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Abstract. In this short paper, we establish a natural isomorphism between two
fundamental invariants: the second prismatic cohomology of the projective line P1

and the prismatic Dieudonné module of the p-divisible group µp∞ , as defined in the
work of Anschütz and Le Bras. We call this the “Chern–Dieudonné isomorphism.”
Our construction of this isomorphism is essentially “motivic”, in the sense that it
is obtained purely via geometric principles. To achieve this, we use the geometric
reconstruction of Dieudonné modules proven by the author and the theory of
prismatic Chern classes due to Bhatt–Lurie. As a consequence, we can compute
the Dieudonné module of µp∞ over a general quasi-regular semiperfectoid algebra
S (and therefore the associated prismatic Dieudonné crystal) that was left open in
the work of Anschütz and Le Bras.

1. Introduction

Let p be a fixed prime. In the paper [AL19], Anschütz and Le Bras use the
prismatic cohomology theory developed by Bhatt and Scholze [BS19] to construct
the prismatic Dieudonné module of p-divisible groups over fairly general p-adic base
rings. They introduce the notion of a filtered prismatic Dieudonné crystal and filtered
prismatic Dieudonné module (see [AL19, Section 4]) which can be used to classify
p-divisible groups over p-adic base rings, generalizing the earlier results on classical
crystalline Dieudonné theory [BBM82] and the relatively recent work of Scholze and
Weinstein [SW14] on Dieudonné theory over perfectoid base rings.

In [AL19, Section 4.7], the authors discuss the computation of prismatic Dieudonné
crystals of two crucial examples of p-divisible groups, namely Qp/Zp and µp∞ . While
the prismatic Dieudonné crystal of Qp/Zp had been described fully, the description
of the prismatic Dieudonné crystal of µp∞ over a general base was left open.

In order to describe the prismatic Dieudonné crystal of µp∞ , by quasi-syntomic
descent, one equivalently needs to be able to compute the prismatic Dieudonné
module of µp∞ denoted as M∆(µp∞) over an arbitrary quasi-regular semiperfectoid
algebra S. However, the calculation in [AL19] relied on certain explicit logarithm
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constructions, which gave the computation in the case when S was assumed to be a
Zcycl

p := (lim−→n
Zp[ζpn ])

∧
p -algebra, but not in general.

In this paper, we take an entirely different and more geometric perspective,
which does not (at least at the surface level) rely on the logarithm and works over
general base rings. Let us explain the key idea very briefly. Using the geometric
reconstruction of the Dieudonné modules obtained in [Mon21], and assuming a
formalism of prismatic Chern classes, one can show that the Dieudonné module of
µp∞ over an arbitrary quasi-regular semiperfectoid ring S is isomorphic to H2

∆(P
1),

and therefore should be a free ∆S-module of rank 1. Very recent work of Bhatt–Lurie
[BL22] on syntomic Chern classes (also see [KP21] for a theory of Ainf-valued Chern
classes) can now be used to justify the necessary use of Chern classes, which yields
the desired computation of M∆(µp∞) over an arbitrary quasi-regular semiperfectoid
ring S. We point out that even though no logarithm appears in our presentation of
the proof, it is implicit in the construction of the syntomic Chern classes. Let us
state our results more precisely.

Theorem 1.1 (Chern–Dieudonné isomorphism, see Corollary 3.11, Corollary 3.12).
Let S be a quasi-regular semiperfectoid ring. We have a natural isomorphism

H2

∆(P
1) ≃M∆(µp∞).

Corollary 1.2 (see Proposition 3.13). Let S be a quasi-regular semiperfectoid ring.
The prismatic Dieudonné module of µp∞ denoted as M∆(µp∞) is free of rank 1.

In Proposition 3.10, we compute the whole cohomology ring of the classifying stack
of the p-divisible group µp∞ denoted as Bµp∞ , which extends the above results.

Corollary 1.3 (see Definition 2.8 and Corollary 3.12). The prismatic Dieudonné
crystal of µp∞ denoted asM∆(µp∞) is isomorphic to Opris {−1} .

The above results completely describe the prismatic Dieudonné crystal of µp∞

that was not addressed in [AL19, Section 4.7]. In fact, the results in [AL19] only
showed that over a quasi-regular semiperfectoid algebra S, the module M∆(µp∞) is
projective of rank 1. Corollary 1.2 in our paper says that it is actually free.

The construction in Theorem 1.1 uses very simple geometric principles. However,
it crucially relies on the geometric reconstruction of Dieudonné modules obtained in
[Mon21] (see Theorem 2.6) involving classifying stacks. Somewhat surprisingly, the
construction leading to Theorem 1.1 does not seem to be observed in the literature
even in the simplest case of S being a perfect field of characteristic p, when prismatic
cohomology agrees with the classical theory of crystalline cohomology. We hope that
the geometric techniques employed in this paper in computing arithmetic invariants
such as Dieudonné modules could be useful in other contexts as well.
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the referee for many helpful comments and suggestions on the paper. Lastly, I thank
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2. Prerequisites

In this section, we will introduce some of the definitions and results that will
be used afterwards. Many of the definitions are not introduced in a self-contained
manner and are introduced to fix notations. We refer to [BS19], [BMS19], [AL19],
[Mon21], [BL22] for more details. In particular, the theory of absolute and relative
prismatic cohomology from [BS19] and [BL22] will be freely used in our paper.

Definition 2.1 ([BMS19, Def. 4.10]). A ring S is called quasi-syntomic if S is p-
complete with bounded p∞-torsion and the cotangent complex LS/Zp has p-complete
Tor-amplitude in [−1, 0]. The category of all quasi-syntomic rings is denoted by
QSyn. A map S → S ′ of p-complete rings with bounded p∞-torsion is a quasi-
syntomic morphism if S ′ is p-completely flat over S and the cotangent complex LS′/S

has p-complete Tor-amplitude in [−1, 0]. A quasi-syntomic morphism is called a
quasi-syntomic cover if the map S → S ′ is p-completely faithfully flat.

Definition 2.2 ([BMS19, Def. 4.20]). A ring S is called quasi-regular semiperfectoid
(QRSP) if S ∈ QSyn and there exists a perfectoid ring R mapping surjectively onto
S.

Definition 2.3. If R is any p-complete ring we will let (R)qsyn denote the (opposite)
full subcategory spanned by all p-complete R-algebras S such that the structure
map R→ S is quasi-syntomic. This category can be equipped with a Grothendieck
topology generated by quasi-syntomic covers which turns this into a site.

Let S be a QRSP ring. Let (∆S, I) be the prism associated to S by taking prismatic
cohomology. Note that the quasi-regular semiperfectoid algebras form a basis for
(S)qsyn. The functor T 7→ ∆T sending a quasi-regular semiperfectoid algebra T to its
associated prism ∆T forms a sheaf on (S)qsyn [BS19, Construction 7.6 (3)] which we
will denote by Opris. cf. [AL19, Definition 4.1.1.] and the proof of [AL19, Proposition
4.1.13].

Definition 2.4 ([AL19, Def. 4.2.8]). Let G be a p-divisible group over S. We define

M∆(G) := Ext1(S)qsyn(G,Opris),

FilM∆(G) := Ext1(S)qsyn(G,N≥1Opris),

and φM∆(G) as the endomorphism induced by φ on Opris. Then

M∆(G) := (M∆(G),FilM∆(G), φM∆(G))

is called the filtered prismatic Dieudonné module of G.
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Example 2.5. For the étale p-divisible group Qp/Zp over S, we have M∆(Qp/Zp) ≃
(∆R,N≥1∆R, φ). We refer to [AL19, §4.7] and Remark 4.9.6 loc. cit. for more
discussions.

In [Mon21, Definition 4.27], we defined the classifying stack of a p-divisible group
and proved the following

Theorem 2.6. Let G be a p-divisible group over a quasi-regular semiperfectoid ring
S. Then the prismatic cohomology H2

∆(BG) is naturally isomorphic to the prismatic

Dieudonné module M∆(G). This isomorphism identifies the natural Frobenius on
H2

∆(BG) with the endomorphism φM∆(G) on M∆(G). Further, the Nygaard filtration

N≥1H2

∆(BG) on prismatic cohomology of the stack BG is isomorphic to FilM∆(G).

See [Mon21, Theorem 1.6].

The above result gives a geometric reconstruction of the prismatic Dieudonné
module in terms of prismatic cohomology of classifying stacks which will be useful
for us later on.

Notation 2.7. Let (A, I) be a prism. The Breuil–Kisin twist A {1} as defined in
[BL22, Definition 2.5.2.] is an invertible A-module. For every integer n ∈ Z, one
uses A {n} to denote the nth tensor power of A {1} with respect to A.

The construction of the Breuil–Kisin twist is functorial on the prism (A, I), i.e.,
for a map (A, I)→ (B, J) of prisms, one has A {1} ⊗A B ≃ B {1} . As explained in
[BL22, Remark 2.5.9], one also has a Frobenius map

φA{n} : A {n} → I−n ⊗A A {n}

for each n ∈ Z. The map φA{n} is φA-semilinear, where φA is the Frobenius on A.
Over the q-de Rham prism (Zp[[q−1]], [p]q), one can explicitly describe the Frobenius
map by using the logarithm. We refer to [BL22, Notation 2.6.3] for these formulas
and more details.

Definition 2.8. We define Opris {−1} to be the locally free sheaf of Opris-modules on
(S)qsyn that is determined by the functor that sends every quasi-regular semiperfectoid
algebra T 7→ ∆T {−1} .

3. Computation of the prismatic Dieudonné module

In this section, we will construct the Chern–Dieudonné isomorphism and prove

Theorem 1.1. To do so, we fix a QRSP algebra S. Let Ĝm denote the p-completion of

Gm and let us consider BĜm as a p-adic formal stack over S. We prove the following
proposition.

Proposition 3.1. We have an isomorphism RΓ∆(Bµp∞) ≃ RΓ∆(BĜm). (Here we
consider absolute prismatic cohomology.)
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Proof. Let us first fix some notations. The sheaves on the site (S)qsyn forms a topos

which we denote by X . Then Ĝm and µp∞ both defines objects in X by considering

their functor of points which we will still denote as Ĝm and µp∞ . Let us use Z[Ĝm]
and Z[µp∞ ] to denote the associated free abelian group objects in X . We note that X
is a replete topos [BS15, Section 3]. In particular, there is a good theory of derived
completion in the topos X , which we will use. For the background material on
derived completions on a replete topos we refer to [BS15, Section 3.4]. We note that
Opris as defined in Definition 2.3 is a derived p-complete object of X . Further, we
note that the objects of the site (S)qsyn are affine formal schemes; therefore the topos
X is (locally) coherent and by Deligne’s theorem [AGV72, exposé VI, p.336], it has
enough points.

For any group object G ∈ X , the Čech nerve of the map ∗ → BG is given by the
following simplicial object

· · ·G×G×G
////
//// G×G

// //// G //// ∗ .
The associated simplicial abelian group object in X is

· · ·Z[G×G×G]
////
//// Z[G×G] ////// Z[G] //// Z .

With this simplicial object we can associate an object in the derived category of
abelian sheaves on X which we will denote simply by Z[BG]. When, G = µp∞ or

Ĝm, the maps ∗ → BG is effective quasi-syntomic epimorphism and therefore, we
can compute RΓ∆(BG) by quasi-syntomic descent. More precisely, we have

RΓ∆(BG) ≃ R lim←−
(
RΓ∆(∗)

// // RΓ∆(G)
////// RΓ∆(G×G) · · ·

)
,

which can be rewritten as

≃ R lim←−
(
RHom(Z,Opris) //// RHom(Z[G],Opris)

////// RHom(Z[G×G],Opris) · · ·
)
.

We can take the R lim←− inside as a homotopy colimit, which gives us

RΓ∆(BG) ≃ RHom(Z[BG],Opris).

Therefore, Proposition 3.1 follows from Lemma 3.2 by taking G = Ĝm and recalling
that Opris is derived p-complete. This finishes the proof. □

Lemma 3.2. Let X be a replete topos with enough points and let G be a group
object such that multiplication by p map induces a surjection. Let us define G[p∞] :=
lim−→G[pn]. Then we have an isomorphism

Z[BG[p∞]]∧p → Z[BG]∧p

in the derived category of p-complete objects in X .

Proof of Lemma 3.2. Since the map Z[BG[p∞]]∧p → Z[BG]∧p is a map between
derived p-complete objects, it is enough to check isomorphism by going derived
modulo p, i.e., we need to prove that Fp[BG[p∞]] → Fp[BG] is an isomorphism.
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Since X has enough points, this can be checked after taking stalks. Thus, the
proposition follows from an application of Lemma 3.3. □

Lemma 3.3. Let G be an ordinary group on which multiplication by p is surjective.
Then we have an isomorphism Fp[BG[p∞]] ≃ Fp[BG].

Proof. It is enough to show that H i(Fp[BG[p∞]])→ H i(Fp[BG]) is an isomorphism
for all i. Equivalently, we need to show that the maps on group homology with
coefficients in Fp denoted as

Hi(G[p∞],Fp)→ Hi(G,Fp)

induce isomorphisms. Note that we have an exact sequence

0→ G[p∞]→ G→ lim−→
p

G→ 0.

It follows that the group Q := lim−→p
G is uniquely p-divisible. By an application of the

Hochschild–Serre spectral sequence, it would be enough to prove that Hi(Q,Fp) = 0
for i > 0. This follows from [Mon21, Lemma 3.30]. We give a less elementary, but
quicker argument to see the latter as pointed out by the referee: the homology groups
Hi(Q,Fp) are computed as Tori

Fp[Q](Fp,Fp), where Fp[Q] is the group algebra of Q.
Since Q is uniquely p-divisible, Fp[Q] is a perfect ring. The statement now follows
from noting that Fp ⊗L

Fp[Q] Fp is a perfect simplicial commutative ring and therefore

is discrete by [BS17, Proposition 11.6]. □

Now we turn to the main construction of our paper.

Construction 3.4. Note that we have a natural map P1 → BGm corresponding to
the line bundle O(1) on P1. This induces a map

H2

∆(BĜm)→ H2

∆(P
1).

By Theorem 2.6 and Proposition 3.1, we have a sequence of isomorphisms and a
natural map

M∆(µp∞) ≃ H2

∆(Bµp∞) ≃ H2

∆(BĜm)→ H2

∆(P
1).

Having constructed the maps, now we proceed onto proving that the mapH2

∆(BĜm)→
H2

∆(P
1) is an isomorphism. In order to do so, we will make use of their construction

of syntomic Chern classes. We will briefly mention the necessary definitions from
[BL22]. Let X denote a scheme, formal scheme or an algebraic stack. Then one
can consider the absolute prismatic cohomology of X (with a twist) denoted as
RΓ∆(X) {n} for n ∈ Z as in [BL22, Construction 4.4.19]. This is equipped with the
Nygaard filtration which gives rise to the objects FilmNRΓ∆(X) {n} for every m ∈ Z
[BL22, Notation 5.5.23]. For every i ∈ Z, one also has the syntomic cohomology
RΓsyn(X,Zp(i)), as constructed in [BL22, Section 8.4.7]. For a vector bundle E of
rank r on X, they have constructed its syntomic Chern classes

csyni (E ) ∈ H2i
syn(X,Zp(i))
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with the property that csyn0 (E ) = 1 and csyni (E ) = 0 for i > r. The construction
of these classes are functorial and satisfies the expected additivity formula [BL22,
Theorem 9.2.7].

Proposition 3.5. Let us work over a QRSP algebra S. The map ∆S {−1} → H2

∆(P
1
S)

induced by the syntomic Chern class csyn1 (O(1)) is an isomorphism.

Proof. The proof appears in [BL22, Lemma 9.1.4. (4)]. We point out that their proof
makes use of the classical computation of coherent cohomology groups of the sheaf
of differential forms on projective space. □

Proposition 3.6. Let us work over a QRSP algebra S. There is a natural isomor-
phism

H∗
∆(BĜm) ≃ Sym∗(∆S {−1} [−2]).

Here ∆S {−1} [−2] denotes the convention that ∆S {−1} is being considered in degree
2 with respect to the grading on both sides.

Proof. Let Euniv be the tautological line bundle on BGm. There is a well-defined

syntomic Chern class csyn1 (Euniv) ∈ H2(BĜm,Zp(1)) whose powers csyn1 (Euniv)
i are

classes in H2i
syn(BĜm,Zp(i)). By construction of syntomic cohomology, this induces

a natural map ⊕
i≥0

Symi(∆S {−1})[−2i]→ RΓ∆(BĜm) (3.1)

in the derived category of ∆S-modules. Further, since S is a QRSP algebra, by [BS19,
Proposition 7.10], the prism (∆S, I) defines a final object in the absolute prismatic

site of S. Therefore, the absolute prismatic cohomology RΓ∆(BĜm) is naturally

isomorphic to the prismatic cohomology of BĜm (thought of as a stack over Spf∆S/I
by base change) relative to the prism (∆S, I). From now onward in this proof, we will

assume BĜm to be over Spf∆S/I (by base changing) and use the aforementioned
identification of absolute and relative prismatic cohomology. Since the ring ∆S

is derived I-complete, to prove that the map in (3.1) is an isomorphism, we can
reduce derived modulo I and use the Hodge–Tate comparison theorem in prismatic
cohomology as we will explain. In order to prove that

⊕
i≥0 Sym

i(∆S {−1})[−2i]→
RΓ∆(BĜm) is an isomorphism, it is enough to prove the same after applying
(•) ⊗L

∆S
∆S/I. By the Hodge–Tate comparison in (relative) prismatic cohomology,

RΓ∆(BĜm)⊗L

∆S
∆S/I has an exhaustive increasing filtration whose ith graded piece

is computed by

RΓ(BĜm,
i∧
L

BĜm/(∆S/I)
[−i]) {−i} ≃ RΓ(BĜm,O[−2i]) {−i} ;
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here the equivalence follows from Lemma 3.7. Note that for a ∆S/I-module M, we
use M {i} to denote M ⊗∆S/I

(I/I2)⊗i. Finally, to show that (3.1) is an isomorphism,

it would now be enough to show that

RΓ(BĜm,O[−2i]) ≃ (∆S/I)[−2i].
But that follows from Lemma 3.8. This finishes the proof of the proposition. □

Lemma 3.7. Let us take an arbitrary commutative ring R and consider the stack
BGm over R. Then

i∧
LBGm/R ≃ OBGm [−i]

in the derived category of quasi-coherent sheaves on BGm; here LBGm/R denotes the
cotangent complex of the stack BGm relative to R. (The wedge power is also taken
in the derived sense.)

Proof. To see this, we note that since Gm is a smooth group scheme over R, the co-Lie
complex coLie(Gm) is dual to the adjoint representation of Gm. Further, since Gm is
a commutative group scheme of dimension 1, it follows that the adjoint representation
must be trivial. So as an object in the derived category, coLie(Gm) ≃ OBGm . This
implies that LBGm/R ≃ OBGm [−1]. Now the desired formula follows since

i∧
OBGm [−1] ≃ SymiOBGm [−i],

by the décalage formula. We refer to [Ill71, Proposition 4.3.2.1] for more on these
formulas. □

Lemma 3.8. Let us take an arbitrary commutative ring R and consider the stack
BGm over R. Then RΓ(BGm,O) ≃ R.

Proof. The lemma will be proven if we show that the global section functor defined in
the abelian category of quasi-coherent sheaves on BGm is exact. But the category of
quasi-coherent sheaves on BGm is equivalent to the category of Gm-representations
which can further be identified with Z-graded R-modules. Under this equivalence of
categories, taking the global section of a quasi-coherent sheaf on BGm corresponds
to considering the degree zero part of a Z-graded R-module, which is clearly an exact
functor. This proves the lemma. □

Corollary 3.9. The map H2

∆(BĜm)→ H2

∆(P
1) constructed in Construction 3.4 is

an isomorphism.

Proof. Follows from Proposition 3.5, Proposition 3.6 and the functoriality of the
syntomic Chern class construction. □

Proposition 3.10. We have an isomorphism

H∗
∆(Bµp∞) ≃ Sym∗(∆S {−1} [−2]).

Here ∆S {−1} [−2] denotes the convention that ∆S {−1} is being considered in degree
2 with respect to the grading on both sides.
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Proof. Follows from Proposition 3.1 and Proposition 3.6. □

Corollary 3.11 (Chern–Dieudonné isomorphism). Let S be a quasi-regular semiper-
fectoid ring. We have a natural isomorphism

H2

∆(P
1) ≃M∆(µp∞).

Proof. Follows from Construction 3.4 and Corollary 3.9. □

Corollary 3.12. We have a sequence of isomorphisms

M∆(µp∞) ≃ H2

∆(Bµp∞) ≃ H2

∆(BĜm)→ H2

∆(P
1) ≃ ∆S {−1}

Proof. Follows from Construction 3.4, Proposition 3.5, and Corollary 3.9. □

Proposition 3.13. Let S be a quasi-regular semiperfectoid ring. The prismatic
Dieudonné module of µp∞ denoted as M∆(µp∞) is free of rank 1.

Proof. By Proposition 3.5 and Construction 3.4, we know that M∆(µp∞) ≃ ∆S {−1} .
It is thus enough to show that ∆S {−1} is free of rank 1. By [BL22, Remark 2.5.7,
Remark 2.5.8], ∆S {−1} /I∆S {−1} ≃ (I/I2)∨. Since ∆S is I-adically complete, it is
enough to show that I/I2 is free of rank 1 as a ∆S/I-module. Therefore, we would be
done if we show that I is principal. For that, we note that since S is a quasi-regular
semiperfectoid algebra, there is a perfctoid ring R mapping onto S. This gives a
natural map

(Ainf(R),Ker(θ))→ (∆S, I)

or prisms. Note that Ker(θ) is a principal ideal ([BS19, Theorem 3.19]). Now [BS19,
Lemma 3.5] implies that I is generated by image of Ker(θ) under the above map of
prisms, and is therefore principal. This finishes the proof. □
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