‖X‖.

�

Theorem 2.4. Suppose Γ is a non-amenable group with a paradoxical decom-
position as in (1). If F = {g1, . . . , gn, h1, . . . , hm}, then

CF ≥
1

n+m− 2
.

In particular, if Γ contains F2, then CF ≥ 1/2 by choosing a minimal decompo-
sition with four pieces.

Since qd(λ(F )) ≥ CF we have the same statement for the modulus of qua-
sidiagonality of λ(F ) instead of CF .

Proof. For each subset A ⊆ Γ, let PA be the projection onto span{δa : a ∈ A}.
Let Tr denote the usual semi-finite trace on B(`2Γ) and let P ∈ B(`2Γ) be a
finite-rank projection of rank k ≥ 1. Suppose that ‖[λx, P ]‖ ≤ ε for all x ∈ F .
We prove ε ≥ 1

n+m−2 .
Let 1 ≤ i ≤ n. By Lemma 2.3,∣∣Tr

(
PgiXi

(P − λgiPλg−1
i

)
)∣∣ ≤ kε. (2)

Because λgiPXi
λg−1

i
= PgiXi

, we have

Tr(PgiXi
P ) = Tr(PXi

P ) + Tr
(
PgiXi

(P − λgiPλg−1
i

)
)
.

From this and the estimate (2) it follows that for each 2 ≤ i ≤ n
Tr(PgiXiP ) ≤ Tr(PXiP ) + kε. (3)

Let X = ∪Xi and Y = ∪Yj . By (3) and the fact that g1 = e we obtain

k = Tr(P ) = Tr(PX1
P ) +

n∑
i=2

Tr(PgiXi
P ) (4)

≤ Tr(PX1
P ) +

n∑
i=2

Tr(PXi
P ) + (n− 1)kε

= Tr(PXP ) + (n− 1)kε.
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From a similar calculation involving the hi’s and Yi’s we see that

k ≤ Tr(PY P ) + (m− 1)kε. (5)

Finally, add up (4) and (5) to obtain the conclusion. �

Now we calculate CF when Γ = F2. Let us fix some notation first. Let a, b
be generators of F2 and for each word w ∈ F2 let |w| denote the word length
of w with respect to the generating set {a, b, a−1, b−1}. For each n ≥ 0 let Sn
denote the sphere of radius n, that is,

Sn = {w ∈ F2 : |w| = n}.

Note that S0 = {e}. For each x ∈ {a, b, a−1, b−1}, let Sxn denote those elements
of Sn whose first letter is x. It is easy to see that

|Sn| = 4 · 3n−1 and |Sxn| = 3n−1 for n ≥ 1. (6)

It is well known that (see [34, Theorem 4.2]) there is a paradoxical decomposition
of F2 as

F2 = X1 t aX2 = Y1 t bY2 = X1 tX2 t Y1 t Y2. (7)

Theorem 2.5. For any ε > 0 and any n ≥ 1 there is a projection P ∈ B(`2F2)
of rank n such that ‖[λa, P ]‖ < 1/2 + ε and ‖[λb, P ]‖ < 1/2 + ε. In particular,

C{a,b} = 1/2.

Proof. By Voiculescu’s Weyl-von Neumann type theorem, λ : F2 → B(`2F2) is
approximately unitarily equivalent to λ⊗1n : F2 → B(`2F2⊗Cn). On the other
hand ‖[λx ⊗ 1n, P ⊗ 1n]‖ = ‖[λx, P ]‖ for P ∈ B(`2F2). It follows that it suffices
to prove the first part of the statement for n = 1.

Let P ∈ B(`2F2) be any projection and U ∈ B(`2F2) a unitary. Since in a
C*-algebra ‖x∗x‖ = ‖x‖2, using the identity [U,P ] = (1− P )UP − PU(1− P )
we see that ‖[U,P ]‖ = max{‖PU(1−P )‖, ‖(1−P )UP‖}. Moreover, if P is rank
1 and ξ is a norm one vector in its range, then

‖(1− P )UP‖2 = ‖(1− P )UPξ‖2 = ‖(1− P )Uξ‖2

= ‖Uξ‖2 − ‖PUξ‖2 = 1− |〈U(ξ), ξ〉|2.

From the above observations it now suffices to find, for each ε > 0, a norm 1
vector ξ ∈ `2F2 such that

|〈λx(ξ), ξ〉| >
√

3

2
− ε for x ∈ {a, a−1, b, b−1}. (8)

Let n >
√

3/2ε. Define αi = (|Si|n)−1/2 and

ξ =

n∑
i=1

αi

( ∑
x∈Si

δx

)
.
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It is clear that ‖ξ‖ = 1. We then have

〈λa(ξ), ξ〉 =

n∑
i=1

n∑
j=1

〈 ∑
x∈Si

αiδax,
∑
y∈Sj

αjδy

〉

=

n∑
i=1

n∑
j=1

〈 ∑
x∈(Si−1\Sa

i−1)∪Sa
i+1

αiδx,
∑
y∈Sj

αjδy

〉

=

n∑
i=1

〈 ∑
x∈(Si−1\Sa

i−1)∪Sa
i+1

αiδx,
∑

y∈Si−1

αi−1δy +
∑

z∈Si+1

αi+1δz

〉

=

n∑
i=1

(
αiαi−1|Si−1 \ Sai−1|+ αiαi+1|Sai+1|

)
≥

n∑
i=2

(
1

4n
√

3i−1
√

3i−2
(3)(3i−2) +

1

4n
√

3i
√

3i−1
3i
)

(by (6))

=

√
3

2
−
√

3

2n
>

√
3

2
− ε.

The corresponding inequality for λb follows by symmetry. Since |〈λx(ξ), ξ〉| =
|〈λx−1(ξ), ξ〉|, this proves (8). We complete the proof by applying Theorem 2.4
to the paradoxical decomposition of F2 given in (7). �

2.6. A characterization of quasidiagonality for amenable groups

For each increasing sequence ~n = (nk) of positive integers, we consider the
C*-algebra

Q~n =
∏
k

Mnk
(C)
/∑

k

Mnk
(C).

Here the C*-algebra
∏
kMnk

(C) consists of all sequences (ak) of matrices ak ∈
Mnk

(C) such that supk ‖ak‖ <∞ and
∑
kMnk

(C) is the two-sided closed ideal
consisting of those sequences with the property that limk→∞ ‖ak‖ = 0.

Recall that a separable C*-algebra is MF if it embeds as a sub-C*-algebra
of Q~n for some ~n, see [5]. In analogy with the class of MF algebras, we make
the following definition.

Definition 2.7. A countable group Γ is MF if it embeds in the unitary group
of Q~n for some ~n.

It is readily seen that Γ is MF if and only if it embeds in U(Q~n) where
~n = (1, 2, 3, . . . ).

Recall that a group Γ is called maximally almost periodic (abbreviated MAP)
if it embeds in a compact group. Equivalently, Γ embeds in

U

( ∞∏
k=1

Mk(C)

)
=

∞∏
k=1

U(k).
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A discrete residually finite group is MAP.
Bekka [4] proved that if Γ is a discrete countable amenable group, then Γ is

maximally almost periodic if and only if C∗(Γ) is residually finite dimensional.
That is,

Γ ↪→ U

( ∞∏
k=1

Mk(C)

)
⇔ C∗(Γ) ↪→

∞∏
k=1

Mk(C).

The following theorem says that a discrete countable amenable group Γ embeds
in U(Q~n) for some sequence ~n if and only if C∗(Γ) embeds in Q~m for some ~m.

Theorem 2.8. Let Γ be a discrete countable amenable group. Then Γ is MF if
and only if the C*-algebra C∗(Γ) is quasidiagonal.

For the proof we will need the following result from [14].

Proposition 2.9 (Prop. 2.1 of [14]). Let Γ be a discrete amenable group. Sup-
pose there exist a sequence (Bk)∞k=1 of unital C*-algebras and a sequence (ωk)∞k=1

of group homomorphisms ωk : Γ→ U(Bk) that separate the points of Γ, and that
each ωk appears infinitely many times in the sequence. Then C∗(Γ) embeds uni-
tally into the product C*-algebra

∏∞
n=1 Cn, where Cn =

⊗n
k=1M2(C)⊗Bk⊗Bk

(minimal tensor product).

Proof of Theorem 2.8. By the Choi-Effros lifting theorem [11] and the local
characterization of quasidiagonality given by Voiculescu, Theorem 1.5, it fol-
lows that a separable and nuclear C*-algebra A is quasidiagonal if and only if A
is an MF algebra. Suppose that Γ is MF. Then there is an injective homomor-
phism θ : Γ→ U(Q~n) for some ~n. Let B be the sub-C*-algebra of Q~n generated
by θ(Γ). Since Γ is amenable, B is nuclear and hence quasidiagonal. By Propo-
sition 2.9 C∗(Γ) embeds the product

∏
n Cn, where Cn = M2n(C)⊗B⊗2n. Since

B is quasidiagonal, so is each Cn. It follows that C∗(Γ) is quasidiagonal.
Conversely, if C∗(Γ) is quasidiagonal, then C∗(Γ) ⊂ Q~n for some ~n and hence

Γ is MF. �

Definition 2.10. A group Γ is locally embeddable into the class of finite groups
(or simply LEF) if for any finite subset F ⊂ Γ there is a finite group H and a
map φ : Γ→ H that is both injective and multiplicative when restricted to F .

Remark 2.11. Vershik and Gordon introduced LEF groups in [31]. Theorems 1
and 2 of [31] illustrate the relationship between LEF groups and residually finite
groups. Specifically, if every finitely generated subgroup of a group Γ is residually
finite, then Γ is LEF. On the other hand, every finitely presented LEF group is
residually finite. There are finitely presented solvable non-LEF groups, see [1].

We will show that an LEF group is MF. The following lemma will be used.

Lemma 2.12. Let Γ be a discrete countable group. Then Γ is LEF if and only
if there is a sequence of finite groups (Hk)∞k=1 and an injective homomorphism
Φ: Γ→

∏
kHk/

∑
kHk.
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Proof. Suppose first that Γ embeds in a group of the form
∏
kHk/

∑
kHk where

Hk are finite groups. Fix a finite subset F of Γ. Let φ : Γ →
∏
kHk be a set

theoretic lifting of Φ. It is necessarily an injective map. Write φ(s) = (φk(s))
for maps φk : Γ→ Hk. Since any sequence in

∑
kHk has at most finitely many

nontrivial terms it follows that there is k0 such that for all k ≥ k0 the map
φk : Γ→ Hk is multiplicative and injective on F .

Conversely, suppose that Γ is LEF. Write Γ =
⋃
k Fk where (Fk)k is an

increasing sequence of finite subsets of Γ. Since Γ is LEF, there is a sequence of
finite groups (Hk)k and maps φk : Γ → Hk such that each φk is multiplicative
for on Fk and the restriction of φk to Fk is injective. It is then immediate that
the sequence (φk) induces an embedding of groups Φ : Γ→

∏
kHk/

∑
kHk. �

Proposition 2.13. Let Γ be a countable discrete group. If Γ is LEF, then Γ is
MF.

Proof. LetHk and φk be as in the proof of Lemma 2.12. Let λk : Hk → B(`2(Hk))
be the left regular representation of Hk. If s, t ∈ Fk, s 6= t, then φk(s) 6= φk(t)
and hence ‖λk(φk(s)) − λk(φk(t))‖ ≥

√
2. Let nk = |Hk| and set ~n = (nk) as

above. Consider the maps πk = λk ◦ φk : Γ → U(nk). Then the sequence of
maps (πk) induces a group homomorphism π : Γ → U(Q~n) which is injective
since ‖π(s)− π(t)‖ ≥

√
2 whenever s, t are distinct elements of Γ. �

2.14. An MF group that is not LEF

Let p be a prime number. We recall the following group from [1]:

Γ =




1 x12 x13 x14

0 pk x23 x24

0 0 pn x34

0 0 0 1

 : xij ∈ Z
[

1

p

]
, k, n ∈ Z

.
One sees that

Z(Γ) =




1 0 0 x
0 1 0 0
0 0 1 0
0 0 0 1

 : x ∈ Z
[

1

p

].
We define

N =




1 0 0 k
0 1 0 0
0 0 1 0
0 0 0 1

 : k ∈ Z

.
Abels showed in [1] that Γ and Γ/N are finitely presented groups. Moreover,
as observed by Abels, ideas similar to those in [20, Page 349], show that Γ/N
does not have the Hopf property. It is well known that any finitely generated
residually finite group has the Hopf property (see [26, 27]); hence Γ/N is not
residually finite. In particular Γ/N is not LEF (see Remark 2.11). As observed
in [1], the group Γ/N is a solvable—hence amenable—group. Finally, we note
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that Γ is residually finite. This follows from Mal’cev’s theorem (stating that
a finitely generated subgroup of GL(n, F ) is residually finite for any field F )
[26, 27].

The proof of the following lemma basically consists of writing down the
definitions of induced representations, which we do for the convenience of the
reader.

Lemma 2.15. Let F be a finite group and H ≤ Z(F ). Let γ : H → L(E)
be a finite dimensional unitary representation of H, and IndFH γ be the induced
unitary representation of F . Then

(i) ‖ IndFH γ(g)− 1‖ ≥
√

2 for all g ∈ F \H and

(ii) IndFH γ|H is unitary equivalent to [F : H] γ.

Proof. Recall that (see e.g. [3, Appendix E]) IndFHγ is defined on the Hilbert
space

A = {ξ : F → E : ξ(xh) = γ(h−1)ξ(x) for all x ∈ F, h ∈ H},

with inner product defined by

〈ξ, η〉 =
∑

xH∈F/H

〈ξ(x), η(x)〉.

(Note that if xH = yH, then 〈ξ(x), η(x)〉 = 〈ξ(y), η(y)〉 so the above inner
product is well defined). One then defines the induced representation on the
finite dimensional Hilbert space A by the equations

IndFH χ(g)ξ(x) = ξ(g−1x) for all g, x ∈ F.

Suppose now that g 6∈ H. Define η ∈ A by

η(x) =

{
γ(x−1)ξ0 if x ∈ H
0 if x 6∈ H,

where ξ0 ∈ E is a unit vector. Then ‖η‖ = 1 and

〈IndFH γ(g)η, η〉 = 〈η(g−1), η(e)〉 = 0.

This proves (i).
Let h ∈ H. Then

(IndFH γ(h)ξ)(x) = ξ(h−1x) = ξ(xh−1) = γ(h)ξ(x).

This proves (ii). �

Remark 2.16. For a group G we denote by λG its left regular representation.
Let Γ be a discrete countable residually finite group. It follows that there is a
decreasing sequence of finite index normal subgroups (Ln)n≥1 of Γ such that
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⋂∞
n=1 Ln = {e}. We denote by πn the corresponding surjective homomorphisms

πn : Γ → Γn := Γ/Ln. It is known (and not hard to verify) that λΓ is weakly
contained in the direct sum of the representations λΓn

◦ πn. If in addition Γ is
amenable, then it follows that the set of irreducible subrepresentations of all of
λΓn
◦ πn is dense in the primitive spectrum of Γ.

Theorem 2.17. Let Γ be a countable discrete residually finite group and let
N be a central subgroup of Γ. Then Γ/N is MF and hence if in addition Γ is
amenable, then C∗(Γ/N) is quasidiagonal.

Proof. We will construct a sequence of finite-dimensional unitary representa-
tions σn of Γ, such that

lim
n→∞

‖σn(x)− 1‖ = 0 if and only if x ∈ N. (9)

In particular, this will prove that Γ/N is MF. Indeed, writing σn : Γ→ U(k(n)),
one sees that the map of G/N to U(

∏
nMk(n)/

∑
nMk(n)) given by x 7→ (σn(x))

is an embedding.
Let Ln, and πn : Γ→ Γn := Γ/Ln be as in Remark 2.16. Let Z be the center

of Γ and set Zn = πn(Z) ∼= Z/Z ∩ Ln. The restriction of πn to Z is denoted
again by πn : Z → Zn. Let π̂n : Ẑn → Ẑ be the dual map of the restriction of πn
to Z. It follows that the union of π̂n(Ẑn) is dense in Ẑ as noted in Remark 2.16
applied to Z and its finite index subgroups Z ∩ Ln. Let (ωi)i≥1 be a dense
sequence in the Pontriagin dual (Z/N )̂ . We will regard ωi as characters on Z
that are trivial on N . Set ηn = ω1 ⊕ · · · ⊕ ωn : Z → U(n). Let us observe that

lim
n→∞

‖ηn(x)− 1‖ = 0, if and only if x ∈ N. (10)

Write Z as an increasing union of finite subsets Fn. Since the union of π̂n(Ẑn) is
dense in Ẑ, we can replace Γn by Γ1⊕Γ2⊕· · ·⊕Γm(n), πn by π1⊕π2⊕· · ·⊕πm(n)

and Zn by Z1 ⊕Z2 ⊕ · · · ⊕Zm(n) so that in the new setup πn(Z) ⊂ Zn, Zn is a
central subgroup of Γn and the following properties will hold.

(i) For each n ≥ 1 there is a unitary representation γn : Zn → U(n) such that

‖ηn(x)− γn ◦ πn(x)‖ < 1/n, for allx ∈ Fn. (11)

(ii) For any x ∈ Γ \ Z there is m such that πn(x) /∈ Zn for all n ≥ m.

Concerning (ii) let us note that if x ∈ Γ and πn(x) ∈ Zn for all n ≥ m then
πn(xgx−1g−1) = 1 for all g ∈ Γ and n ≥ m and that implies that x ∈ Z since
the sequence (πn)n≥m separates the points of Γ.

Define the finite dimensional unitary representation of Γ

σn = (IndΓn

Zn
γn) ◦ πn.

Let x ∈ Z. By Lemma 2.15(2) we have

‖σn(x)− 1‖ = ‖γn ◦ πn(x)− 1‖
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and hence in conjunction with (11)

lim
n→∞

‖σn(x)− 1‖ = 0 ⇔ lim
n→∞

‖γn ◦ πn(x)− 1‖ = 0 ⇔ lim
n→∞

‖ηn(x)− 1‖ = 0.

By (11), it follows that ‖σn(x)− 1‖ → 0 if and only if x ∈ N .
Now let x ∈ Γ \ Z(Γ). By (ii) there is an m large enough so πn(x) 6∈ Zn for

all n ≥ m. By Lemma 2.15(1), we have ‖σn(x)− 1‖ ≥
√

2 for all n ≥ m.
This proves that (9) holds and therefore that Γ/N is MF. �

Corollary 2.18. Let Γ and N be as in 2.14. Then Γ/N is MF but not LEF.
Since Γ/N is amenable it also follows that C∗(Γ/N) is quasidiagonal.

Proof. This follows from Theorem 2.17. We have already noted that Γ/N cannot
be LEF since it is finitely presented but not residually finite. �

3. Strong quasidiagonality and groups

We exhibit some classes of amenable groups that have non-strongly qua-
sidiagonal C*-algebras. See Theorem 3.4. All of these groups arise as wreath
products. We do not know if these C*-algebras are quasidiagonal, except for a
certain subclass. See Proposition 3.6.

Let us establish some notation related to crossed product C*-algebras. (We
refer the reader to [9, Section 4.1] for details.) Let A be a unital C*-algebra,
Γ a discrete countable group, and α : Γ → Aut(A) a homomorphism. A ∗-
representation (π,H) of A induces ∗-representation π×λ of AoαΓ on B(H⊗`2Γ)
defined by

(π × λ)(a)(ξ ⊗ δt) = π
(
αt−1(a)

)
(ξ)⊗ δt (12)

(π × λ)(s)(ξ ⊗ δt) = ξ ⊗ δst

for a ∈ A, s, t ∈ Γ, ξ ∈ H, and where {δs}s∈Γ is the usual orthonormal basis of
`2Γ.

We denote by A⊗Γ as the Γ-fold maximal tensor product of A with itself.
This infinite tensor product is defined as an inductive limit indexed by finite
subsets of Γ. The Bernoulli action β of Γ on A⊗Γ may be described formally by

βs(at1 ⊗ · · · ⊗ atn) = ast1 ⊗ · · · ⊗ astn .

The proof of the next proposition was inspired by Theorem 25 [19].

Proposition 3.1. Let A be a unital C*-algebra which is generated by two proper
two-sided closed ideals. Let Γ be a discrete countable non-torsion group. Then
A⊗ΓoβΓ has a non-finite quotient. In particular, it is not strongly quasidiagonal.

Proof. Write A = I1 + I2 where Ii are proper two-sided closed ideals of A and
write 1A = y + x where y ∈ I1 and x ∈ I2. Let πi be a unital representations of
A with kernel Ii, i = 1, 2. Then π1(x) = 1 and π2(x) = 0.
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Let u ∈ Γ be an element of infinite order. It generates a subgroup Z ≤ Γ.
Choose a subset F ⊆ Γ of left coset representatives, that is,

Γ =
⊔
s∈F

gZ

Set
Γ1 = {sun : n < 0 and s ∈ F}, Γ2 = {sun : n ≥ 0 and s ∈ F}

and observe that uΓ−1
1 is a proper subset of Γ−1

1 . Define the representation
(π,H) of A⊗Γ by

π :=

(⊗
s∈Γ1

π1

)
⊗
(⊗
s∈Γ2

π2

)
.

For t ∈ Γ, let xt ∈ A⊗Γ be the elementary tensor with x in the “t”-position
and 1 elsewhere, in particular βg(xt) = xgt. It follows from the properties of π1,
π2 and x that

π(xt) = 1H if t ∈ Γ1, and π(xt) = 0 if t ∈ Γ2. (13)

For a set S ⊂ Γ we denote by χS the characteristic function of S as well as the
corresponding multiplication operator by χS on `2Γ. Using (12) and (13) one
verifies immediately that

(π × λ)(xe) = 1H ⊗ χΓ−1
1
.

Define the partial isometry

V := (π × λ)(u) · (π × λ)(xe) = 1H ⊗ λ(u)χΓ−1
1
.

Then V ∗V = 1H ⊗χΓ−1
1

and V V ∗ = 1H ⊗χuΓ−1
1

. It follows that V ∗V − V V ∗ =

1⊗ χΓ−1
1 \uΓ−1

1
> 0. �

Corollary 3.2. Let A be a unital C*-algebra which admits a quotient with
nontrivial center. Let Γ be a discrete countable non-torsion group. Then A⊗ΓoΓ
has a non-finite quotient.

Proof. If B is a quotient of A, then B⊗Γ o Γ is a quotient of A⊗Γ o Γ. Thus
we may assume that the center Z(A) is non-trivial. Write Z(A) as the sum
of two maximal ideals Z(A) = J1 + J2. We conclude the proof by applying
Proposition 3.1 for the ideals I1 = J1A and I2 = J2A. �

Remark 3.3. The condition on A in Proposition 3.1 is equivalent to the re-
quirement that the primitive spectrum of A contains two non-empty disjoint
closed subsets. It is not hard to see that the primitive spectrum of a separable
A contains two distinct closed points if and only if A has two distinct maximal
ideals. Moreover, in this case A admits a quotient with nontrivial center.

Although we state the next result in greater generality, perhaps the most
interesting case is when the groups are amenable.
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Theorem 3.4. Let Γ be a discrete countable non-torsion group and let Λ be
any discrete countable group such that either

(i) Λ admits a finite dimensional representation other than the trivial repre-
sentation, or

(ii) Λ has a finite conjugacy class.

Then, C∗(Λ o Γ) has a non-finite quotient.

Proof. We first notice that C∗(Λ o Γ) ∼= C∗(Λ)⊗Γ oβ Γ. We first assume (i). By
assumption, there are two inequivalent finite dimensional irreducible represen-
tations π1 and π2 of C∗(Λ). Setting Ii = ker(πi), i = 1, 2, we see that I1 and I2
are distinct maximal ideals that satisfy the hypothesis of Proposition 3.1.

Now assume (ii). It is well known that if Λ has a finite conjugacy class, then
C∗(Λ) has a non-trivial center (simply add up the elements of the conjugacy class
to produce a central element). The conclusion follows from Corollary 3.2. �

We observe that if Γ is as in Theorem 3.4 and Λ is not amenable, then the
same conclusion follows. Indeed, in this case the C*-algebra C∗r (Λ) cannot have
a character. Thus ker(λ) is not contained in the kernel I1CC∗(Λ) of the trivial
representation, but in some other maximal ideal I2 of C∗(Λ). Hence I1 and I2
are distinct maximal ideals of C∗(Λ) and we can apply Proposition 3.1.

As a special case of Theorem 3.4 we obtain the simplest example we know
of an amenable group with a non-strongly quasidiagonal C*-algebra.

Corollary 3.5. The C*-algebra of the group Z/2Z o Z is not strongly quasidi-
agonal.

Since Z/2Z oZ is residually finite (one may find a separating family of homo-
morphisms πn : Z/2Z o Z→ Z/2Z o Z/nZ), its C*-algebra is quasidiagonal (it is
actually residually finite dimensional and in particular inner quasidiagonal, see
[6] for relevant definitions). More generally, we have the following:

Proposition 3.6. Let Λ be an amenable group that is a union of residually
finite groups. Then the C*-algebra of the group Λ o Zk is quasidiagonal.

Proof. Write Λ as an increasing union of residually finite groups Λi. Then Λ oZk
is the union of Λi o Zk. Therefore, we may assume that Λ itself is residually
finite. By [13], C∗(Λ) embeds in the UHF algebra of type 2∞, denoted here by
D. Then

C∗(Λ o Zk) ∼=
(⊗

Zk

C∗(Λ)

)
o Zk ⊂

(⊗
Zk

D

)
o Zk

and
(⊗

Zk D
)
oZk ∼= DoZk embeds in a simple unital AF algebra by a result

of N. Brown [7]. �

If C∗(Λ) has two distinct maximal ideals we do not need to assume (1) or
(2) in Theorem 3.4 to obtain its conclusion. This raises an interesting question.

Question 3.7. Are there any non-trivial groups Λ such that C∗(Λ) has a unique
maximal ideal? (Such a group would have to be amenable).
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3.8. Groups with strongly quasidiagonal C*-algebras

Now we exhibit some classes of (amenable) groups Γ with strongly quasidi-
agonal C∗-algebras. These will arise as extensions

1→ ∆→ Γ→ Λ→ 1

where ∆ is a central subgroup of Γ, with some additional hypotheses on Λ and
∆. For example, we have the following proposition.

Proposition 3.9. Suppose Γ has a central subgroup ∆ such that both ∆ and
Γ/∆ are finitely generated abelian groups. Then C∗(Γ) is strongly quasidiagonal.

Proof. Theorem 2.2 of [10] shows that such groups have finite decomposition
rank. A C*-algebra with finite decomposition rank must be strongly quasidiag-
onal, as proved in [23, Theorem 5.3]. �

The use of decomposition rank only serves to simplify the exposition, al-
though it is perhaps of interest in itself. Proving strong quasidiagonality in all
the cases obtained here could be done using analogous permanence properties
of strong quasidiagonality.

Lemma 3.10. Let A be a separable continuous field C*-algebra over a locally
compact and metrizable space X. Write Ax for the fiber at x ∈ X. If A is
nuclear, then the set

XQD := {x ∈ X : Ax is quasidiagonal }

is closed.

Proof. Let y ∈ XQD. Fix a finite subset F of Ay and ε > 0. For x ∈ X write
πx : A→ Ax for the quotient map. Because Ay is nuclear, the Choi-Effros lifting
theorem affords us a contractive completely positive lift ψ : Ay → A of πy. Using
the fact that x 7→ ‖πx(ã)‖ is continuous for every ã ∈ A we see that the sets

U =
⋂
a∈F
{x ∈ X : ‖πx(ψ(a))‖ > ‖a‖ − ε}

and
V =

⋂
(a,b)∈F×F

{x ∈ X : ‖πx(ψ(ab)− ψ(a)ψ(b))‖ < ε}

are finite intersections of open sets containing y ∈ XQD. Then there exists
z ∈ XQD ∩ U ∩ V .

Let φ = πz◦ψ : Ay → Az. This is a completely positive contraction satisfying
‖φ(a)‖ > ‖a‖ − ε and ‖φ(ab) − φ(a)φ(b)‖ < ε for all a, b ∈ F . It follows from
Theorem 1.5 that Ay is quasidiagonal. �

The integer Heisenberg group H3 has a central subgroup isomorphic to Z
such that the corresponding quotient of H3 is Z2. Therefore H3 satisfies the
conditions of Proposition 3.9. One could also consider the case when Γ has a
central subgroup ∆ such that Γ/∆ ∼= H3.
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Proposition 3.11. Suppose Γ has a finitely generated central subgroup ∆ such
that Γ/∆ is a finitely generated, torsion-free, two-step nilpotent group with rank
one center. Then C∗(Γ) is strongly quasidiagonal.

Proof. As noted in Section 2 of [25], the analysis of [2, Corollary 3.4] shows
that every discrete, finitely generated, torsion-free, two-step nilpotent group
with rank one center is isomorphic to a “generalized discrete Heisenberg group”
H(d1, . . . , dn). If n is a positive integer and d1, . . . , dn are positive integers with
d1| . . . |dn, thenH(d1, . . . , dn) is defined as the set Z×Zn×Zn with multiplication

(r, s, t) · (r′, s′, t′) = (r + r′ +
∑

ditis
′
i, s+ s′, t+ t′).

Write Γ/∆ ∼= H(d1, . . . , dn).
Case n > 1. It follows from Theorem 3.4 of [25] that every twisted group alge-

bra C∗(Γ/∆, σ) of Γ/∆ is isomorphic to the section algebra of a continuous field
of C*-algebras over a one-dimensional space with each fiber stably isomorphic
to a noncommutative torus of dimension at most 2n. Every noncommutative
torus of dimension at most 2n has decomposition rank at most 4n+ 1 (by [10,
Lemma 4.4]) and decomposition rank is invariant under stable isomorphism, so
Lemma 4.1 of [10] implies that C∗(Γ/∆, σ) has finite decomposition rank. Now,
by Theorem 1.2 of [29] we have that C∗(Γ) is itself a continuous field C*-algebra
over the finite-dimensional space ∆̂ with every fiber isomorphic to some twisted
group C*-algebra of Γ/∆. By Lemma 4.1 of [10] we obtain that C∗(Γ) has finite
decomposition rank and is therefore strongly quasidiagonal.

Case n = 1. Write H for H(d1). There is an isomorphism H2(H,T) ∼= T2

such that whenever a multiplier σ corresponds to (λ, µ) ∈ T2 with both of λ
and µ torsion elements, then the twisted group C*-algebra C∗(H,σ) is stably
isomorphic to a noncommutative torus [25, Theorem 3.9]. When at least one of
λ or µ is non-torsion, we have that C∗(H,σ) is simple and has a unique trace
[25, Theorem 3.7]. Now, there is a continuous field of C*-algebras over H2(H,T)
where the fiber over (the class of) a given multiplier σ is C∗(H,σ) [29, Corol-
lary 1.3]. Since the fibers are quasidiagonal over a dense set of points, every fiber
must be quasidiagonal (by Lemma 3.10). In fact, every fiber must be strongly
quasidiagonal, owing either to simplicity or to having finite decomposition rank.

By Theorem 1.2 of [29] we have that C∗(Γ) is the section algebra of a con-
tinuous field of C*-algebras with strongly quasidiagonal fibers (the fibers are
of the form C∗(H,σ)). Therefore, every primitive quotient of C∗(Γ) is strongly
quasidiagonal, since it is a primitive quotient of some fiber of the field [15,
Theorem 10.4.3]. It follows from Proposition 5 of [19] that C∗(Γ) is strongly
quasidiagonal. �

Conjecture. If Γ is a finitely generated countable discrete nilpotent group, then
C∗(Γ) is strongly quasidiagonal.

A group is supramenable if it contains no paradoxical subsets. (A subset
is paradoxical if it admits a paradoxical decomposition as in 2.1.) For solvable
groups, this is the same as saying it has a nilpotent subgroup of finite index. Does
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every countable discrete supramenable group have a (strongly) quasidiagonal
C*-algebra?

Added in proof

The third author has very recently announced [16] a proof of the above
conjecture (in an even stronger form).
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