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SHUBHODIP MONDAL

Abstract

We prove that algebraic de Rham cohomology as a functor defined on smooth Fj-algebras is formally
étale in a precise sense. This result shows that given de Rham cohomology, one automatically obtains the
theory of crystalline cohomology as its unique functorial deformation. To prove this, we define and study
the notion of a pointed G2**f-module and its refinement which we call a quasi-ideal in G2 — following
Drinfeld’s terminology. Our main constructions show that there is a way to “unwind” any pointed
GEf-module and define a notion of a cohomology theory for algebraic varieties. We use this machine to
redefine de Rham cohomology theory and deduce its formal étalness and a few other properties.
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Ggerf—MODULES AND DE RHAM COHOMOLOGY

1 Introduction

1.1 Overview of the results

Let X be a scheme over a field k. Grothendieck defined the algebraic de Rham cohomology of X to be the
hypercohomology of the algebraic de Rham complex Q% [Gro66]. When k is a field of characteristic zero,
de Rham cohomology forms a Weil cohomology theory for smooth proper varieties over k. But when k has
positive characteristic, for example & = IF,, then the theory of de Rham cohomology does not form a Weil
cohomology theory. In particular, the de Rham cohomology groups are killed by p. To rectify this situation,
Grothendieck [Gro68] and Berthelot [Ber74] devised the theory of crystalline cohomology. For a smooth
algebraic variety X over I, its (n-truncated) crystalline cohomology RIc.ys(X/Z/p™) is a deformation of de
Rham cohomology; in the sense that Reys(X/Z/p™) @F Jpnz Fp =~ RU(X, Q% ). However, potentially there
could exist some other cohomology theory which is also a deformation of de Rham cohomology. Our goal is
to show that this does not happen. In particular, we show that de Rham cohomology theory for varieties over
F), is formally étale. Thus, given the theory of de Rham cohomology, one can realize crystalline cohomology
as its unique deformation. To make this precise, we fix some notations. We let Alg%r: denote the category of
smooth [F,-algebras and CAlg(D(A)) denote the co-category of commutative algebra objects (in the sense of
[Lurl?, 2.1.3]) in the derived oco-category D(A) of an Artinian local ring A with residue field F,. In other
words, CAlg(D(A)) is the oco-category of Ey-algebras over A. We show the following

Theorem 1.1.1 (Theorem 5.0.1). Let
dR : Algi}r: — CAlg(D(F,))

be the algebraic de Rham cohomology functor. Given an Artinian local ring (A, m) with residue field F,, the
functor AR admits a unique deformation

dR’ : Algp" — CAlg(D(A)).

Further, the deformation dR’ is unique up to unique isomorphism (More precisely, the space of deformations
of dR is contractible, see Remark 5.0.2).

Remark 1.1.2. Roughly speaking, Theorem 1.1.1 proves that the theory of crystalline cohomology is the
unique functorial deformation of de Rham cohomology theory. Thus, it offers a simple new characterization
of crystalline cohomology. More precisely, when A = Z/p™, the (n-truncated) crystalline cohomology functor
RU¢ys((+)/Z/p™) is uniquely isomorphic to dR’, where the latter is as characterized by Theorem 1.1.1.

The special analogue of Theorem 1.1.1 for A = Z,, (instead of an arbitrary Artinian local ring) was a
result of Bhatt, Lurie and Mathew [BLM21, Thm. 10.1.2]. Our Theorem 1.1.1 gives a generalization of
their result, which works for arbitrary Artinian local rings A; the case when A = Z, = limZ/p™ can now be
deduced via a limit argument. Since Theorem 1.1.1 works with arbitrary Artinian local rings, it establishes
that the de Rham cohomology functor for smooth varieties over ), is “formally étale.” The proof of [BLM21,
Thm. 10.1.2] due to Bhatt, Lurie and Mathew crucially uses that Z, and other relevant rings appearing in
their work are p-torsion free. However, Artinian local rings with residue field F, are always p-torsion, which
presents major difficulties in approaching Theorem 1.1.1 in a similar fashion.

We use a very different approach to prove Theorem 1.1.1. In fact, we develop a new approach to the theory
of algebraic de Rham cohomology, by compressing its “essence” in a simpler algebro-geometric structure that
we introduce, which we call a pointed GE**-module (Definition 1.1.5); these objects are closely related to
some classical constructions in p-adic Hodge theory (see Proposition 2.2.11). We study properties of pointed
Ggerf—modules and its closely related variant called pointed G,-modules in detail. Then we develop a machine
called unwinding: for any pointed GP**-module X, we build a functor Un(X) by unwinding X, which can be
regarded as a cohomology theory for algebraic varieties. We show that de Rham and crystalline cohomology
theory can be rebuilt by unwinding specific pointed GP**-modules (see Theorem 1.1.11). After establishing
good formal properties of the unwinding construction, we use it to approach Theorem 1.1.1. An outline of
the proof of Theorem 1.1.1 will be explained following the statement of Theorem 1.1.14 below.
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Having briefly mentioned the key new players in the proof of Theorem 1.1.1, let us now take a slightly
more technical perspective and explain some of the relevant definitions and how they enter the picture.
The de Rham cohomology functor takes values in coconnective commutative algebra objects in the derived
category D(F,). In order to avoid talking about deformation theory in such a context, it would be convenient
for us if we could work with discrete rings instead. In order to do that, instead of working with de Rham
cohomology theory, we work with derived de Rham cohomology theory as defined and studied in [[1172] and
[Bhal2]. We will write dR to denote derived de Rham cohomology as well; it agrees with the usual algebraic
de Rham cohomology for smooth schemes, so the notation is consistent. For our purposes, it has the technical
advantage that derived de Rham cohomology theory can be completely understood by its values on a certain
class of rings introduced by Bhatt, Morrow and Scholze [BMS19] called quasiregular semiperfect (QRSP)
algebras. We point out that somewhat similar class of rings appeared in the work of Fontaine and Jannsen as
well [FJ13]. If S is a QRSP algebra, its derived de Rham cohomology dR(S) is then a discrete ring. Therefore,
we are equivalently led to the study of dR as a functor from QRSP algebras to discrete IF-algebras. In fact,
after some reductions that are carried out in Section 5.1, Theorem 1.1.1 follows from the following statement
formulated in purely 1-categorical language. Below, QRSP denotes the category of QRSP algebras and Alg 4
denotes the category of discrete A-algebras. We show the following

Theorem 1.1.3. Let dR: QRSP — AlgFP be the derived de Rham cohomology functor. Given an Artinian

local ring (A, m) with residue field F),, the functor dR admits a deformation dR’ : QRSP — Alg, which is
unique up to unique isomorphism (cf. Section 5.1).

In Section 3, more generally, we study the category Fun(QRSP, AlgFP), where QRSP denotes the category
of QRSP algebras. We show that a certain class of functors, which includes the de Rham cohomology functor,
can be realized as some kind of “unwinding” (¢f. Construction 3.4.4) of a much smaller and more tractable
structure which we call a pointed GP*f-module. In order to make sure that the process of “unwinding” is
well-behaved, we will need to study a special class of pointed chrf—modules, which we call quasi-ideals
following Drinfeld [Dri21, Def. 3.1.3].

Definition 1.1.4. The functor Alng — Alng that sends S — S” := @wa? S can be represented by an

affine ring scheme which we denote as GP®'f. The underlying affine scheme is given by SpecF, [z1/ ”DO].

Definition 1.1.5. A pointed G2**f-module is the data of a GP**!-module scheme X equipped with a map
of GP*f-module schemes X — GP!. The data of the map X — GP! will be referred to as a point (cf.
Section 2.2). In Remark 2.1.21, we give some justifications for the terminology “point” in this context.

Definition 1.1.6. A pointed GP*f-module is called a quasi-ideal in GP'! if the data of the point denoted as
d: X — GP sits in a commutative diagram as below (cf. Definition 3.3.12).

idxd
X x X =% X x Gpef

J{dx id J{action

chrf % X action X

The commutativity of the above diagram ensures that for an algebra R, the map X (R) — GP¢™(R) viewed
as a complex, where GP°™ (R) sits in degree zero, has the structure of a differentially graded algebra [Dri21,
Remark 3.1.2].

Remark 1.1.7. Later on, we will need to work with GP®*!-module schemes defined over an Artinian local
base ring A with residue field IF,. Most of our constructions are also defined in this generality. However, for
the overview, we assume that A is always Fp,.

Example 1.1.8. Let W denote the ring scheme of p-typical Witt vectors. Then W has an endomorphism
F which is called the Frobenius on W. Note that for any algebra S, the ring of Witt vectors W (S) has an
additive endomorphism V' (called the Verschiebung), which induces an operator also denoted as V' on the
group scheme underlying W. For x,y € W(5), one has V(x)-y = V(x - F(y)). Therefore, if F(y) = 0, we must
have V (z) - y = 0. Further, note that VIV (.S) is an ideal of the ring W (S) and there is a natural isomorphism
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W(S)/VW(S) ~ S ~ G,(S5). These observations imply that the group scheme underlying the kernel of F on
the ring scheme W, written as W[F] naturally has the structure of a G,-module (see Definition 2.1.7).

We note that there is also a natural map W[F] — G, of G,-module schemes. Pulling W[F] back along
the map u : G2*f — G, of ring schemes (Proposition 2.2.17) produces a GE*-module scheme which we
call w*W|[F]. Then u*W|F] can be equipped with the structure of a pointed GP**!-module scheme which is
further also a quasi-ideal in GP°f. We point out that the group scheme W[F] is isomorphic to the divided
power completion of the additive group scheme G, which is denoted as Gg in [Dri21]. This isomorphism is
also proven in [Dri21, Lemma 3.2.6].

Our goal is to use the data of a pointed GP®*!-module to produce a functor such as de Rham cohomology

in a lossless manner. Note that there is a natural functor & : QRSP — AlgFP which sends S — S, where
S” denotes the tilt of S defined as S” := lim 5. In Construction 3.4.4, we construct the (contravariant)

unwinding functor denoted by Un which takes in the data of a pointed GP*f-module as input and produces a
functor from QRSP — AlgFP. As a basic example, we note that the functor & is the unwinding of the pointed
GPef-module given by G2 itself. Other examples are noted in Example 1.1.10 and Theorem 1.1.11 below.
Restricting our attention to quasi-ideals satisfying a particular property, which we call nilpotent quasi-ideals
(Definition 3.4.11), we obtain the following.

Theorem 1.1.9 (Proposition 3.4.21). There is a fully faithful (contravariant) embedding of the category of
nilpotent quasi-ideals in GP*™ inside Fun(QRSP,AlgFP)@/ giwen by the unwinding functor Un.

Example 1.1.10. We note that SpecT, ['/P™] /2 can be equipped with the structure of a pointed GPe'f-
module which we denote as af. Another way to describe af is to say that it is the pointed GP*"f-module
underlying the kernel of the map u : GP®f — G,. It is also the same as u*Spec F, where SpeclF, is the
pointed G,-module underlying the zero group scheme. Applying the unwinding functor to af gives the functor
QRSP — Alng that sends S — S.

Theorem 1.1.11. Derived de Rham cohomology naturally viewed as an object dR of Fun(QRSP,Alng)Qj/ 18
naturally isomorphic to the unwinding of the nilpotent quasi-ideal given by uw*W|[F).

The above results indicate that properties of certain objects of Fun(QRSP, AlgIFp)Qs , can be deduced by

studying nilpotent quasi-ideals or more generally pointed GP*f-modules which is the subject of Section 2.
For example, we define a full subcategory of pointed G2*-modules which we call fractional rank-1 pointed
GPef-module (cf. Definition 2.2.18) which has an initial object given by af. By applying the unwinding
functor, using Example 1.1.10 and the universal property of o mentioned before, one gets the following
result.

Theorem 1.1.12 (Proposition 4.0.6). The natural transformation gr’ : dR — id coming from gr' of the
Hodge filtration in derived de Rham cohomology is the unique natural transformation between dR and id
viewed as objects of the category Fun(QRSP,Alng)g/.

We study a more refined class of objects which we call pure fractional rank-1 pointed GP°*f-module

(cf. Definition 2.5.7). The full subcategory of pure fractional rank-1 pointed GE*f-module has an initial
object given by u*W[F]. By applying the unwinding functor, one gets a universal property of the de Rham
cohomology functor which we loosely state below.

Theorem 1.1.13 (Universal property of dR). Derived de Rham cohomology is a final object of a certain full
subcategory of Fun(QRSP, Alng)@/ (cf. Proposition 4.0.5).

As an application of the universal property, we can deduce the following result [BLM21, Prop. 10.3.1].

Theorem 1.1.14 (Bhatt-Lurie-Mathew). If we consider algebraic de Rham cohomology as a functor defined
on smooth F,-algebras denoted as AR, then any endomorphism of dR that commutes with the gr’ map of the
Hodge filtration dR — id s identity.

Outline of the proof of Theorem 1.1.1. Once we have developed the properties of the unwinding functor
Un in Section 3, we try to use it to prove Theorem 1.1.1 in Section 5. We have noted that dR is essentially
the data of the quasi-ideal «*W[F]. Our strategy is the following.
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1. We reduce the problem to the case where the base Artinian local ring A is F,[e] /€.

2. Given any deformation dR’ of dR, we extract a quasi-ideal from dR’ denoted as r(dR’) which is a
deformation of u*W[F].

3. We show that dR’ is essentially determined by the quasi-ideal 7(dR’).

4. We show that any deformation of u*W[F] to F,[e]/€? as a pointed GE*f-module is uniquely isomorphic to
the trivial deformation obtained by base change. This is proven in Proposition 2.5.11. Therefore r(dR’) is
necessarily the trivial deformation of u*W[F] and by 3, dR’ is necessarily the trivial deformation AR ®F,[e]/€?
as well.

Other approaches to Theorem 1.1.1. Our approach to Theorem 1.1.1 uses QRSP algebras in an essential
way in order to not deal with deformation theory of coconnective E.-rings. Our construction of the unwinding
functor Un is also devised in a way to work with the category Fun(QRSP, Algpp). However, in principle, this
should not be absolutely necessary. Below we attempt to loosely explain other possible approaches that could
be seen as more natural.

By the reduction in Section 5.1, it is equivalent to address the version of Theorem 1.1.1 for the category
Polpr of finitely generated polynomial algebras over F,, instead of all smooth algebras. Instead of studying
the category Fun(QRSP, Algg ), we can study the category Fun(Polyy ,CAlg(D(F,))). A functor F €
Fun(Polyy , CAlg(D(F,))) that preserves coproducts would provide an Fj,-coalgebra object structure on the
Eco-ring F'(Fp[z]) coming from the F)-coalgebra structure of Fp[z] as an object of Polyy . One can also try
to reverse the situation, i.e., given an E.-ring K with the extra structure of an F,-coalgebra object, one can
try to build a functor Ung : Polyp — CAlg(D(F,)) that would send Fp[z] — K and extend in a coproduct
preserving way. This version of “unwinding” is explained in Example 3.0.1 (in a 1l-categorical language).
Assuming good properties of these constructions, in order to approach Theorem 1.1.1, we are led to studying
the deformations of the E-ring dR(F,[z]) along with the extra structure of an Fp-coalgebra object.

Using the stacky approach to p-adic cohomology theories due to Bhatt—Lurie [BL22] and Drinfeld [Dril8§]
[Dri21], one can ask a similar question regarding deformation of the Fp-algebra stack (Aﬂlzp)dR relevant to
Theorem 1.1.1. This is a stack whose cohomology of the structure sheaf recovers dR(F,[z]). Deformations of
(A%p)dR as an F,-algebra stack seems to be relevant to Theorem 1.1.1. Further, using [Dri21, Prop. 3.5.1],

(A%p)dR is the cone of the quasi-ideal given by W[F]. Therefore, deformations of (A]}p)dR as an [Fp-algebra
stack seem related to deformations of the quasi-ideal or the pointed G,-module given by W[F| which is
studied in Section 2 of our paper.

In the approach we have taken in this paper (which uses QRSP algebras) we can avoid talking about
higher categorical structures and obtain a purely 1-categorical formulation as mentioned in Theorem 1.1.3.
Further, the notion of a pointed G,-module or a quasi-ideal comes out quite naturally (c¢f. Proposition 3.4.8).
As a downside, the construction of “unwinding” seems more convoluted for QRSP than what it would be for
Poly]Fp. We use quasisyntomic descendability and left Kan extensions to switch between QRSP and Polpr,
which could potentially be avoided in the other approaches outlined above.

In any case, we point out that a precise formulation of the deformation problems involving the E.-ring
dR(F,[z]) or the F,-algebra stack (A]}p)dR would likely be equivalent to Theorem 1.1.1 and therefore they
are answered a posteriori after proving Theorem 1.1.1. Also, a comparison of these approaches can lead to
other questions as well. For example, motivated by Theorem 1.1.13, one can attempt to formulate a universal
property for the stack (A%p)dR in the category of IF,-algebra stacks. In Remark 5.2.7, we explain a rough
comparison between the stacky approach and the approach taken in our paper.

1.2 Motivations and related work

In this section we describe the motivations behind the constructions appearing in this paper and other related
work. Our starting point was to approach Theorem 1.1.1 which asks about deformations of a functor (instead
of a single object) which we regard as somewhat difficult to approach. The strategy of the proof outlined
above is vaguely inspired by some constructions from chromatic homotopy theory. Given a complex oriented
multiplicative cohomology theory E*, one can extract a formal group law from it by looking at E*(CP>)
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and using the multiplication CP>* x CP*>° — CP. Further, given a formal group law, the Conner-Floyd
construction [CF66] defines a “cohomology theory” associated to it. Motivated by this picture, one can ask
the following naive question in our context.

Question. Is there a way to extract a “group like object” from de Rham cohomology (or its deformations)?
Further, is the theory of de Rham cohomology (and its deformations) determined by this “group like object”?

By the de Rham-crystalline comparison theorem [Ber74, Thm. V.2.3.2], the theory of de Rham cohomology
is essentially determined by the theory of divided power structures. This can be seen more concretely by
using the work of Bhatt on derived de Rham cohomology [Bhal2]. Given a QRSP algebra S, by [BMS19,
Prop. 8.12], its derived de Rham cohomology dR(S) is naturally isomorphic to the divided power envelope
Dg:(I) where I := Ker(S* — S). Setting S := F,[z}/?"]/z and considering dR(F,[z/?"]/z), we get the
ring of functions underlying w*W [F] from Example 1.1.8. Further, the Hopf stucture of F,[z!/?”"]/x provides
a Hopf structure on dR(F,[2'/?™]/z) which is the same as the Hopf algebra underlying the ring of functions
on w*W[F]. This addresses the first half of our question above and extracts the “group like object” u*W[F]
from dR.

For the second half, one needs to build the de Rham cohomology functor from the object uw*W|[F]. By the
isomorphism dR(S) ~ Dgs (I) for a QRSP algebra S, it would be enough to build divided power envelopes
from w*W[F]. In [BO78, Appendix 2], Berthelot-Ogus constructs the closely related divided power algebra
T'r(M) for any ring R and an R-module M by using a particular R-module called exp(R). We note that there
is an isomorphism exp(R) ~ W[F](R), where the latter denotes the R-valued points of the group scheme
W[F]. This suggests that in principle, it could be possible to build divided power envelopes from uw*W/[F].
However, we need to equip the group scheme v*W[F] with more structure. This leads to the definition of a
pointed GP*f-module, which is the framework for our “group like object”. In Example 3.3.10, we see that
using the unwinding functor, it is indeed possible to directly build divided power envelopes (and consequently
derived de Rham cohomology) out of the pointed GE°f-module uw*W[F]. This addresses the second half of
our question as well.

Let us now mention some independent related work that appeared during the preparation of this paper.
The connection between w*W[F] or W[F] and de Rham cohomology also appears in the stacky approach
to p-adic cohomology theories by Drinfeld [Dri21]. The “crystallization” of A%p is a stack that is obtained
by taking the cone of the quasi-ideal W[F] in G,. The notion of a quasi-ideal also appeared in the work of
Drinfeld and in general, a ring stack can be created out of a quasi-ideal by considering its cone. More details
on these constructions can all be found in [Dri21]. For us, a quasi-ideal is used as a special kind of a pointed
G, or a GP**-module for which the unwinding functor is particularly well-behaved. In Proposition 3.2.20, we
show that the (opposite) category of quasi-ideals can be embedded in a certain naturally defined category.

A connection between W[F] and Hodge cohomology appears in the work of Moulinos, Robalo and Toén
on Hochschild homology [MRT21]. In their context, Hodge cohomology appears as the associated graded
object of the HKR filtration on Hochschild homology. The authors construct a filtered stack (over a p-adic
base) which they call the filtered circle. The associated graded stack of the filtered circle is given by the
classifying stack BW[F]. They show that Hochschild homology can be studied through this filtered circle
where the filtration on the filtered circle induces the HKR filtration on Hochschild homology. Their work also
gives a different way of thinking about the group scheme W[F]: the classifying stack BW[F] is the affine
stack corresponding to the cosimplicial ring given by the trivial square zero extension F, & IF,,[—1]. The stack
BW/|F] also appears in the work of Toén in [Toé20], where it is used to define derived foliations on schemes.

A universal property of the Hodge completed derived de Rham complex was recently obtained in [Rak20]
and motivated us to look for a universal property for dR from our perspective as in Theorem 1.1.13.

Finally, as previously noted, the analogue of Theorem 1.1.1 for A = Z,, (instead of an Artinian local ring)
was already known due to the work of Bhatt, Lurie and Mathew [BLM21, Thm. 10.1.2], which they use
to give a new proof of the de Rham Witt to crystalline comparison theorem of Illusie [I1179, Thm. II.1.4].
Theorem 1.1.1 in our paper also allows torsion base rings A, and one can deduce [BLM21, Thm. 10.1.2] from it
by a limit argument (see the discussion after Remark 1.1.2). A variant of questions regarding endomorphisms
of the de Rham cohomology functor appears in the work of Li and Liu [LL21].
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The idea of controlling de Rham cohomology theory by a single object (with appropriate structure)
originating from this paper has been pursued further in author’s subsequent joint work with Li in [LM21],
where all the endomorphisms of de Rham cohomology theory as a functor has been classified in very general
situations [LM21, Thm 1.1]. As a consequence of this classification, one can deduce Drinfeld’s refinement of
the Deligne-Illusie decomposition [LM21, Thm 1.6].
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2 Modules over ring schemes

In this section, we begin with the definition of a G, and GP**f-module leading up to the notion of a pointed
G, or GP*f-module. Our final goal is to study the deformation of the pointed G,-module W[F], which
is obtained from the kernel of Frobenius on Witt vectors and its closely related variant «*W[F], which is
a pointed GP®f-module. This will in part be achieved via attaching universal properties to the objects
W[F] and u*W|[F] as objects in certain categories. The construction of such categories leads to several
refinements of the category of pointed G2°*f-modules which we call pointed G2*-modules of fractional rank 1
(Definition 2.2.18), full of fractional rank 1 (Definition 2.3.4) and pure of fractional rank 1 (Definition 2.5.7).

Notation 2.0.1. We let N denote the monoid of nonnegative integers. The set of positive integers will be
denoted by Ns . For a fixed prime p, we let N[%] denote the monoid of nonnegative elements in Z[%] c Q.
The category of A-algebras will be denoted as Alg 4. Its opposite category, i.e., the category of affine scheme
will be denoted by Aff 4. All schemes considered are affine schemes unless otherwise mentioned. The group
schemes we consider are always assumed to be commutative. The notion of a G,-module is valid over any
base ring A. However, the notion of a G2*-module will require us to fix a prime p. In fact, G2*f-modules

will only be defined over a base ring where p is nilpotent.

2.1 G,-modules

Let C be any category which admits finite products. Many of the familiar concepts from algebra can be made
sense of in the category C. For example, one may talk about any monoid M acting on an object ¢ of C, which
is encoded by the data of a monoid homomorphism M — Home(c, ¢). One can also define the notion of a
group object G of C and talk about G acting on an object of C. Further, one can talk about the notion of a
ring object of C. If R is a ring object of C, then one can define a notion of R-module objects too. Many of the
definitions we introduce in this section can be understood and defined in this generality. We will only spell
out these definitions in the more concrete cases as required for our paper. However, our definitions will be
based on the Yoneda lemma and they apply to the general situation of any category C with finite products.

Definition 2.1.1. Let R be an arbitrary ring and Modg be the category of R-modules. Let F' : AffY — Modg
be a functor. We will say that F' defines an R-module scheme over A, if the set-valued presheaf underlying F’
is representable by an affine scheme over A.

From a categorical perspective, one can also say that an R-module scheme is simply an R-module object
in the category of affine schemes over A.

Remark 2.1.2. Note that if X is an R-module scheme, then by definition, X is equipped with the structure
of a commutative group scheme. Additionally, for every r € R, there is a map m,. : X — X of group schemes,
which is the analogue of “multiplication by r» map” in the case of usual rings and modules. These maps are
required to satisfy certain conditions analogous to the usual ones in algebra that we do not spell out here.
All of these data and conditions are captured by the functorial definition provided in Definition 2.1.1.

Remark 2.1.3. We point out that the ring R in Definition 2.1.1 is arbitrary and not required to be an
A-algebra.

Example 2.1.4. Taking X = Spec A[z], we see that X can be equipped with the structure of an A-module
scheme.

Remark 2.1.5. One can also similarly define a notion of R-module schemes that are not necessarily affine.
However, such non affine examples will not be necessary for us in this paper; so in Definition 2.1.1, we restrict
our definition to the affine case.

Example 2.1.6. We note that Spec A[z] can be naturally equipped with the structure of a ring scheme over
A. We will denote this ring scheme by G,. It represents the functor that sends an affine scheme to its ring of
global sections.

Definition 2.1.7 (G,-module). Let us consider the category Affs and the presheaf of rings on Affy
represented by the ring scheme G,. Let F' be a presheaf of modules over the presheaf of rings represented by
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Gg. We will say that F' is a G,-module over A, if the set-valued presheaf underlying F' is representable by an
affine scheme over A. Morphisms of G,-modules are defined as morphisms of presheaves of modules over the
presheaf of rings represented by G,.

From a categorical perspective, one can simply say that a G,-module is a G,-module object in the category
of affine schemes over A.

Remark 2.1.8. Note that by definition, a G,-module X has the structure of a commutative group scheme.
Further, there is also the G,-action map act : X x G, — X. These data are subjected to the usual
compatibilities which are all abstractly captured in Definition 2.1.7. For example, the G,-action must be
compatible with the group operation myx : X x X — X. Further, the G,-action must also respect the
multiplication map mg, : G, x G, = G, coming from the additive group scheme structure of G,. We spell
out the latter compatibility explicitly, which amounts to the following commutative diagram. Below, we let
A: X — X x X denote the diagonal map.

~ mg,, Xid
GaxXxGa%GaxGaxX“—X>GaxX
J{idXAXid actl (211)
Gox X x X x G, — 22t . ¥ x X mx X

Example 2.1.9. G, itself can be equipped with the structure of a G,-module. If A has char p, then
Spec A[z]/2zP can be equipped with the structure of a G,-module.

Remark 2.1.10. We note that the affine scheme underlying a G,-module in particular has the action of
(Gg, - ), where the latter is considered to be a monoid scheme under multiplication; thus global sections
on it gives a nonnegatively graded Hopf algebra. In other words, every G,-module has the structure of a
nonnegatively graded group scheme. If the underlying affine scheme of a G,-module is written as Spec B,
then we have a direct sum decomposition B = P, y Bi coming from the grading, where B; denotes the
summand of degree i. We refer to [MM65] for a study of graded Hopf algebras.

Remark 2.1.11. The notion of a G,-module extends to any scheme which is not a priori assumed to be affine.
However, we note that being a G,-module imposes strong topological restrictions on the underlying scheme.
In fact, any scheme which can be equipped with the structure of a G,-module over a field is necessarily affine
(see Remark 2.1.13). Thus, there is not much of a loss of generality by defining the notion of G,-modules
only in the affine case, as we do in our paper. We thank Drinfeld for pointing this out. Below, we prove a
slightly more general proposition.

Proposition 2.1.12. Let G be a scheme over k equipped with a k-rational point given by c : Speck — G.
Suppose that there is a map F : G x A}, — G such that the restriction map G x {1} — G s identity and the
restriction map G X {0} — G is the composition G — Speck — G (where the latter map comes from the
chosen k-rational point). In this set up, if G can be equipped with the structure of some group scheme, then
G must be an affine scheme.

Proof. To prove this assertion, we can assume that k is algebraically closed. By the assumptions on the map
F:G x Al — G, it follows that G must be connected. By a modification of Chevalley’s theorem due to
Perrin [Per76, Cor. 4.2.9], there exists an exact sequence 0 - H — G — A — 0 of group schemes in the
fpgc topology, where H is an affine group scheme and A is an abelian variety. By hypothesis, we have a
distinguished k-rational point ¢ of G, whose image in A will be denoted by ¢’ € A(k). Our claim would follow
if we prove that A(k) = 0, where A(k) denotes the k-valued points of A. We let t € A(k). Since G — A is
an fpqc surjection, we can find an algebraically closed field K, which contains k and such that there exists
t' € G(K) which is mapped to the image of ¢ in A(K). Using ¢’ and the map F : G x A} — G supplied by
our assumptions, we obtain a map Ak — Ax such that {1} € AL is mapped to the image of ¢t in A(K)
and {0} € AL maps to image of ¢ in A(K). Any such map extends to a map P} — Ak and since A is
an abelian variety, any such map has to factor through the Jacobian of P}, which is a point. Thus the
map AL — A is constant. By fpqc sheaf property, the map A(k) — A(K) is injective. This implies that
t = € A(k). Since t was arbitrary, it follows that A(k) consists of a single point and thus A(k) = 0, which
gives the claim. O
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Remark 2.1.13. We clarify that in Proposition 2.1.12, we do not assume that the zero section of the
group scheme structure on G is the same as the k-rational point c. In the language of Al-homotopy theory,
the hypothesis in Proposition 2.1.12 means that the structure map G — Speck is a strict A'-homotopy
equivalence [MV99, 2.3]. Further, we point out that the hypothesis in Proposition 2.1.12 is satisfied for any
Gg-module X, by considering the zero section Speck — X itself to be the rational point ¢ and by taking F’
to be the G,-module action map X x G, — X. This gives the conclusion that any G,-module over a field is
affine.

Proposition 2.1.14. The forgetful functor from the category of G,-modules to the category of graded group
schemes is fully faithful.

Proof. Let SpecU and SpecV be two G, modules and let Spec U — Spec V' be a map of G,-modules. This
is the data of a map V' — U that is a Hopf algebra map and is equivariant with the A[z]-coaction, i.e.,
commutes with the A[z]-coaction maps U — U[z] and V' — V[z]. However, the latter compatiblity can be
checked after composing along the injective maps Ulz] — Ulz*!] and V[z] — V[z*!] and thus it is enough
to provide a map V — U which is compatible with the A[z%!]-coaction, i.e., a graded Hopf algebra map
V= U. O

Remark 2.1.15. Let us give a much more abstract generalization of Proposition 2.1.14 inspired from a
comment by the referee. If X is a topos and R is a ring object of X', one can consider the category of
R-module objects. The units in R can be viewed as a group object of X', which we will denote as R*. Then
there is a forgetful functor ¢ from the category of R-modules to the category of R*-representations. Note
that the category of R*-representations can also be viewed as the category of Z[R*]|-modules of X. The
forgetful functor ¢ can simply be identified with the restriction of scalars along the natural map Z[R*] — R.
Therefore, by the adjunction between restriction and extension of scalars, ¢ is fully faithful if and only if
the counit is naturally isomorphic to identity. The latter is equivalent to the natural map R ®zjrx] R =+ R
being an isomorphism. Now, specializing to the case when X is the fpqc topos, R = G, and R* = G,,, the
condition that the natural map R ®zrx] R — R is an isomorphism is implied by the fact that Z[G,,] — G, is
a surjection of sheaves. The last claim can be deduced by the observation that for any ring S and an element
f €S, fisasum of at most two units Zariski locally on Spec S. Indeed, Spec Sy and Spec S1_f cover Spec S}
on Spec Sy, f is already a unit and on Spec S1_y, we have f =1+ (f — 1). This gives Proposition 2.1.14.

Remark 2.1.16. We note that a graded group scheme being a G,-module is no extra data, but a condition.
This condition is not always satisfied. For example, the Witt group scheme W which represents the functor
Aff 4 — Sets given by Spec B — W (B) where W (B) is the ring of p-typical Witt vectors of B is a graded group
scheme but not a G,-module. Indeed, for any b € B, multiplication by the Teichmiiller lift [b] = (b,0,...,0,...)
of b equips W with the structure of a nonnegatively graded group scheme (c¢f. Remark 2.1.10). However, for
t € W(B) and b,b' € B, in general, [b+b'] -t # [b] - t + [V/] - t. Therefore, the graded group scheme W does
not satisfy the condition of being a G,-module. c¢f. Remark 2.1.8, (2.1.1).

Proposition 2.1.17. Let Spec B be a G,-module. Then as a graded algebra, the degree zero piece of B is
naturally isomorphic to A as an A-module. In other words, as a graded Hopf algebra, B is connected.

Proof. First, by using the zero section of a group scheme, we note that the A-algebra structure map A — B
is injective. The G,-module structure map is given by a map B — B[x]. Killing « produces a map B — B
whose kernel is I+ := @, B; where B = @,~, B;. Further, using the fact that Spec B is a G,-module, we
note that the map B — B obtained this way also has the property that it factors through B — A, which is
the zero map of the comultiplication. Since the map A — B is injective, this provides an A-algebra map
B — A whose kernel is I-g. Thus By is naturally isomorphic to A, as desired. O

Remark 2.1.18. Let Spec B be a G,-module as above. As noted in Remark 2.1.10, B has the structure
of a nonnegatively graded Hopf algebra. Let ¢ : B — B ® B be the comultiplication map. The proof of
Proposition 2.1.17 shows that the (surjective) map z : B — A induced by the zero section has kernel equal
to Is; this gives a natural isomorphism A ~ By. Therefore, for any b € B;, such that ¢ > 0, we have
c(b)=p®1+1®q+cy(b), where p, ¢ € B; and ¢4 (b) € Isg ®4 Iso. We claim that p = ¢ = b. To see this,

we note that the composite map B = B®4 B RLCENY St ®4 A ~ B is the identity on B. Recalling the fact that
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the kernel of z is the ideal I~g, it follows that p = b. Similarly one obtains ¢ = b. To summarize, we see that
if b € B is a homogeneous element of degree > 0, then ¢(b) =b® 14+ 1® b+ ¢4 (b), where ¢, (b) € Iso®4 Iso.
This observation will be used in the proof of Proposition 2.1.24. As a special case of this observation, we note
that since deg ¢y (b) = degb = i, the element ¢, (b) is necessarily zero if i = 1.

Remark 2.1.19. By unwrapping Definition 2.1.7, one sees that a G,-module over an arbitrary base ring A
is equivalent to the following:

1. For every A-algebra B, a B-module scheme Spec Mp over B.

2. For every map B — B’ of A-algebras, an isomorphism resg/ : Mg ®p B’ ~ Mpg,. Further, in this
isomorphism, the B-action on the left hand side is compatible with the restriction of the B’-action on the
right hand side along the map B — B’. The latter is a condition and not extra data.

Further, a morphism of G,-modules under this equivalence translates to the following:

1. For every A-algebra B, a morphism ®p5 of B-module schemes over B.

2. For every map B — B’ of A-algebras, the maps ®; and ®p are compatible with resg/.

Definition 2.1.20 (Pointed G,-module). A G,-module scheme X along with the data of a map X — G, of
Gg-modules will be called a pointed G,-module X. We will follow the convention that the data of the map
X — G, will be simply called a point. Maps between pointed G,-modules are maps of G,-modules that
commute with the points. We denote the category of such objects by G,—Mod,.

Remark 2.1.21 (¢f. Remark 2.4.5). If X = Spec B is a G,-module, then we note that giving a map
X — G, of G,-modules is equivalent to choosing an element of degree 1 in the graded algebra B. This follows
from the fact that if x is an element of degree 1 in B, then the comultiplication map B — B ® 4 B sends
r—2®1+1®xz. Thus a pointed G,-module is the data of a G,-module Spec B and an element x € By
(where Bj is the degree 1 piece of B ). The choice of this element x € Bj is the reason we use the word
“point” to talk about the map X — G,; it is motivated by the terminology in topology where a space Y and
a choice of an element y € Y is called a pointed space. Using functor of points, in our case, this can also be
interpreted as an X-valued point of G,.

Remark 2.1.22. G, can be naturally equipped with the structure of a pointed G,-module using the identity
map G, — G,. In fact, G, is the final object of G,—Mod,. The initial object of G,—Mod, is given by
the zero section Spec A — G,. Proposition 2.4.10 and Remark 2.4.11 records more examples of pointed
G,-modules.

Example 2.1.23. Let A be the base ring fixed as before. If M is an A-module, then Spec (Sym 4 (M))
naturally has the structure of a G,-module over A (c¢f. Remark 3.1.9). Below, we will show that if A is a
Q-algebra, then every G,-module is of the form described above. We thank the referee for bringing this to
our attention.

Proposition 2.1.24. Let A be a Q-algebra and X be a G,-module over A. Then, there is an A-module M
such that we have an isomorphism X ~ Spec (Sym 4(M)) of G,-modules.

Proof. Let B := I'(X,0Ox). As noted in Remark 2.1.10, we have natural a direct sum decomposition
B = @,y Bi. Since X is a G,-module, B has the structure of a connected (Proposition 2.1.17) nonnegatively
graded Hopf algebra. We will start by recalling that (see Remark 2.1.18) if b € B is a homogeneous element
such that degb > 0, then the comultiplication map B — B ® 4 B sends

b b@1+1@b+ > b, @b, (2.1.2)

where b/,, b/ € B are homogeneous elements of B such that degd!,, degb! > 0. In particular, (2.1.2) implies
that if b € By, then the comultiplication map B — B ®4 B sends b — b® 1 + 1 ® b. This implies that the
natural map

F:Symy(By) — B

11
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is a map of graded Hopf algebras. This constructs a map X — Spec (Sym 4(B;)) of graded group schemes,
which is automatically a map of G,-modules by Proposition 2.1.14. To prove the proposition, it would be
enough to show that the map F : Sym 4 (B;) — B is an isomorphism of A-algebras.

First we show that F is surjective. For this, we use the commutative diagram (2.1.1) that every G,-module
X is required to satisfy. Applying the global section functor to (2.1.1), we obtain the following commutative
diagram of A-algebras.

Alt] @4 B®a Alt] +————— B®4 (A[t] @4 A[t]) «— B®4a Alt]
Alt] @4 B4 B®4 Alt] B®yB+—— B

We will write A[t]®4 B®a Alt] ~ Blt1,t2], where the isomorphism sends (t®1®1) — t; and (1Q1®1t) — ts.
We note that in order to show that F' is surjective, by construction, it would be enough to show that B is
generated as an A-algebra by its degree 1 elements.

To this end, let b € B be a homogeneous element of degree i > 1. By (2.1.2), the composite map
B — B®4 B — Blt1,ts] from the above diagram sends

b tib+ b+ Y 1By

u

where b!,,b!! € B are as described in (2.1.2). On the other hand, the composite map B — B®4 A[t] — Blt1, t2]

ur u

sends b+ b(t; + t3)*. By the commutativity of the diagram, we have the relation

bty + t2)' = tib+ thb + 3 0PI ee by (2.1.3)
u

in the ring Blt1,t2]. Since degb!,, degd!! > 0 and degb = i, it follows that degb/,, degd!/ < i. Since the base
ring A is assumed to be a Q-algebra, by comparing coefficients of ti_ltg from both sides in the equation
(2.1.3), we see that b = > ¢, ¢, for some homogeneous elements ¢, ¢, € B such that degc), degc) < i.
Since b € B was an arbitrary element of degree > 1, inductively we obtain that B is generated as an algebra

by its degree 1 elements, which shows that F' is surjective, as desired.

Now we show that F' is injective. By construction, F' is a graded map and it induces an isomorphism
in degree 1. For an integer r, let F}. denote the induced map on the summands of degree r. Let us assume
for the sake of contradiction that F'is not injective. Let n > 2 be the minimal integer such that F;, is not
injective. Since we already know that I is surjective, it follows that F. is an isomorphism for r < n. We note
the following commutative diagram in the category of A-modules

Sym’s(B1) ———— Sym(B1) ®4 Sym,(B1) ——— Sym’y ' (B1) ®4 Sym}(B1)

Fnl F®Fl Fn—1®AF1J/

Bn B®AB anl ®A Bl~

In the above, the horizontal maps are obtained from the graded Hopf algebra structure on Sym ,(Bj)
and B. More explicitly, the left horizontal maps are induced by restricting the comultiplication to the
summand of degree n and the right horizontal maps are the projection maps arising from the grading.
We note that the upper horizontal composite map Sym’y (By) — Symffl(Bl) ®4 Symly(By) is injective.

mult

To see the latter claim, one notes that the composition Sym’s (By) — Sym’y ' (B;) ®4 Sym}(B;)
Sym'j (B1) is multiplication by the integer n, which is an isomorphism since A is a Q-algebra; here the map
mult: Sym’y ! (By) ® 4 Sym (By) — Sym’s(B;) is induced by the graded A-algebra structure on Sym 4 (B;).
This implies that the composite map

Fpn_1®aF

Sym’s(B1) — Sym’y ' (B1) ®4 Sym}y(By) By—1®4 By

is injective since F},_1 ® 4 F} is an isomorphism by the induction hypothesis. The above commutative diagram
now implies that F;, must be injective, which finishes the proof. O
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2.2 GP-modules

Below we define the notion of a GP*f-module which will be defined over a fixed ring A such that p” = 0 in A
for some n.

Proposition 2.2.1. The functor (-) : AffS? — Sets given by Spec B — B, where B® := lim,_,z» B is
naturally valued in rings.

Proof. This follows from the natural bijection B” ~ lim,_,.» B /p, which holds since B, being an A-algebra,
is p-adically complete. O

Definition 2.2.2. The functor () from Proposition 2.2.1 is represented by Spec A[z'/?”], which can be
naturally viewed as a ring scheme and will be denoted as GP*™f when equipped with this ring scheme structure.

Remark 2.2.3. When A is an Fj-algebra, the comultiplication of the Hopf algebra underlying A[z'/P™] can be
described easily: it is given by the map A[z'/?”] — A[z'/P7 @4 A[zY/?™] given by z'/P" — 2V/P" @14+1@2'/P"
for all n. However, in general the comultiplication is less simple to write down and we need to trace through
the bijection B’ ~ lim,_,,» B /p. For example, when A is a Z/p?Z algebra, the comultiplication is given by
Az /P77 — Alz'/P7 @4 A[z/P7] which sends 2'/P" — z'/P" @1+ 1@2/P" +2 o<i<p (’i’)gci/p"+1 @ap=i/P"
Remark 2.2.4. When A is an F,-algebra, the A-algebra map Afz] — A[z'/P™] gives us a morphism of
ring schemes G2 — G,. At the level of functor of points, this morphism is induced by the natural map
B’ — B, which is a ring homomorphism when B is an F-algebra. However, using Remark 2.2.3 we can see
that if p # 0 in A, the natural map A[z] — A[z'/?”] is not a map of Hopf algebras and hence does not give a
morphism of ring schemes.

Definition 2.2.5 (GP*f-module). Let us consider the category Aff4 and the presheaf of rings on Aff4
represented by the ring scheme GP°™. Let F' be a presheaf of modules over the presheaf of rings represented
by GPer. We will say that F is a GP*f-module over A, if the set-valued presheaf underlying F is representable
by an affine scheme over A. Morphisms of GP®*!-modules are defined as morphisms of presheaves of modules
over the presheaf of rings represented by GPef.

From a categorical perspective, one can simply say that a GP*f-module is a GP**-module object in the
category of affine schemes over A.

Remark 2.2.6. Note that by definition, a Ggerf—module scheme X has the structure of a commutative group
scheme. Further, there is also the GP®f-action map X x GP*f — X. To avoid confusion, we clarify that
a GP*.module is not the same as a GP**f-module object in the category of perfect rings (when A = F,,).
Further, the affine scheme underlying a G2**f-module need not be a perfect scheme either.

Example 2.2.7. When A has char. p, the scheme Spec A[z'/?™ ]/ can be equipped with the structure of
a GP'f_module which we will denote as of. If p # 0 in A, the Hopf structure of A[z'/?™] as described in
Remark 2.2.3 does not induce a Hopf structure in the quotient A[z'/?™]/x.

Remark 2.2.8. A GP*f-module Spec B naturally provides us a GP*'f := Spec A[z*!/P™ |-equivariant group
scheme Spec B, or, more specifically in our case, an N[1/p]-graded group scheme structure on Spec B. The
summand of B of degree i € N[1/p] will be denoted as B;, so that B = @ierp] B;. Further, the forgetful
functor from GE*f-modules to N[1/p]-graded (or Z[1/p]-graded) group schemes is fully faithful. The proof
follows in a way entirely similar to the proof of Proposition 2.1.14.

Proposition 2.2.9. Let Spec B be a Ggerf—module. Then as a graded algebra, the degree zero piece of B is
isomorphic to A as an A-module.

Proof. First, by using the zero section of a group scheme, we note that the A-algebra structure map A — B is
injective. The GP*f-module structure map is given by a map B — B [ml/ poo]. Killing z'/?" for all n produces
amap B — B whose kernel is I.o := @, B; where B = @ieN[l/p] B;. Further, using the fact that Spec B is

a Ggerf-module, we note that the map B — B obtained this way also has the property that it factors through
B — A which is the zero map of the comultiplication. Since the map A — B is injective, this provides an
A-algebra map B — A whose kernel is Iy. Thus By is naturally isomorphic to A, as desired. O
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Remark 2.2.10. A GE*-module over F,, amounts to the following data. For every F,-algebra S, we have
an S”-module scheme Spec Mg over S such that for a map ¢ : S — R of F,-algebras, we have isomorphisms
resf : Mg ®s R ~ Mp of R-algebras. Further, the action of S” on Mg provides an endomorphism of Mg
for every s” € S” which under the isomorphism resg corresponds to the endomorphism induces by wb(sb) on
Mpg. Here ¢° denotes the map S° — R”. Using the map S* — S for an Fp-algebra S, we see that it is enough

to specify the same data only on perfect rings.

Proposition 2.2.11. Let (A, m) be an Artinian local ring with residue field Fy,. For every perfect ring R, let
Wa(R) :== A®z, W(R). Then a G -module over A is equivalent to the following data:

1. For every perfect ring R, an R-module scheme Spec M over Wa(R).

2. For every map S — R of perfect rings, an isomorphism resg : Ms @w, sy Wa(R) ~ Mpg. Further, in this
isomorphism, the S-action on the left hand side is compatible with the restriction of the R-action on the right
hand side along the map S — R. The latter is a condition and not extra data.

Further, a morphism of GR*f-module under this equivalence translates to the following data:

1. For every perfect ring R, a morphism ®g of R-module schemes over W (R).
2. For every map S — R of perfect rings, the maps ®r and ®g are compatible with resg’.

Proof. Let R be a perfect ring. We note that W4 (R) is an A-algebra. So given a GP*-module scheme
over Wa(R), we obtain an W (R)"-module scheme which will be denoted as Mpz. Thus one direction of the
proposition will follow from the following lemma.

Lemma 2.2.12. In the above set up, Wa(R)" ~ R.

Proof. This fact is rather classical and a proof can be found in [FF18, Prop. 2.1.2]. We will explain a
proof in our set up for the convenience of the reader. We start by noting that there is a natural map
VVA(R)b = lmy 0 Wa(R)/p — lim, .0 W4 (R)/m since p € m. Since W4 (R)/m is isomorphic to R, which
is a perfect ring, it will be enough to prove that the natural map is an isomorphism. We know that the
natural map lim,_,,» Wa(R) — W4 (R)® is a set theoretic bijection since W (R) is p-adically complete. Thus
it is enough to show that the natural map limg_,,» Wa(R) — lim,_,,» W4 (R)/m is a set theoretic bijection.
First we check injectivity. Let (a,) and (b,) be two sequences in lim,_,.» Wa(R) such that a,, = b, modm.
For every k, we have aﬁi_ L = Gn and bﬁ: & = bpn. Since a4 = bpqr, modm, one inductively checks using p € m
that a,, = b, modm”**!. Since k was arbitrary, and the ideal m is nilpotent, this checks the injectivity. For
surjectivity, we fix (@) € limg_,» W4(R)/m. We choose arbitrary lifts a,, of @,, to W4(R). For every k, we
k k

k+1
have a? | = anipmodm. Thus, al ., = ab, modm**1. Since m is nilpotent, the sequence k — al , is
eventually constant, and we define the limit element to be b,,. Now it follows that bﬁ 11 = by and by, lifts @y,

which proves the required surjectivity. O

For the opposite direction, we are given with the data of an R-module scheme Spec Mg over W4 (R) for
every perfect ring R. In order to obtain a GP*"f-module, we are required to provide the data of a B’-module
scheme Spec Mp over B for every A-algebra B. For this, we note the following lemma.

Lemma 2.2.13. Let B be an A-algebra. There is a natural map WA(Bb) — B which induces an isomorphism
Wa(B")" — B°.

Proof. There is a natural map B” — B/p — B/m. This gives a natural map of A-algebras W,(B") —
B® — B/m. We note that W,(B®) is a flat A-algebra by definition. Since B® is perfect, we have Lps /g, =0

implying Ly, g»y/4 = 0. This implies that Wa (B”) is a formally étale A-algebra. Since the map B — B/m
has nilpotent kernel, it follows that the map W4 (B?) — B/m lifts uniquely to provide a map W4 (B") — B,
as desired. The map W (B")” — B’ is an isomorphism by Lemma 2.2.12. O

Now we can define Mp := Mp» @y, (p»y B. Then Spec Mp automatically has the structure of a B-module
scheme. This data determines a GP**f-module. O
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Definition 2.2.14 (Pointed G2*f-module). A GP*f-module scheme X over A along with the data of a map
X — GP of GPe-modules will be called a pointed G2 -module X. We will follow the convention that the
data of the map X — GP*! will be simply called a point. Maps between pointed GP®*!-modules are maps of
Ggerf—modules that commute with the points. We denote the category of such objects by GgerffMod*.

Example 2.2.15. Let A be an F,-algebra. The Hopf algebra A[z!/?”]/z along with the natural map
Alz'/P7] — A[z'/P7]/z equips Spec A[z'/P”] /2 with the structure of a pointed GP**f-module scheme. This
will be denoted as af. An analogue of this does not exist when A does not have characteristic p.

Remark 2.2.16. Unlike the case of G,-modules from Remark 2.1.21, for a GP**f-module X = Spec B, it is
not true that giving a map X — G2 is equivalent to choosing an element of degree 1 in B.

For the remainder of this section, we will work over a base ring A of characteristic p.

Proposition 2.2.17 (Pullback functor). Let A be an F,-algebra. Then there is a map of ring schemes
u: GPt — G, over A. Further, pullback along this map defines a fully faithful functor u* : G,~Mod, —
Grert-Mod,.

Proof. The first part follows from considering the natural map S° — S for every A-algebra S since Ggerf(S )=
S and G,(S) = S. For the second part, we start by defining the functor u*. Let X be a pointed G,-module
over A. We set u*X := X xg, GP. Then it follows that u* X is naturally equipped with the structure of a
pointed Ggerf—module where the map u*X — Ggeff is given by the projection map.

It is clear that w* is faithful. To see that it is full, we take Spec M and Spec N to be two pointed
Gg-modules over A. Let f : u*Spec M — u*Spec N be a map of pointed GP**-modules. Now the graded
algebras underlying u*Spec M and u*Spec N are respectively given by M’ := M ® Ala] A[xl/poo] and N’ :=
N®ag Alz'/P”]. The map f induces a graded map on algebras f : N’ — M’. By considering the A-subalgebra
of elements of integral degree in M’ and N’ we recover M and N and also get a graded map denoted as
fo: N — M. Since f was a graded Hopf algebra map, it follows that f_ is also a graded Hopf algebra map.
This induces a map f, : Spec M — Spec N which by construction is a map of pointed G,-modules. Now we
note that applying v* to this map recovers f. To see the last statement, we note that since f was a map of
pointed GP*f-modules, the graded Hopf algebra map f : N’ — M’ must send 1 ® z'/?" — 1@ 2!/P" for i > 0.
Further, as an A-algebra, N' = N ® 4] Alz*/P™] is generated by the image of the natural map N — N’ and

the elements 1 ® 2/ for i > 0 (similarly for M’). These observations imply that the map f is the map
obtained from f, by base changing along A[z] — A[z'/P”™], which ultimately implies that f = u* fo. O

Definition 2.2.18 (Fractional rank 1). Let A be an Fj-algebra. A pointed GP®*f-module X over A is said to
be of fractional rank 1 if it is isomorphic to u*X’ for a pointed G,-module X”.

Remark 2.2.19. If X = SpecV is a pointed GE°*-module of fractional rank 1 over F,,, then it follows from
the definition and Proposition 2.2.9 that the map of graded algebras I, [xl/ px] — V corresponding to the point
is an isomorphism in degrees < 1 and thus the pieces of degree < 1 of V' are vector spaces of dimension 1. More
precisely, let V.1 denote the algebra obtained by killing the ideal of elements of degree > 1. Further, let X be
isomorphic to u*SpecU for a pointed G,-module SpecU. Then Vo1 ~ Fp[zY/P7] /2 ®p, Uy ~ Fp[z/P7 ] /x;
where the last isomorphism follows from Proposition 2.1.17. Also, we note that dim U; = dim V.

Example 2.2.20. Let A be an Fj,-algebra and let us consider Spec A equipped with the pointed G,-
module structure coming from the zero section of G,. Then we have a natural isomorhism u*(Spec A) ~ of
(Example 2.2.15). In particular, the pointed GP®f-module of is of fractional rank 1.

2.3 The Hodge map

Proposition 2.3.1 (Hodge map). Let A be an F,-algebra. Let X be a pointed GPetomodule over A of
fractional rank 1. Then there is a unique map of — X in G2t -Mod,. This map will be called the Hodge
map.

Proof. This follows from Proposition 2.2.17 and Example 2.2.20. O
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Remark 2.3.2. We will later see (cf. Proposition 3.5.16) that the Hodge map af — X corresponds to the
gr, map of a certain kind of “Hodge filtration” that can be defined on a functor associated to X.

Now we would like to study a “rigidity” property of the Hodge map o — X from Proposition 2.3.1 under
deformations. For this purpose, we make the following definition.

Definition 2.3.3. A pointed G,-module X is said to be full of rank 1 if the map X — G, induces a
surjection on the piece of degree 1 on the underlying graded algebra map obtained by taking global sections.

Definition 2.3.4 (Full of fractional rank 1). A pointed GE*-module X over an F,-algebra A is said to be
full of fractional rank 1 if it is of fractional rank 1 and the map X — GP®! induces a surjection on the piece
of degree 1 on the underlying graded algebra map obtained by taking global sections.

Remark 2.3.5. It follows from definitions that a pointed GP*f-module Spec V is full of fractional rank 1 if
and only if it is the image under v* of a full of rank 1 pointed G,-module SpecU. In this situation, when
A =T, we have two cases.

ml'poo]
T

Case 1. If the graded map F[z] — U sends x — 0, then V = U ®p, (4] F,[z1/?"] = U ®p, Fol . Thus
the graded map F, [xl/ poo] — V corresponding to the pointed GP®f-module structure is an isomorphism in
degrees < 1 and z is sent to zero, so V' has no non-zero elements in degree ¢ for 1 <1i < 2.

Case 2. Otherwise, dimU; = dim V5 = 1 and the graded map F,[z] — U sends z to a basis element of U;.
Then the map F, [:rl/ pm} — V corresponding to the pointed GP**f-module structure is an isomorphism in
degrees i for 0 <7 < 2.

Proposition 2.3.6 (Rigidity of the Hodge map). Let X be a pointed GE°™-module over F,, which is full of
fractional rank 1. Let X' be a deformation of X as a pointed G -module over F,[e]/e?. Then the Hodge
map of — X admits a unique deformation offe] — X'.

Proof. We write X = Spec B and X’ = Spec B’. We have a map F,[¢][z!/?"] — B’ coming from the data of
the point. By Remark 2.2.19, this is an isomorphism in degrees < 1 since it is so modulo e. Let B, denote

the graded algebra we obtain by killing the ideal of elements in degrees > 1 in B. This gives an isomorphism

1/
of graded algebras B ~ %1]. Thus the quotient map B’ — B., can be identified with a graded

[ poo
algebra map B’ — % or in other words, a graded map a[e] — Spec B’. We note that both sides have

the structure of pointed G2*f-modules and the graded map of schemes we have constructed is compatible
with the data of the points. Thus in order to prove that it is a map of pointed GP**-modules, we only need

1/p™>
to check that B/ — W is a map of graded Hopf algebras, i.e., the following diagram commutes.

B Fple[z!/?™]
B B Fp[e}[z”pm] e Fp[euzl/*""’]

It is enough to check that the diagram commutes for homogeneous elements b € B’. When degb < 1, it
follows from the data of the points. By Remark 2.3.5, if X falls under Case 1, then the diagram commutes
for 1 < degb < 2, as b is necessarily zero in that case. If X falls under Case 2, then the map I, ['/P"] = B
is an isomorphism in degrees < 2. Therefore, the map F,[e][z'/?”] — B’ coming from the data of the point is
an isomorphism in degrees < 2 as well. Thus the diagram commutes for 1 < degb < 2 in this case as well.
Now we suppose that degb > 2. The comultiplication would send this to a homogeneous element of B’ ® B’.
However, any homogeneous element of degree > 2 in B’ ® B’ would have to be of the form >, ., ® v,
such that x,,, 7, are homogeneous elements in B’ and deg z,, + degy, = degb > 2, therefore either deg x,, or
degy, is > 1, implying that ), 2, ® y, is sent to zero under the lower horizontal map. But since degb > 2,
it is sent to zero by the upper horizontal map as well, which kills every element in degree > 1, verifying the
commutativity of the diagram. The uniqueness follows from the grading. O
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Example 2.3.7. We note that Proposition 2.3.6 is false if we do not assume the GP*f-module to be full,

i.e., assuming that the GP*f-module is of fractional rank 1 alone is not sufficient. We consider the group

scheme «, as a pointed G,-module over F, via the map F,[z] — F;—Ef] that sends x — 0. Applying the

oo 1/p%
functor u*, we obtain a pointed G2**f-module via the map F,[z*/?”] — w Qr, Ff—iﬂ. This can have
deformations that do not admit a pointed GP*f-module map to a[e]. Indeed, we consider the graded algebra
Fpld@ 7] o Faldld
tp

= e . The Hopf structure has a nontrivial deformation given by

1 . .
t>tR1+1@t+¢ E (?)x””@xll/p.
- 7
0<i<p

This deformation further has the structure of a pointed GP®f-module. However, this does not have a

/P
deformation of the pointed G2*'-module map % ®F, Ff—iﬂ — af obtained by killing all elements of
degree > 1. Indeed, any deformation of such a map would be given by killing all the generators in degrees

> 1 as well, which would not be a Hopf map.

erf

2.4 Cartier duality

In this section, we record a variant of Cartier duality in the graded situation. For more details on such
constructions we refer to [GR14, 1.6]. We will use this duality to study the deformation of certain pointed
G, and GP*f-modules.

Definition 2.4.1. Let R be any ring. A nonnegatively graded module ., V; over R is said to be of free
of finite type if V; is a finite dimensional free module over R for every i > 0. A graded algebra over R will be
called free of finite type of it is free of finite type as a module over R.

Definition 2.4.2. If M = @,.,V; is a free of finite type graded module over R, then we can define the dual
of M as M* := @, V;*, where V;* denotes the dual of V;. It follows that M** is functorially isomorphic to
M. -

Definition 2.4.3. Let S be a graded free of finite type Hopf algebra over R. Then S* also has the structure
of a graded free of finite type Hopf algebra over R. We call S* the Cartier dual of S. It follows that S**
is naturally isomorphic to S. Thus Cartier duality provides an anti-equivalence between the category of
nonnegatively graded free of finite type Hopf algebras over R with itself.

Definition 2.4.4. Let P} denote the category of nonnegatively graded affine group schemes X over R whose
underlying Hopf algebra is free of finite type along with the data of a map X — G, of graded group schemes
such that at the level of graded algebras of global sections, this map induces an isomorphism on degrees
< 1. The map X — G, will be called a point. Morphisms between two such objects are morphisms of graded
group schemes that commute with the data of the points.

Remark 2.4.5. We recall that a nonnegatively graded Hopf algebra S over R is called connected if the
degree zero piece of S denoted as .Sy is isomorphic to R as an R-module. Equivalently, .S is called connected
if the structure map R — .S induces isomorphism on the degree zero piece. It follows from the definition that
the underlying graded Hopf algebra I'(X, Ox) is connected for an X € P}. We note that if S is a connected
nonnegatively graded Hopf algebra, then the comultiplication on S sends an element x of homogeneous degree
1tox®141®z. In particular, giving a map R[z] — S of connected nonnegatively graded Hopf algebras
over a base ring R amounts to choosing a homogeneous element of degree 1 in S.

Remark 2.4.6. The identity map G, — G, is the final object of P}.

Proposition 2.4.7 (Duality). We fiz a base ring R as before. The category P! has a notion of duality
which sends an object Spec M — G, to another object Spec M* — G,, where M* is the Cartier dual of the
nonnegatively graded free of finite type Hopf algebra M. Further, this duality in P} is involutive and thus
provides an anti-equivalence of P} with itself. This duality in P} will be called Cartier duality as well.
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Proof. Let Spec M — G, € PL. We need to check that there is a map of graded Hopf algebras R[x] — M*
inducing isomorphism in degrees < 1 which is further functorial and is compatible with applying Cartier
duality twice. First we note the following lemma.

Lemma 2.4.8. Let PL(R) denote the category whose objects are pairs (L,p) where L is a free module of
rank 1 over R and p is a basis of L as an R-module. Maps are defined in the obvious way. Then there is a
notion of functorial duality on PL(R) which is involutive and sends L — L*.

Proof. Our task is to construct a functor PL(R) — PL(R) which we define by sending (L,p) — (L*,p*)
where p* : L — R is the unique map that sends p — 1. It is clear that p* is a basis for L*. If (L1, p1) — (L2, p2)
is an arrow in PL(R), then there is a natural map L — L} which takes pj to pj, thus it is clear that our
construction defines a functor. The natural isomorphism L ~ L** sends p — p** so it follows that the functor
we constructed is involutive. O

Now we note that the Cartier dual M* of M is again a connected Hopf algebra over R since M is
connected. By Remark 2.4.5, the map Spec M — G,, corresponds to an object (My,t) € PL(R), where M;
denotes the degree 1 piece of M and t € M is the image of z under the graded map R[x] — M. By the above
Lemma, duality provides us an object (M7, ¢*). By Remark 2.4.5, this corresponds to a map Spec M* — G,.
By construction, the underlying graded algebra map R[z] — M™* induces an isomorphism in degrees < 1.
Thus Spec M* — G, is naturally an object of P}. The fact that this construction is functorial and involutive
follows from the above Lemma. O

Example 2.4.9. It follows that the category P} has an initial object G — G,, which is the Cartier dual of
the final object G, = G, and will be simply denoted by G}. By computing the Cartier dual, it follows that
the graded algebra underlying G is the divided power polynomial algebra in one variable. By construction,
G} is a nonnegatively graded group scheme since it is the dual of G,. It also follows that in the graded
algebra underlying G}, the summands of a fixed degree are all free of rank 1. Let us mention the group
scheme structure of G} more explicitly at the level of functor of points. For an algebra B, the B-valued
points of G can be identified with the set of sequences (bg,b1,...,by,...), where b; € B for i > 0 are such

that by = 1 and b,b,, = (m+n)!bn+m. The addition operation in the group scheme G} at the level of B-valued

min!
points can be described as

(bo b1y -y bns )+ (CosCrye ey Cnynn) = (doydy, ... dy, .. .), where dj := Y bic;.
it+j=k

For b € B, setting b- (b, b1,...,bn,...) := (b, bb1,...,b"b,,...) describes the G,-action on GZ. By using the
relation b,b,, = (Tn—;_:!)!bwrm and the binomial theorem, one easily verifies that the G,-action on G}, equips

G}, with the structure of a G,-module.

Proposition 2.4.10. Let R be a Zy-algebra. Then G, as an object of PL over R is uniquely isomorphic
to W[F] = G, where the latter denotes the Kernel of Frobenius on the p-typical Witt ring scheme (see
Ezample 1.1.8). (In particular, W[F| has the structure of a pointed G,-module.)

Proof. For a proof, we refer to [Dri21, Lemma 3.2.6]. We provide sketch of a different proof. It is enough to
prove the claim when R = Z,,. Since F' : W — W is faithfully flat (see [Dri21, Section 3.4] and Example 1.1.8),
W|[F] is a graded group scheme that is flat over Z,. For every i > 0, the summand of degree 7 in the graded
algebra underlying W[F] is a finitely generated flat module over Z, and therefore must be free of finite rank.
By going modulo p, one sees that these summands of degree ¢ must be free of rank 1 for every 7 > 0. Thus
one observes that W[F] — G, is an object of PL. Since G} — G, is an initial object of P} by Example 2.4.9,
it follows that there is a unique map G — W[F] in P}. In order to check that this map is an isomorphism,
it is enough to check it at the level of the induced map on graded algebras underlying the two group schemes.
For the latter, it is further enough to check it for the induced maps on summands of degree i, at the level
of Z,-modules. Since these summands all have rank 1, it is enough to check that these maps are nonzero
modulo p. However, the last statement can be seen directly by inspecting the comultiplication of the Hopf
algebras underlying G* and W[F] after reducing modulo p. O
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Remark 2.4.11. Fixn > 1. Let Pi@ denote the full subcategory of P} spanned by the objects Spec M — G,
whose underlying graded algebra M satisfies M; = 0 for ¢ > n. Then Pim is preserved under Cartier duality.

When R is a char. p base ring and n = p¥, then the final object of Pi@ is given by ayr — G, where oy

is the G,-module underlying Spec R[z]/2?" . Its Cartier dual is given by Wj[F], where W}, is the kernel of
Frobenius on the k-truncated p-typical Witt ring scheme. The Hopf structure on the ring of functions on
W}[F] is obtained by considering the subalgebra of elements in degree < p* in the Hopf algebra underlying
W([F]. By duality, Wi[F] — G, is the initial object of P}!_ . We note that W} [F] is also a G,-module and
thus Wi [F] has the structure of a pointed G,-module. Expll(:ltly, the graded R-algebra underlying Wy [F]

(considered as a graded group scheme over R) is given by W where deg x; = p'.
0¥l Y e—1

Example 2.4.12 (Duality in P!). We consider the graded algebra (,fﬁxil”p] where degzg = 1 and

) s s Ty

Fp [tO 7t1 ;~<~7tn]

k
F,[x T x .
M Let us write —2yoptornl
(t5,t15-tn)

degx; = pF*t? for i > 1. This has a graded subalgebra given by T
0 3 LY 5T

to denote the graded Hopf algebra underlying W, 1[F], where deg t; = p' for i > 0. Thus, the algebra

k
W can be naturally equipped with the Hopf structure coming via the isomorphism with W
x 75517 yTm, 09t1s--5ln
k
that sends tg — zf and t; — x; for i > 1. This equips the graded algebra %71}):}01)] with a graded
b xh,.Lxh

Hopf structure which is uniquely obtained by sending zg — 2o ® 1 + 1 ® ¢ and requiring that the graded

k
subalgebra M equipped with the aforementioned Hopf structure is a Hopf subalgebra. There is
Tq 3Ly 5Ty
also a map Spec %
(908 s LY 5 751771)

makes the former an object of PL.

— G, corresponding to the element zg of degree 1 (see Remark 2.4.5) which

We also consider the graded algebra %’;ﬂl), where degy;, = p’. By quotienting with y? we

Yoo- )yk 1Yk
P[yO»yl -]

obtain the graded algebra T which has a Hopf structure coming from W1 [F]. This induces a
DIE—-19k
graded Hopf structure on M which is uniquely obtained by sending v} — y; ® 1+ 1® y;, and
Yo s+ ayk 1,yk
requiring that the quotient map Fplyo.un,. 7'%1]‘;_']—1 — Eplvowi bl o o map of graded Hopf algebras, when the
(e ) (Y8, yp 1Y%

Fy[Y0,91,--5Yx]
P ’n+1 4) Ga

quotient is equipped with the aforementioned Hopf structure. There is also a map Spec o )
Yor-Yr_1 7yk

corresponding to the element 7o of degree 1 which makes this an object of P}.

The above two objects of P! are Cartier dual of each other. Indeed, by killing the ideal of elements in

k+1
degrees > pF*1! in W, we obtain the sub Hopf algebra Fp[zo]/z . This implies that killing
xb sk

*
in the Cartier dual M
(@5

6 whah)

k+1

the ideal of elements in degrees > p we get an isomorphism with the

graded Hopf algebra ( e ) Under this isomorphism, vy, is identified with the basis element in degree
SYk—1:Yk

p* of W ) Inspectlng the comultiplication in W, we conclude that the powers of the
(zf oy ,h) (zf b ,ah)

Fplzo,1,...,@n] *

basis element in degree p* of ( = gives a basis element in degrees i for p* < i < pF+7+1 This
xXr

p P
0 3L 5T

shows that the two objects of P} mentioned above are indeed dual to each other.

2.5 Deformations of some G, and GP*!-modules

In this section, we study deformations of some pointed G, (resp. GPf)-modules. All deformations are
required to be flat over the base. While studying deformations, we would like to make use of certain universal
properties. In order to formulate these universal properties, we will need to restrict our attention to a suitable
full subcategory of G,~Mod, (resp. GE*f-Mod,).

Definition 2.5.1. A pointed G,-module X is said to be pure of rank 1 if the graded Hopf algebra T'(X, Ox)
is free of finite type and the map X — G, induces an isomorphism in degree 1 at the level of graded algebras
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of global sections. The full subcategory of such objects inside the category G,—Mod, will be called the
category of pure rank-1 pointed G,-modules.

Remark 2.5.2. Since (by using Proposition 2.1.17) the category of pure rank-1 pointed G,-modules is a full
subcategory of P, it follows that G is the initial object in the category of pure rank-1 pointed G,-modules.

Therefore G admits no nontrivial endomorphisms other than the identity (over an arbitrary base ring). Over
a Zy-algebra, W[F] is isomorphic to G} and thus inherits the same universal property.

Proposition 2.5.3. Let A be a Zy,-algebra. Then W[F] has no nontrivial endomorphism as a pointed
G, -module over A.

Proof. This follows from Proposition 2.4.10 and Remark 2.5.2. O

Proposition 2.5.4. Let (A,m) be an Artinian local ring with residue field k which has char.p > 0. Then
any deformation of the pointed Go-module W[F] over A is uniquely isomorphic to W[F) 4.

Proof. Let X be any deformation of W[F]j to A; in particular, X is flat over Spec A. Then X is necessarily
a pure rank-1 pointed G,-module. Since W[F] 4 is the initial object in the category of pure rank-1 pointed
Gg-modules, there is a unique map W[F]4 — X of pointed G,-modules. This map is an isomorphism after
going modulo m, and therefore is an isomorphism. The uniqueness follows from Proposition 2.5.3. O

Proposition 2.5.5. Let A be an F,-algebra. Then the pointed G,-module W,,[F| defined over A has no
nontrivial endomorphisms.

Proof. Follows from Remark 2.4.11. O

Proposition 2.5.6. Let (A, m) be an Artinian local ring over F,, with residue field k. Then any deformation
of the pointed G,-module W, [Fi is uniquely isomorphic to W, [F)] 4.

Proof. Follows from Remark 2.4.11. O

Definition 2.5.7 (Pure of fractional rank 1). Let A be a base ring of char. p > 0. A pointed GE**f-module
X over A is said to be pure of fractional rank 1 if it is isomorphic to u*Y for some pure rank-1 pointed
Gg-module Y. The full subcategory of such objects inside G2*-Mod, will be called the category of pure
fractional rank-1 pointed GP°*f-module. This category is also the essential image of the functor u* restricted
to the category of pure rank-1 pointed G,-modules.

perf
a

Proposition 2.5.8. The category of pure fractional rank-1 pointed G modules has a final object given by

GPet. This category also has an initial object which is given by uw*W[F].

Proof. This follows from the definition of pure fractional rank-1 modules by using Remark 2.5.2 and the fact
that u* is fully faithful (Proposition 2.2.17). O

Proposition 2.5.9. Let A be an Fy-algebra. Then vw*W[F| has no nontrivial endomorphism as a pointed
Gretomodule over A.

Proof. This follows from Proposition 2.5.8. O

Our next Proposition will deal with deformations of «*W[F]. We point out that using Proposition 2.5.4 and
Proposition 5.2.6 one can directly prove Proposition 2.5.11 below. However, since the proof of Proposition 5.2.6
uses the language of stacks, we prefer to record an elementary argument in the case of u*W/[F]. Before we
begin, we record a lemma.

Lemma 2.5.10. Let S = @ieN[l/p} S; be a perfect, graded F,-algebra. For a fivred n € N[1/p], we consider

the ideal I := @,~,, S;. Then there is a unique deformation up to unique isomorphism of S/I over Fle]/[€?]
which is compatible with the grading.
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Proof. This could also be proven by a graded version of the cotangent complex but we prefer to give a
direct proof. Let B = €, B; be a deformation of S/I compatible with the grading. Since (S/I); = 0 for
i > n, by going modulo e, it follows that B; = 0 for ¢ > n. Note that, since S is perfect, the natural map
S — S/I lifts uniquely to give a map f : S[e] :== S @ Fp[e]/e* — B. Further, since S is perfect, this map is
automatically graded. Indeed, for a homogeneous element s € S C S[e], s'/7 is also homogeneous and f (sl/ P)
is a homogeneous element if we go modulo e. By taking p-th powers, that implies that f(s) is a homogeneous
element. This shows that f is a graded map. Now the map S; — (S/I); is an isomorphism for ¢ < n and zero
for i > n. Since B; is flat over F[e]/€?, by going modulo € (see Lemma 4.0.13), it follows that f; : S[e]; — B;
is an isomorphism for ¢ < n, and is necessarily the zero map for ¢ > n since B; = 0 for ¢ > n. This shows that
the kernel of f is I[e] :== @, ~,, S[e]x. Now f is surjective, since it is a surjection modulo e. This shows that
B ~ S/I[e], compatible with the grading. Uniqueness follows from grading and by taking p-power roots. [J

Proposition 2.5.11. The pointed GE™ -module u*W F| over F,, has no nontrivial deformation over Fy[e]/€>.

Proof. Since the Hopf algebra B underlying v*W[F] is not graded by nonnegative integers, the theory of
Cartier duality breaks down. Indeed, dimension of the piece of degree 1 in B ®p, B is infinite and thus does
not behave well under duality. A priori, we cannot directly apply any of our results above. Our proof will
use some lemmas which will ultimately break it down to steps where we are only dealing with finite type
Hopf algebras.

Lemma 2.5.12. For n > 0, the graded group scheme w*W, 11[F)] over F,, has no nontrivial deformation over
Fyle] :=Fple]/e* as a graded group scheme. Further, u*W,1[F] ®g, Fple] admits a unique endomorphism as
a pointed GP*™ -module.

Proof. We will break down the proof in a few steps.

1/p™°
x; VT y.ens T

Step 1. We write the graded algebra underlying uw*W,,1[F] as C = Byl

1/p°
Fpleg™ w1l ot O be the graded Hopf algebra

x

, where deg z; = p*. This

admits a map of graded Hopf algebras F, [:1:(1)/ P Oo] — :
underlying the deformation of w*W,,11[F]. Let C' := @ieN[l /o] C! as a graded algebra. By killing the ideal
of elements of degree > p, we obtain a ring C,, which is a deformation of the graded algebra [, [x(l)/ P oo} Jxh

which has to be uniquely isomorphic to the trivial deformation by Lemma 2.5.10. Thus, by taking grading
into account, we see that C’ has to be of the form

1/p>®
Fp[e] [Xo/p .
(Xg—cleXth—chXg,...,Xﬁ)’

where X is a lift of z; of degree p’ and ¢; € F,. The comultiplication sends Xé/pm — Xé/pm ®1+1® Xé/pm
in C' ® C’. This shows that there is map of graded Hopf algebras F|[e] [Xé/ P Oo} — C” which is a deformation

of the map F, [.T(l)/ P oo] — C. Thus for k large enough, the graded Hopf algebra map

k
Folel[Xo/” ..., X,

k
F,[e][X/P] — O :=
plel[Xo™" | = Gy (XE — c1eX1, XV — coeXo, ..., X})

In]

is firstly a deformation of the graded Hopf algebra map F, [x(l)/ P k] — C = M, and secondly the

I~

map of graded Hopf algebras F,[e][X,/?" ] — C’ is obtained by pulling back the map F,[¢][X/” k] — C}, along

Fp[e][Xé/pk} — Fp[e][Xé/pw]. Thus, to prove Lemma 2.5.12, it is enough to prove that F|[e] [Xé/pk] — C}, is

k
isomorphic to the trivial deformation of F, [a:(l)/ P"] — Cy. For the latter claim, by a shifting of degree, it is

enough to prove that the pointed G,-module Spec %711”‘]

— G, has no nontrivial deformations over
Ty 7w11)7~~~)93§1.)

F,le]. Here degzo = 1 and degx; = p**? for i > 1.
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Step 2. In order to prove that the pointed G,-module Spec Wilpm

Zo 75317-"71%)
over IF, [¢], it is equivalent to prove the same for its Cartier dual, which by Example 2.4.12 is given by

— G, has no nontrivial deformations

Fp[%,il?l, s axk]
n+1)

Spec — G,

P p P
(205 - Xh_q, 2,

We let D denote the Hopf algebra f"[x‘f—lﬂﬂl) Then D/z} is isomorphic to I'(Wj41[F], O) as a graded
TG seey Tl _q 5T,

Hopf algebra. Let D’ be a deformation of D. Then D’ as a graded algebra is of the form

FP[E][X(LXlu o 7Xk]
(X8 — c1eXy, ... ,X,fil - ckeXk,X,f

n+1)

where deg X; = p* and X; € D’ is chosen to be a lift of 2; € D. Now D'/X} is a deformation of the graded
Hopf algebra underlying W1 [F], but the latter has no nontrivial deformations by Proposition 2.5.6. Thus we
obtain an isomorphism (D/x%)[e] = Wj41[F][e] — D'/ X}, of graded Hopf algebras (which is also compatible
with the pointed G,-module structure). This lifts uniquely to a map of graded algebras D[e] — D’ as such a
map is uniquely determined by the image of z, ...,z and they have a unique homogeneous lift. One also
needs to check that xf is sent to zero for 0 < 7 < k — 1 and xzwl is sent to zero which also follows from
grading arguments. This map by construction is an isomorphism on the level of graded algebras and it would
be enough to check that it is a Hopf algebra map, i.e., we need to prove that the maps D[e] - D’ — D' ® D’
and Dle] = D[e] ® D[e] = D’ ® D’ agree. For that, we only need to check that the images of xy, ...,z agree.
It is known that they agree modulo the ideal (X} ® 1,1 ® X} ) and thus by grading they are actually the
same. The map we constructed is also compatible with the pointed G,-module structure.

The statement about endomorphisms as pointed GE°*-module follows since W,, | 1[F][e] has no nontrivial
endomorphism as pointed G,-module by Proposition 2.5.5. O

Lemma 2.5.13. The graded algebra underlying any deformation of w*W|F|] as a graded group scheme is
isomorphic to

Foleley/” a1, ]

P
€Ty

1/p°° .
Proof. We write the graded algebra underlying u*W|[F] as B = w, where deg x; = p*. Similar to
the proof of Lemma 2.5.12, it follows that the graded algebra underlying global sections of a deformation of
w*W[F] is isomorphic to
1/
Fple[Xo/"", X1,.. ]

B =
(Xg — CleXl,le — CQGXQ, .. .)7

where X; is taken to be a lift of x; of degree p' and ¢; € F,,. Our goal is to prove that ¢; = 0 for all i. Killing
the ideal of elements of degree > p™*!, we obtain the graded algebra

FP[E][Xé/pm7X17 s 7X7l]
(Xg — 01€X17. .. ,Xﬁ)

/
B<pn+1 =

Further, this has a Hopf structure: this follows from the observation that the comultiplication in B’ sends
XP— XP®1+1® XE. Now Spec BL ;. as a graded group scheme is a deformation of u*W,41[F], and
thus by Lemma 2.5.12 must be uniquely isomorphic to the trivial deformation, which implies ¢; = 0 for
0 < i< n+4 1. Since n was arbitrary, we are done. O

Now we note that the algebra B underlying w*W|[F| has the property that for every n > 1, the elements
of degree < p™ form a subalgebra denoted as 7., B which is the graded Hopf algebra underlying u*W,[F].
By Lemma 2.5.13, it follows that elements of degree < p™ in B’ also form a subalgebra 7., B’ which has the
structure of a graded Hopf algebra. Moreover, we observe that 7., B’ is a deformation of 7., B and thus by
Lemma 2.5.12; there is a unique isomorphism of graded Hopf algebras 7., Ble] = 7<, B’ that sends zy — Xj.
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By taking colimit over n, we have constructed an isomorphism Ble] — B’ of graded Hopf algebras. Finally,
we recall that, as noted in Remark 2.2.8, the grading determines the GP**f-module structure. This proves the
proposition. [

Remark 2.5.14. We point out that the statements of Lemma 2.5.10, Proposition 2.5.11 and their proofs
remain valid with I, replaced by any perfect field of characteristic p > 0.

Remark 2.5.15. One can also approach Proposition 2.5.11 by first showing that any deformation of u*W[F]
must be a pullback of a deformation of W[F/|. This is essentially carried out in a purely formal way in
Section 5.2 by using the connection with de Rham cohomology. In Proposition 5.2.6, we prove a generalization
by using similar ideas.
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3 Construction of functors using G, and GP*'-modules

In this section, our ultimate goal is to create functors from QRSP — Alg, via an “unwinding” process using
the data of a pointed GP**f-module (cf. Section 3.4). This construction will be done using a closely related
variant: using the data of a pointed GP®*f-module, we can “unwind” it to construct a functor I — Alg,,
where Z1 denotes the category with objects (B, I) where B is a perfect ring and I is an ideal. This is
carried out in Section 3.3. Further, this construction for &1 has a closely related variant for the category €4
consisting of objects (B, I) where B is an A-algebra and I is an ideal of B. Given a pointed G,-module, we
can unwind it to create a functor €4 — Alg 4. We will study this construction first in Section 3.2. Below we
note an example which aims to explain an analogue of the unwinding construction in a simpler case.

Example 3.0.1. Let C be a category with all colimits. Let ¢ € C°P be a commutative [Fp-algebra object in
the category C°P. Therefore, the functor Home/(c, -) is naturally valued in commutative F,-algebras, when c is
viewed as an object of C. Let Poly]Fp denote the category of not necessarily finitely generated polynomial
F,-algebras. We will construct a functor Un, : Poly]Fp — C which we may call the unwinding of ¢. For
B € Polyy , we define Un.(B) € C such that we have a natural functorial bijection Home(Un.(B),d) ~
Homayg, (B,Home(c,d)) for d € C. This maybe computed functorially as a colimit by using the natural
P

diagram I, [F,[B]|SF,[B] in Algg  whose coequalizer is B (this coequalizer diagram depends functorially on
the ring B and is an instance of the general “bar construction” in the context of monads). More precisely,
the above coequalizer diagram induces a diagram

1 =1l
Fp[B] B

in C whose coequalizer is Un.(B); here the coproducts of ¢ are taken over the sets underlying the rings B and
F,[B]. Note that by construction, we have Un.(Fy[z]) ~ c. Also, by construction, Un, : Polyp — C preserves
coproducts. This whole discussion carries over even if IF,, is replaced by an arbitrary commutative ring.

This construction shows that given an object of the category C with appropriate extra structure, one can
unwind it to create a functor from Polyg — C. In this section, our goal is to develop a similar formalism for
the categories €4, Z1 and QRSP which would be useful to us in Section 4 and Section 5.

3.1 Tensoring a module with a module scheme

In this section we record a construction which “tensors” a module with a module scheme and gives an
algebra as an output. In a category C with all coproducts, one can make sense of tensoring an object
c € C with a set S, denoted as ¢ ® S, which has the property that we have a natural isomorphism
Home(c ® S, d) ~ Homges (S, Home(c, d)) for d € C. In this case, ¢ ® S is the coproduct [[4 c. Below, we
carry out an analogue of this construction.

Construction 3.1.1. Let X = Spec B be an R-module scheme over A (Definition 2.1.1). In this situation,
we have a functor from Alg, — Modg which sends an A algebra S to X (S5) := Homa(Spec S, X). This
functor is limit preserving and by the adjoint functor theorem, it has a left adjoint which will be denoted by
Ix(.) : Modg — Alg4. In other words, we have the following natural isomorphism

Homag , (Ix (M), S) ~ Homnioa, (M, X (S5)).

Remark 3.1.2. Note that for an m € M, we have a natural map Hompoq, (M, X (S)) — X (S) obtained
by evaluation at m € M. This induces a map denoted as ev,, : I'(X,Ox) — Jx (M) that will be useful in
Construction 3.5.1.

Remark 3.1.3. Let us also describe an explicit way to construct the algebra Jx (M) for an R-module M.
Considering M as a set, first we take the coproduct of the algebra B = I'(X, Ox) indexed over M. We will
write this as [],, B. By the universal property of the coproduct, for each m € M, we have a map which we
will write as m : B — [[,, B. We also have a map B — B ®4 B which is the comultiplication map and a
map r : B — B coming from the R-module action of Spec B for » € R. Then Jx (M) is the coequalizer of
the following diagram indexed by (R x M) [[(M x M).
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rm HM B m+n B

[P

B B®a B

Proposition 3.1.4. In the above set up, we have

1. colimTx (M;) ~ Tx (colim M;).
2. Ix(M)®4 Ix(N) ~ TIx(M @ N).
3. If M is a free R-module of rank 1, then Ix (M) ~T'(X,0x).

Proof. Follows from the construction of Jx (M). O

Example 3.1.5. When X is the zero group scheme Spec A over A, thought of as an R-module scheme over
A and M is any R-module, we have Jx (M) ~ A as an A-algebra.

Example 3.1.6. In the case where X = G, = Spec A[z] viewed as an A-module scheme over A, given
any A-module M, we have I, (M) ~ Sym 4 (M) as an A-algebra. This follows from the universal property
discussed in Construction 3.1.1 above.

Example 3.1.7. We mention an example that will be particularly important to us. Let G, be the Cartier dual
of G, viewed as an A-module scheme over A. For an A-module Jg: (M) ~ T'4(M). This essentially follows
from [BO78, Appendix 2] by observing that for an A algebra R, there is a natural isomorphism of A-modules
G} (R) ~ exp(R) where exp(R) denote the elements f(z) € 1 + xR[x] satisfying f(x + y) = f(z)f(y) which
forms an abelian group by multiplication of power series which further has an R-module structure given by
r- f(x):= f(rz) (¢f. Example 2.4.9).

Remark 3.1.8. We point out that for a fixed R-module M, the association X — Jx (M) is a contravariant
functor. Further, in the set up of Construction 3.1.1, it follows that Spec Jx (M) can be naturally equipped
with the structure of a R-module scheme over A for any fixed X.

Remark 3.1.9. If X is a G,-module over A and M is any A-module, then Spec Tx (M) is naturally equipped
with the structure of a G,-module over A. Further, for any m € M, the map X — Spec Ix (M) induced
by ev,, from Remark 3.1.2 is a map of G,-modules. Both of these statements follow from the functorial
descriptions provided in Construction 3.1.1. Therefore, the map ev,, : I'(X,0x) — Zx (M) is a map of
graded Hopf algebras. From Remark 3.1.3, it follows that the elements in the images of the maps ev,, for all
m € M generate Ix (M) as an A-algebra.

3.2 Unwinding pointed G,-modules

Notation 3.2.1. We fix an arbitrary base ring A as before. Let €4 denote the category of pairs (B, I) where
B is an A-algebra and [ is an ideal of B. Morphisms in €4 between (B,I) — (B’,I') are defined as A-algebra
maps B — B’ that maps I inside I’.

Construction 3.2.2 (Unwinding). Let G,~Mod, denote the category of pointed G,-modules over A. We
will construct a (contravariant) functor

Un : G,~Mod, — Fun(€y4, Alg,).

We will say that Un(X) is the functor obtained by unwinding the pointed G,-module X. To describe the
construction, we fix an X € G,~Mod,. Given (B,I) € €4, we obtain a diagram Xp — G, p of B-module
schemes by base changing to B. Now the ideal I can be regarded as a B-module and thus by applying
Construction 3.1.1, we obtain a map g, ,(I) = Jx,(I). By Example 3.1.6 we get a map of B-algebras
Sympg(I) = Jx,(I). Since I is an ideal of B, there are natural maps Sympg(I) — B — Symg(I) = Ix,(I).
Thus by composing we get another map Sympg(I) — Jx,(I). We denote the coequalizer of these two maps

Symp(l) = Tx,(I)
by Envx (B, I). This is naturally a B-algebra. Now we define Un(X)(B,I) := Envx (B, I).
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Remark 3.2.3 (Unwinding via universal property). It will be very useful for us to have a description of the
universal property of Envy (B, I) as a B-algebra. For a B-algebra S, we note that G4 (S) = S is naturally
a B-module. In fact, there is a map B — S of B-modules giving a natural map I C B — S. This gives
an element * € Homp_noa(Z, S). Therefore, we obtain two maps Homp_noa(, X(S)) 2 Homp_wmod (L, S).
Here one of the maps (of sets) sends everything to * and the other one is the map induced by the data of the
point X — G,. We note that by Construction 3.2.2, we have

Homp_aig(Envx (B, I),S) ~ Eq(Homp_mod (£, X(5)) = Homp_wmod(I, 5)).

Remark 3.2.4. We note that there is a natural functor & : €4 — Alg, given by &(B,I) = B. From
Remark 3.2.3, we see that there is a natural isomorphism & ~ Un(G,). Let Fun(€4, Alg,)e, denote the
category of functors F': €4 — Alg, equipped with a natural transformation & — F. The morphisms are
required to be compatible with this data. It follows that in Construction 3.2.2, we actually produced a
(contravariant) functor

Un : G,Mod, — Fun(€4,Algy)s,-

Example 3.2.5. The functor €4 — Alg, given by sending (B,I) — B/I is the unwinding of the pointed
G4-module corresponding to the zero section Spec A — G, .

Example 3.2.6 (Divided power envelope via unwinding). We let the base ring A be F,, for simplicity. The
functor Un(Gy) : €r, — Algy  takes a pair (B,I) to the divided power envelope Dp(I). In order to see this,
we compute Envg- (B, I) following Construction 3.2.2. This is computed as the coequalizer of two maps

Symp () = ngB(I)'

We note that by Example 3.1.7, 7 _ () ~ T'g(I). Thus the claim Envg: (B, ) ~ Dg(I) follows from [BOTS,
Thm. 3.19] which says that Dg(I) = I'p(I)/J where J is the ideal generated by ¢(z) — x for all = € I and
@ : I — T'1(I) is the natural map. Since G}, ~ W[F] over F,,, we also have Envyy (B, ) ~ Dp(I).

Remark 3.2.7. Let X € G,—Mod, and let B be an A-algebra and f be a non-zero divisor in B. Then we can
explicitly describe Envx (B, f). We note that the ideal I generated by f in this case is free of rank 1 and thus
there is an isomorphism Jx,(I) ~T(Xp,Ox,) ~T'(X,0x) ®4 B by Proposition 3.1.4. Now Envx (B, f) is
the quotient % where t is the image of z under the map A[z] — I'(X, Ox) corresponding to the

data of the point i.e., the map X — G,.

Remark 3.2.8. For any X € G,~Mod.,, it follows that Un(X)(B,0) = Envx(B,0) ~ B. This follows since
Ix,(0) ~ B and therefore Envx (B,0) is a coequalizer of two B-algebra maps B=B that coincide. Thus the
natural map & — Un(X) induces isomorphism restricted to the full subcategory spanned by objects of the
form (B,0).

Proposition 3.2.9. Let X € G,~Mod,. Then Envx(Blz],z) ~T(X,0x) ®4 B as a B-algebra. The map
Envx (B[z],0) — Env(B[z], z) identifies with the map Blz] — I'(Xp, Ox,) coming from the data of the point
X — G,.

Proof. Using Remark 3.2.7, we have Envx(B[z],z) ~ % as Blz]-algebras from which the

proposition follows. O

Given that there is a way to unwind the data of a pointed G,-module X and obtain a functor Un(X) :
€4 — Algy,, it is natural to ask if this is reversible, i.e., if there is a functor 7 from Fun(€a, Alg,)es, to
Go—Mod, such that applying r to Un(X) recovers the pointed G,-module X. There are multiple problems in
achieving this as discussed below.

Firstly, defining the functor r is not possible unless we impose some conditions on the functor F' €
Fun(€4,Alg,)es,. Indeed, for every A-algebra B, we can look at the B-algebra F(B[z],z). This has a
B-action, however F(B[z],z) might not be a Hopf algebra. The functor F needs to preserve some pushout
diagrams for that to happen; this is taken into account in Definition 3.2.15. Under these special assumptions
on F' it is indeed possible to define a functor r as desired. The functor r is defined below in Proposition 3.2.17.

However, we note that not every pointed G,-module can appear as image under the functor r of an
F € Fun(€4, Alg4). Indeed, we have the following commutative diagram in € 4.
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(Alz], 7) @ (Alz],7) +——— (Afz], ) ® (A[2],0)
T }Hx@x (3.2.1)
(Alz],0) ® (Alz], ») (Alz], z)

TR T

Applying F' to the above diagram would impose extra conditions on the pointed G,-module obtained from F
which need not be satisfied by every pointed G,-module. Thus it is impossible to recover X by using the
functor 7 from Un(X) unless it satisfies some special conditions to begin with. To account for this, we are
naturally led to the notion of a “quasi-ideal” in G, due to Drinfeld [Dri21, Section 3.1].

Definition 3.2.10 (Drinfeld). A pointed G,-module X with the data of the point denoted as d : X — G,
will be called a quasi-ideal in G, if the following diagram commutes.

X x X 4 x G,

ldx id J{action

Ga % X action X

By writing X = Spec B for a graded Hopf algebra B and ¢ € B for the fixed choice of the element in degree 1
corresponding to the data of the point, we note that X is a quasi-ideal if and only if b @ td°eb = ¢degb @ p in
B ® B for every homogeneous b € B. We let QID—G, denote the full subcategory of quasi-ideals in G, inside
G4—Mod,.

Remark 3.2.11. Using the inclusion QID-G, — G,—Mod, of categories and Construction 3.2.2 we obtain a
(contravariant) functor still denoted us Un : QID-G, — Fun(€4, Alg,)es,. We will later see that this functor
is fully faithful.

Proposition 3.2.12. Let B be an A-algebra. Let (f;)je # be a collection of non-zero divisors in B and let I
be the ideal generated by them. Let F' be the free module over B spanned by x; for j € #. We assume that
the B-module map F' — I that sends x; — f; has kernel generated by (fix; — fix;) fori,j € #. Let X be a
quasi-deal in G,. Then the natural map

1 Envx (B, f;) = Envx (B, 1)
jes
s an isomorphism. Here the coproduct is taken in the category of B-algebras.

Proof. By Remark 3.2.3, Envx (B, I) corepresents the functor H; that sends
S+ Eq(Hompg (I, X(S)) —= Homp(1,S5)),

where one of the maps come from composing with X (S) — S and the other one maps everything to the element
in Homp (I, S) corresponding to I C B — S. Given such an element in the equalizer, by precomposing
with the surjection F' — I, we obtain a natural transformation from H; to the functor Hy that sends
S — Eq(Homp(F, X (S)) = Hompg(F, S)), where, as before, one of the maps come from X (S) — S and the
other one from sending everything to the B-linear map F' — I C B — S. Since F' — [ is a surjection, it
follows that the map H;(S) — Hz(S) is injective. Below we check that this map is also surjective.

To show surjectivity, we need to show that any map u : F — X(S) which fits into the commutative
diagram

— X(9)

%

~<—

—
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factors through F' — I. Let u; := u(x;) € X(S). The map X — G, induces a map on S-valued points that we
denote as d : X(S) — S. Since X is a quasi-ideal in G, it follows that du;-u; = du; -u;. By the commutativity
of the diagram this implies f; - w; = f; - u; in X(S) or equivalently u(f;z; — fiz;) =0, i.e., the map indeed
factors through I. Now the proposition follows by using Remark 3.2.7 and noting that Hjej Envx (B, f;)
corepresents the functor Hs. O

Proposition 3.2.13. Let B be an A-algebra. Let S be any set. Let (B[S],(S)) denote the coproduct of
(B[z],z) over S. Let X be a quasi-ideal in G,. Then the natural map

HEan(B[l‘],{E) — Envx (BI[S], (9))
s

is an isomorphism of B-algebras. Here the coproduct is taken in the category of B-algebras. In particular, we

obtain an isomorphism ([[¢ I'(X, Ox)) ®a B =~ Envx (B[S],S) of B-algebras.

Proof. This follows from Proposition 3.2.12 and Proposition 3.2.9. Indeed, let us consider the polynomial
algebra B[S] on the set S. An element s € S can be thought of as an indeterminate s € B[S]; the ideal (5) is
the ideal generated by these indeterminates. Due to the fact that in the polynomial ring Blt,...,t.], the
elements t1,...,t, are non-zero divisors and form a (Koszul) regular sequence [Sta22, Tag 062D], one can
apply Proposition 3.2.12 in this situation to calculate Envx (B[S], (S)); this gives us an isomorphism

H Envx(B[S], s) ~ Envx (BI[S], (9)).

Here the coproduct is being taken in the category of B[S]-algebras. For an element s € S, let (S'\ s) C S
denote the complement of s. Then B[S] ~ B[(S\ s)] ®p B[s], where Bs| is the polynomial ring in the single
indeterminate s. Therefore, Envx (B[S],s) ~ Envx (B[(S\ s)] ®p B[s], (1® s)) ~ T'(Xg,0) ®p B[(S\ 5)], as
BJ[(S\ s)]-algebra. Here, the last isomorphism follows from Proposition 3.2.9. Note that since X is a quasi-ideal
in G4, we have a map X — G, which gives an element t € T'(Xp, Ox) by passing to the map induced on the
ring of global sections. Further, by Proposition 3.2.9, the B[S] ~ B[(S\ s)] ® g B[s]-algebra structure on
I'(Xp,0)®pB[(S\s)] is induced by the map of B[(S\ s)]-algebras B[(S\s)|®p B[s] = I'(Xp,0)5 B[(S\s)]
that sends s — t ® 1. Therefore,

[] Evvx(B[S),s) ~ [[ T(X5,0) @5 B[(S\ 5)]

ses seS

in the category of B[S]-algebras. However, one observes that the right hand side is isomorphic to [ [, 4 I'(X g, O),
where the coproduct is taken in the category of B-algebras; the B[S]-algebra structure is given by the map
B[S] = [I,csT'(XB,O) which is obtained by taking coproduct of the map B[z] — I'(Xp, O) that sends
x — t over the set S in the category of B-algebras. By Proposition 3.2.9, we have [[._ o Envx (B[z],z) ~
[,csT(XB,0), which finishes the proof. O

seS

Remark 3.2.14. The natural maps appearing in Proposition 3.2.12 or Proposition 3.2.13 exist for any
pointed G,-module X. The fact that these maps are isomorphisms (in either of the propositions) implies that
X satisfies the property of being a quasi-ideal in G,. This follows from Definition 3.2.10 and functoriality of
Un(X) applied to the diagram in (3.2.1). We thank the referee for pointing this out.

Definition 3.2.15. Let F € Fun(€4,Alg,)s, (Remark 3.2.4) be a functor which satisfies the following
conditions.

1. The natural map ®&(B,0) — F(B,0) is an isomorphism for every A-algebra B.
2. The natural map F((B[z],z)) ® g F((B[z],z)) — F(B[z] ®p Blz],(x ® 1,1 ® z)) is an isomorphism.
3. The natural map F(A[z],z) ®4 B — F(B][z], z) is an isomorphism.

We denote the full subcategory of such functors inside Fun(€4, Alg4)s, as Fun(€y, AlgA)g/.
Remark 3.2.16. We note that the unwinding functor QID-G,°* — Fun(€4, Alg,)s, maps a quasi-ideal
inside the full subcategory Fun(€4, Alg )% /- Indeed, this follows from Proposition 3.2.9 and Proposition 3.2.13.
Therefore, the unwinding functor factors to give a functor still denoted as Un : QID-G,°® — Fun(€4, Alg 4)% /-
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Proposition 3.2.17. Let F € Fun(@A,AlgA)g/. For every A-algebra B, Spec F(B[z],x) naturally has the
structure of a B-module scheme. Thus we obtain a (contravariant) functor r : Fun(QA,AlgA)g/ — QID-G,.

Proof. We note that (B[z],x) is a cogroup object of €4, , . Therefore, it follows from definitions that
Spec F(BJz],x) is a group scheme. The B-action on Spec F(B[z],z) is given by functoriality along the
arrows (B[z],z) — (B|z],x) given by x — bx for b € B. Therefore, Spec F(B[xz], z) is indeed naturally a
B-module scheme over B. Remark 2.1.19 implies that varying this data over all A-algebras B provides us
with a Gg-module. Further, functoriality along the arrows (B[z],0) — (B[z], z) equips this G,-module with
the structure of a pointed G,-module. To see that it is a quasi-ideal in G,, we use functoriality along the
commutative diagram in (3.2.1). O

Proposition 3.2.18. The functor r : Fun(QA,AlgA)%/ — QID-G,°® has a left adjoint given by Un from
Remark 3.2.16.

Proof. Let F' € Fun(€4, AlgA)g/ and X € QID-G,°P. We prove that there is a natural bijection
Hom(Un(X), F) ~ Hom(X,rF).

Applying r and noting that rUn(X) ~ X by Proposition 3.2.9 and Proposition 3.2.13 provides a map from
the left hand side to the right hand side which will be called s. We will construct a map the other way. We
will first construct a map Un(rF) — F. To do so, we note that there is an isomorphism

¢ : Hom(p ) ((B,1),") ~ Eq (Homp-noa (I, Homp o) ((Blz], z),)) = Homp.moa (I, Hom g o) ((B[z],0),-)))

in Psh(QZp(B 0)/). Here on the right hand side, one of the maps is induced by the map (B[x],0) — (B[z],z) in

€4 and the other map is obtained by sending everything to the element in Homp_noq (£, Hom(p o) ((B[z], 0), -))
corresponding to the map induced by the inclusion I C B and the fact that Hom (g o)((B[z],0), -) is naturally
valued in B-algebras.

We note that F induces a map F°P : Psh(CoAp(B O)/) — Psh(Alg}). Applying F°P to the above isomorphism
¢ and noting that F°°Hompg g)((B,I),-) ~ Homp(F(B,I),-) we obtain a diagram

Homp(F(B,I), ) — (FOpHomB_MOd(I,Hom(Bp)((B[x],x),~)) = FOpHomB_MOd(I,Hom(Bp)((B[x],0)7~)))
in Psh(Alg?).
Lemma 3.2.19. The following diagram in Psh(Algy) commutes.

FPHomp_mod (I, Homp o) ((Bz], z),-)) ————= F°®Homp_wmod (I, Homp o) ((Blz],0),-))

l l

Hompg_moa (I, Homp(F(Bz], ), -)) ——= Homp_moa(I, Hompg(F(B[z],0),-))

Proof. This follows from universal property and assumption 2 in Definition 3.2.15 on F. We will show how to
construct a map F°PHomp_wmod (I, Homp o) ((B[z], z),-)) — Homp_noda (I, Homp (F(Bz], z),-)). We note
that I is the coequalizer of a diagram (F BxIIIIxI — plI ) of free B-modules where the first map sends the
basis elements z(, ;) — xp; and x(; ) — iyir and the second map sends z(y ;) — bz; and z(; 41y — T3 + @ir.
Therefore, Homp_mod (1, Hom(p o) (B[], x),-)) is the equalizer of the two maps

[[Homo(Blal.2)) =[]  Homese((Blal,x), ).
I BxI[]IxI

One of the maps corresponds to the map determined by z( ;) — @p; and (; ) — @it. The other map is
induced by combining the maps

HHOIH(BD)((B[JJ], .17), ) — Hom(B,O)((B[x]a I)? ) — Hom(B,O)((B[x]v :E), ')7
I
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where the first map is projection from é-th factor and the second map is obtained by using (B[], z) — (B[z], x)
that sends x — bz for b € B; and

HHom(B@)((B[x],x), -) = Homp o) ((B[z], ), -) x Homg o) ((Blz], x),-) = Homp ¢ ((B[z], ), )
Ji

where the first map is projection from (i,7’)-th factor and the last map uses the map (B[z],z) — (Blz],2) ®
(Blz],x) given by x —  ® 1 + 1 ® x. Now universal property of limits and assumption 2 in Definition 3.2.15
constructs the desired map

F°PHomp _mod (I, Hom g 0)((Blz], x),-)) = Homp_moa (!, Homp(F(B[z], z),-))
and the naturality guarantees the commutativity of the diagram in the Lemma. O

Thus we obtain a map
Homp(F(B,I),:) = Eq (Homp_mod (I, Homp (F(B[z],z), ) = Homp_noda (I, Homp(F(B[z],0),)))

in Psh(Alg?). Using Remark 3.2.3, we note that the right hand side is corepresented by Env, p(B,I). Thus
we obtain a natural map Env,r(B,I) — F(B,I). This provides the map Un(rF) — F that we wanted.
Now given a map X — rF in QID-G,°P, we obtain a map Un(X) — Un(rF) — F. This gives a map
from Hom(X,rF) to Hom(Un(X), F) which will be called ¢. By Proposition 3.2.9, it follows that st is
identity. In order to show that s is identity, it will be sufficient to show that if there are two natural
transformations U,V : Un(X) — F that are mapped to the same element by s then U and V are the same
natural transformation. Note that we always have a commutative diagram

Un(rUn(X)) —=—— Un(X)
| o]y
Un(rf) ———  F

Since the upper horizontal arrow is an isomorphism, the above diagram shows that U and V are the same
natural transformation as desired. O

Proposition 3.2.20. The functor
Un: QID-G,°? — Fun(€4, Alg4) e/,
1s fully faithful.
Proof. Follows from Proposition 3.2.18 since rUn(X) ~ X. O

3.3 Unwinding pointed GP*!-modules I

In this section, we will record an analogue of the construction from previous section for pointed G2*-modules.
In order to do that, some modifications are needed. As is the case with GE°-modules, we work with a fixed
prime p.

Notation 3.3.1. Let £ denote the category of pairs (B, ) where B is a perfect ring and [ is an ideal.
Morphisms are defined to be maps (B,I) — (B’,I') where B — B’ is a ring homomorphism such that I
is mapped inside I'. Let A be a fixed Artinian local ring with residue field F,. Let GE"*~Mod.. denote the
category of pointed GP°-modules over A.

Construction 3.3.2 (Unwinding). We will construct a (contravariant) functor
Un : GP*f Mod, — Fun(21I, Alg,).

We will say that Un(X) is the functor obtained by unwinding the pointed GP**f-module X. To describe the
construction, we fix an X € GP°-Mod,. Given (B, I) € ZI, we obtain a diagram Xp — chg of B-module
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schemes over W4 (B) by Proposition 2.2.11. Now the ideal I can be regarded as a B-module and thus by
applying Construction 3.1.1, we get a map Jperr () = Ix (I). Since I C B, by the universal property of
a,B

the construction in Construction 3.1.1, we obtain a map Jgpert (I) — Wa(B). By composition, we get a map
a,B

7

Grert (I) » Wa(B) — 9(;2?; (I) = Jx,(I). Therefore, we now have two maps

Tpers (1) = T (1),

We denote the coequalizer of the above diagram by Envx (B, I) which is naturally a W4 (B)-algebra. Now we
define Un(X)(B,I) := Envx (B, I).

Remark 3.3.3 (Unwinding via universal property). We describe the universal property of Envx (B, I) as a
W A(B)-algebra. For a W4 (B)-algebra S, we note that GE?};(S) = S’ is naturally a B-module. In fact, there
is a map B — S” of B-modules giving a natural map I — S°. This gives an element * € Homp(I,S?). By
Proposition 2.2.11, X can be regarded as a B-module scheme over W4 (B). Therefore, we obtain two maps
Homp (I, X(S)) — Homp(I, S”). Here one of the maps (of sets) sends everything to * and the other one is
the map induced by the data of the point X — GPf. We note that by Construction 3.3.2, we have

Homyy, () (Envx (B, 1), S) ~ Eq(Homp (I, X(S)) = Homp(I,S")).

Remark 3.3.4. We note that there is a natural functor & : ZI — Alg, given by (B,I) — W4(B).
From Remark 3.3.3, it follows that & ~ Un(GE®"). Let Fun(#1, Alg,)s, denote the category of functors
F: Z1 — Alg, equipped with a natural transformation & — F. The morphisms are required to be compatible
with this data. It follows that in Construction 3.3.2, we actually produced a (contravariant) functor

Un : GE Mod, — Fun(21,Alg,)s,-

Remark 3.3.5. For any pointed GP*"f-module X, we have the isomorphism Un(X)(B,0) ~ W (B). This
follows from the universal property of the unwinding construction. Thus the natural map & — Un(X) induces
isomorphism restricted to the full subcategory of &I spanned by objects of the form (B, 0) for a perfect ring
B.

Remark 3.3.6. We point out that unless A = F,,, sending (B, I) — B/I is in general not an object of
Fun(Z1,Alg4)e, that can be obtained via applying the unwinding functor. When we are working over
A =T, the functor (B, I) — B/I is naturally isomorphic to Un(a?), where o is the pointed GE**f-module
as described in Example 2.2.15. Further, in this case, the functor (B, I) — (B/I)pert := colimg, ,.» (B/I) is
the unwinding of the pointed G2**f-module corresponding to zero.

Remark 3.3.7. Let A — A’ be a map of Artinian local rings. Let (B,I) € &1. We note that Wa/(B) ~
Wa(B) ®4 A’. Further, if X is a pointed GE*™-module over A, then X’ := X Xgpec 4 Spec A’ is naturally a
pointed Ggerf—module over A’. From the universal property described in Remark 3.3.3, it follows that

EnVX/(B7I) ~ EnVX(B, I) Qw4 (B) WA/(B),
as a Wy (B)-algebra. This implies that Un(X')(B,I) ~ Un(X)(B,I) ®4 A’

Having discussed the unwinding functor for pointed G, and GP*f-modules, let us record a statement
regarding their compatibility. For simplicity, we work over the fixed base ring IF,,. In this case, one has the
functor u* : G,~Mod, — GP*f-Mod, from Proposition 2.2.17. We prove the following

Proposition 3.3.8. Let X be a pointed G,-module over Fy,. Let (B,I) € ZI. Then there is a natural
isomorphism
Envx(B,I) ~ Env,x(B,I).

Proof. This follows by using the universal properties of Envx (B, I) and Env,«x (B, I) as a B-algebra from
Remark 3.2.3 and Remark 3.3.3 and the following pullback diagram of B-modules for a given B-algebra S
from Proposition 2.2.17.
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O

Example 3.3.9. In Remark 3.3.6 we stated that Un(a?) is the functor that sends (B, I) € £I to B/I. This
also follows from Example 3.2.5 and Proposition 3.3.8.

Example 3.3.10. We note that Un(u*W/[F)]) is the functor that sends (B, I) € £ to Dp(I). This follows
from Example 3.2.6.

Proposition 3.3.11. Let X € GP*'f Mod.,. Let B be a perfect ring. Then Envx (B[z'/?7),z) ~T(X,O0x)®4
Wa(B) as a Wa(B)-algebra. The map Envy (B[z'/?7],0) — Envx (B[z'/?7],2) identifies with the map
Wa(B)[z'/P7] = T(X, Ox) ®a Wa(B) corresponding to the data of the point X — GP'f,

Proof. We compute using Construction 3.3.2. Since z is a non-zero divisor in B [:1:1/ px], the ideal it generates
is free of rank 1. Therefore, by using Proposition 3.1.4, we see that Envx (B[z!/?” ], z) is computed as a
coequalizer of the following diagram

Wa(Bls'/*" )y /"™] =3 T(X, Ox) @4 Wa(Blz'/"]).

Here one of the map corresponds to the map Wa(B)[z'/P” |[y*/?™] — Wa(B)[z'/P”] that sends y'/?" — z1/P"
for all n and is a W4 (B)[z'/P” ]-algebra map. The other map corresponds to the data of the point, i.e., obtained
by base changing a map A[yl/ pm] — I'(X, Ox). Taking the coequalizer we get the desired conclusion. O

Definition 3.3.12. A pointed GP®f-module X with the data of the point denoted as d : X — G2 will be
called a quasi-ideal in GP*'! if the following diagram commutes.

idxd
X x X =% X x Gpef

ld xid laction

Gperf % X action X
a
We will denote the category of quasi-ideals in G2f by QID-GP*f which is the full subcategory spanned by
quasi-ideals in G2 inside G2°f-Mod..

Remark 3.3.13. Using the inclusion QID-G2™ — GP*f-Mod, of categories, we can define a (contravariant)
functor QID-GE™ — Fun(21, Alg )¢, which will again be called unwinding and will be denoted by Un.

Proposition 3.3.14. Let B be a perfect ring. Let (fj);e_ s be a collection of non-zero divisors in B and let
I be the ideal generated by them. Let F be the free module over B spanned by x; for j € #. We assume that
the B-module map F — I that sends x; — f; has kernel generated by (fix; — fix;) fori,j € #. Let X be a
quasi-ideal in Ggerf. Then the natural map

I Exvx (B, f;) = Envx (B, 1)
j€es
is an isomorphism. Here the coproduct is taken in the category of Wa(B)-algebras.

Proof. Using Remark 3.3.3, this follows in a way similar to the proof of Proposition 3.2.12. O

Proposition 3.3.15. Let B be a perfect ring. Let S be any set. Let (B[SY/?P™],(S)) denote the coproduct of
(B[z'/?7],z) over S. Let X be a quasi-ideal in GP*f. Then the natural map

[[Envx (B='/77],2) = Envx (B[S"/?7], )

s
is an isomorphism of Wa(B)-algebras. Here the coproduct is taken in the category of Wa(B)-algebras. In
particular, we obtain an isomorphism [[¢ T'(X,Ox) ®4 Wa(B) ~ Envs(B[SYP™],S) of Wa(B)-algebras.
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Proof. This follows from Proposition 3.3.11 and Proposition 3.3.14 in a way similar to the proof of Proposi-
tion 3.2.13. O

Definition 3.3.16. Let F' € Fun(#1,Alg,)e, be a functor which satisfies the following conditions.

1. The natural map &(B,0) — F(B,0) is an isomorphism for every perfect ring B.

2. The natural map F(B[z'/?” ], z) ®w, (5) F(B[z'/?7],2) = F(B[z'/?"|®p Blz'/?"],(z® 1,1 ® z)) is an
isomorphism.

3. The natural map F(F,[z'/?7],2) @4 Wa(B) — F(B[z'/?™], ) is an isomorphism.

We denote the full subcategory of such functors inside Fun(21, Alg ), as Fun(Z21, AlgA)‘QX;/.
Remark 3.3.17. We note that the unwinding functor QID-GP*" — Fun(21I, Alg,)e , maps a quasi-ideal
inside the full subcategory Fun(Z1, Alg A)% /- Indeed, this follows from Proposition 3.3.11 and Proposi-
tion 3.3.15. Therefore, the unwinding functor factors to give a functor still denoted as Un : QIDnge’FfOp —
Fun(£1, AlgA)g/.
Proposition 3.3.18. Let F' € Fun(£1, AlgA)%’/. For every perfect ring B, Spec F(B[z'/P™], x) is naturally
a B-module scheme over Wa(B). Consequently, we have a (contravariant) functor r : Fun(#1, AlgA)g/ —
QID-Gpert.

Proof. We note that (B[z'/P™],z) is a cogroup object of PI(B,0)/- Therefore, it follows from definitions
that Spec F(B[z'/?”],z) is a group scheme. The B-action on Spec F(B[z'/?”], z) is given by functoriality
along the arrows (B[z'/?7],z2) — (B[z'/?7],z) given by z'/?" — /P 2/P" for all n > 1. Therefore,
Spec F(B[z'/?™],z) is indeed naturally a B-module scheme over W4 (B). Proposition 2.2.11 implies that
varying this data over all perfect rings B provides us a Ggerf—module. Further, functoriality along the maps
(B[z'/P7),0) — (B[z'/?7],z) equips this GE®f-module with the structure of a pointed G2°-module. To see
that it is a quasi-ideal in GPf, we use functoriality along the following commutative diagram in 1.

(Fplz'/P7],2) @ (Fpla'/P7),2) 4 (Fp[2"/?7],2) ® (Fp[2'/77],0)

1 1 1
T Tzwﬁx?r@xpﬁﬂ

(Fpla'/P7],0) ® (Fp[z'/?7], 2) (Fplz'/?7], )

O
Proposition 3.3.19. The functor r : F‘un(@],AlgA)%/ — QID%GgerfOP has a left adjoint given by Un from
Remark 3.3.17.

Proof. The proof follows in a similar way to the proof of Proposition 3.2.18 once we note the following
statement about the category ZI. Let B be a perfect ring so that (B,0) is an object of &I. Then there is
an isomorphism

@ : Homp o) ((B,1),-) ~ Eq (HomB_Mod(I, Hom(Byo)((B[xl/poo],gc), -)) = Homp.moa({, Hom(B’O)((B[wl/poo},O), )))

in Psh(ﬁlfg 0)/). Here one of the arrows is induced by the map (B[z'/?”],0) — (B[z'/?”],2) and the

other map is obtained by sending everything to the element of HomB_Mod(I,Hom(B,O)((B[xl/poc],0), )

corresponding to the map induced by the inclusion I C B and the fact that Hom(B’O)((B[avl/pm],0)7 -) is
naturally valued in B-algebras. O

Proposition 3.3.20. The functor
Un : QID-GE™ — Fun(21,Alg,)e,

1$ fully faithful.
Proof. Follows from Proposition 3.3.19 after noting that rUn(X) ~ X by Proposition 3.3.11 and Proposi-
tion 3.3.15. 0
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3.4 Unwinding pointed GP**-modules 1T

In this section, we record a variant of the construction appearing in the previous section. We will use a
pointed GP*f-module to produce a functor from QRSP algebras over F, to Alg,. Our goal is to formulate
and prove an analogue of Proposition 3.3.20 in this context. We will begin by recalling the definition of
QRSP algebras from [BMS19, Def. 8.8].

Definition 3.4.1. An Fj-algebra S is said to be semiperfect if the natural map S* — S is surjecrive. S
is called quasiregular semiperfect (QRSP) if S is semiperfect and the cotangent complex Lg/r, is a flat
S-module supported in (homological) degree 1.

Example 3.4.2. The algebra F,[2'/?™]/z is an example of a QRSP algebra.

Remark 3.4.3. The condition on the cotangent complex appearing in Definition 3.4.1 is not relevant for
the constructions appearing in this section. However, this condition is important when we compare our
constructions with de Rham and crystalline cohomology in Section 4.

Construction 3.4.4. For a QRSP algebra S, by sending S — (S°, Ker(S” — S)) we can define a functor
QRSP — 2I. Using Construction 3.3.2, this produces a (contravariant) functor Un : GP*f-Mod, —
Fun(QRSP, Alg 4) which will again be called the unwinding of a pointed G2**f-module when no confusion is
likely to occur.

Remark 3.4.5. We note that the functor & : I — Alg, that sends (R, ) — W4 (R) produces a functor
QRSP — Alg, that sends S — W4 (S?) which will again be denoted by &. It follows from Remark 3.3.4 that
we have actually produced a (contravariant) functor Un : GE**~Mod, — Fun(QRSP, Alg ,)e,-

Example 3.4.6. The identity functor QRSP — QRSP induces a functor QRSP — Alg]Fp which is the
unwinding of the pointed GP*f-module corresponding to af over F »- This follows from the construction and
Remark 3.3.6.

Definition 3.4.7. Let F' € Fun(QRSP, Alg4)s, be a functor that satisfies the following conditions.

1. The natural map &(B) — F(B) is an isomorphism for every perfect ring B.

/P77 ® B[z'/?

2. The natural map F(%/p]) W (B) F(%/p]) - F(B[ z
perfect ring B.

oo

]) is an isomorphism for every

1/p>° 1/p>®
3. The natural map F(%) ®a Wy(B) — F(B[xf/]) is an isomorphism for every perfect ring B.

The full subcategory spanned by such functors inside Fun(QRSP, Alg 4 ), will be denoted as Fun(QRSP, Alg A)% /-

Proposition 3.4.8. Let F € Fun(QRSP, AlgA)g)/. For every perfect ring B, Spec F(%/p]) is naturally a
B-module scheme over Wa(B). Consequently, we have a (contravariant) functor r : Fun(QRSP, AlgA)g/ —
QID-GPert,

B[xl/” ]
xr

Proof. This follows in a way similar to the proof of Proposition 3.3.18. We note that
object of QRSP . Therefore, it follows from the definitions that Spec F(%)

is a cogroup

has the structure of a
1/p°

group scheme over W4(B). The B-action on Spec F(%) is given by functoriality along the maps

1/p +1/p%° n n n 1/p>°
B[llm/ RN B[le | that sends 2'/P" — b1/?"21/?" for all n > 1. Therefore, SpecF(%) is indeed
naturally a B-module scheme over W4 (B). Proposition 2.2.11 implies that varying this data over all perfect
B[zl/p“’]

rings B provides us a GP*-module. Further, functoriality along the maps B [:L'l/ pm] — equips this
GPef-module with the structure of a pointed GP**f-module. To see that it is a quasi-ideal in G2, we use
functoriality along the following commutative diagram in QRSP.

/P /P /P oo
Fp[w; ] ® ]Fp[wlz ] FZ’[I; ] ®Fp[x1/p ]
T T 1 1 1
xmﬁmpw@rm
oo 2 1/P° 2 1/P>°
Fp[xl/p ] ® Fpl wp ] Fpl — ]




SHUBHODIP MONDAL

O

Remark 3.4.9. Note that we do not have a (contravariant) functor QID-GPe™ — Fun(QRSP,AlgA)g/
induced by the unwinding. Indeed, the unwinding of the quasi-ideal G2*f produces the functor that sends
a QRSP algebra S — S” and does not satisfy the last two conditions of Definition 3.4.7. One may use
Lemma 3.4.15 to see the latter claim. Roughly speaking, since S° is defined via an inverse limit, one cannot
expect the unwinding of an arbitrary quasi-ideal (as in Construction 3.4.4) to preserve the pushout diagrams
demanded by Definition 3.4.7. However, we will work towards rectifying this situation by restricting our

attention to a special class of quasi-ideals. In any case, we have the following proposition.

Proposition 3.4.10. Let r : Fun(QRSP, AlgA)g/ — QID*GEerfOp be the functor from Proposition 3.4.8. Let
Fe Fun(QRSP,AlgA)g/. Then there is a natural transformation Un(rF) — F in Fun(QRSP, Alg4)es .

Proof. This follows in a way similar to the proof of Proposition 3.2.18 once we note the following statement
about the category QRSP. Let S be a QRSP algebra. Let I := Ker(S” — S). Then there is an isomorphism

S/

P I—IOHISb (S7 ) = Eq (HomS"Mod(I7H0m5"( 7)) :>> HomeMod(-L HOme (Sb [xl/poo]v )))

in PSh(QRSPgI;/). Here one of the arrows is induced by the map S°[z/?™] — % and the other map is

obtained by sending everything to the element of Hom gsyoq (I, Homgs, (S°[2'/P7], -)) corresponding to the map
induced by the inclusion I C S” and the fact that Homg, (S°[2!/P7],-) is naturally valued in S°-algebras. [

Definition 3.4.11 (Nilpotent quasi-ideals). Let X be a quasi-ideal in GP®'f over F,. We will call X a
nilpotent quasi-ideal in GE°™ if the graded map F,[z!/?”] — I'(X, Ox) corresponding to X — G2 is zero
in large enough degrees. In other words writing ¢ € T'(X, Ox) as the image of x, we need ¢ to be a nilpotent
element. We define NQID-GP® to be the full subcategory of QID-GP™ spanned by nilpotent quasi-ideals.

Example 3.4.12. The zero section SpecF, — GEf viewed as a quasi-ideal in GP°™ is an example of a
nilpotent quasi-ideal; this is also the initial object in the category N'QID-GP™. Further, we note that af
and u*W|[F] are both examples of nilpotent quasi-ideals in GE°™ over F,. However, GE*! is not an example
of a nilpotent quasi-ideal.

Remark 3.4.13. We note that for every F,-algebra R, using the map X — GPet one gets a map X (R) — R
at the level of R-valued points. Composing along the map R> — R, we get a map w : X (R) — R. It follows
that if X is a nilpotent quasi-ideal in GP°™, then w(z) is a nilpotent element of R for every z € X (R). One
can analogously define a notion of “nilpotent quasi-ideals” in G, as well, which can be though of as an
analogue of locally nilpotent ideals at the level of R-valued points for every F,-algebra R. Since we do not
use the notion of nilpotent quasi-ideals in G,, we do not discuss them here.

Remark 3.4.14. In fact if X is a quasi-ideal in GP®'f over F, that is not isomorphic to GP'f then X is a
nilpotent quasi-ideal. To see this, we note that by writing X = Spec B for a graded Hopf algebra B and t* for
the image of 2 under the map F,[z'/?™] — B (here i € N[1/p]), we note that X is a quasi-ideal if and only if
b®tdeeb = tdegb o b in B ® B for every homogeneous b € B. Now b ® t48? = ¢deeb & p implies that t4°8? and
b are linearly dependent in the F,, vector space B. Thus if X is not nilpotent, i.e., if ¢* # 0 for all ¢, then any
non-zero homogeneous b € B is in the linear span of t'. Thus as a graded algebra B ~ F, [:cl/ poo] and since
the map IF,, [xl/ px] — B is a map of graded Hopf algebras, it follows that the quasi-ideal X is isomorphic to
Ggerf.

We will now record a lemma.
Lemma 3.4.15. For a perfect ring B, let S := B[xi/pm, . ,x,l/pm] and I := (z1,...,2,). Then (S/I)" = §,
the I-adic completion of S. Further, kernel of the map (S/I)" — S/I is identified with the ideal (z1,...,2,)
mn S.
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Proof. This will follow from the more general fact that if S is a perfect ring and I is a finitely generated
ideal then (S/I)” is isomorphic to the I-adic completion of S denotes as S. We let "] := = {a?" |z e}.
Since S is perfect, it follows that I'""] is an ideal of S. By sending an element to its p” th power we get an
isomorphism ¢" : S/I — S/I [P"], These maps provide an isomorphism of inverse systems as below.

S/ —2 s /1 —2 s S/1

G s |

L SV 5 g1 5/

Now since [ is finitely generated, {I [pn]} and {I"} generates the same topology on S. This gives the
isomorphism (S/1)” ~ S. O

1/p° ]

Proposition 3.4.16. Let X be a nilpotent quasi-ideal. Then Un(X)(B[T) I'(X,0x) ®F, B.

/P> —
Proof. Un(X)(Q) by definition and Lemma 3.4.15 is Un(X)(B[z/?*], z). Since z is a non-zero divisor,
this is computed as coequalizer of the two maps
B[z1/P~][y"/P"] 3 T(X, Ox) ®r, Blz/r™]
where one of the maps is induced by F), [4'/P"] = I'(X,Ox) corresponding to the data of the point. The
other map is the B[x!/P>]-algebra map that sends yt/P" — 21/P" | Since the quasi-ideal is nilpotent, a power
of y is sent to zero by the first map. Hence we obtain the required isomorphism. O

Proposition 3.4.17. Let X be a nilpotent quasi-ideal. Then

Un(x) (B[x;/”oo] - B[“"pr]) ~ Un(X) (B[m;m)@@}gm()() (B[i@) ~ (X, 0x)®s,I(X, Ox)®s, B.

Proof. By definition and Lemma 3.4.15, the left hand side is isomorphic to Un(X)(Blz1/"™, 22/"™], (21, 22)).

By regularity of (z1,z2) as an ideal of B[z] 1/p é/pw] and Proposition 3.3.14 that is computed as

Envx (Blzy/P”, 2y/""],21) © Envx (B[zy/P” 23/, x2).

Blal 1/p> 1/P°°]

By letting t'/?" denote the image of /7" under the map F, [yl/poc] — I'(X, Ox) corresponding to the data
of the point, we obtain that the above expression is isomorphic to

Blz)/"” /" @ T(X, Ox) Blz}/"” 2/ @ T(X, Ox)
(l.i/p" ® 1-1 ®t1/pn) B[ 1/P 1/P ] (lé/p" ® 1-1 ®t1/pn)

Since X is nilpotent, a power of ¢ is zero which along with Proposition 3.4.16 gives the required conclusion. [

Remark 3.4.18. More generally, the proof of Proposition 3.4.17 shows that for a nilpotent quasi-ideal X,
/

Un(X) commutes with finite coproducts of #

Proposition 3.4.19. The unwinding of a nilpotent quasi-ideal (over F),) satisfies the properties in Defini-
tion 3.4.7, i.e., we have a functor

Un : NQID-GE™"™ — Fun(QRSP, Algy ),

Proof. Let X be a nilpotent quasi-ideal. By definition, we need to check three properties for the functor
F :=Un(X). The first one is that the natural map B — F(B) is an isomorphism for every perfect ring B which
follows from Remark 3.3.5. The other two properties follow from Proposition 3.4.16 and Proposition 3.4.17. [J
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Proposition 3.4.20. The functor r : Fun(QRSP,Alg]FP)g/ — QID%GgerfOP factors to give a functor
7 : Fun(QRSP, Algpp)ﬁ?/ — NQID@E“WP which admits a left adjoint given by Un from Proposition 3.4.19.

Proof. First we prove that we indeed have a factorization which gives the functor r : Fun(QRSP, Alng)g ;=

NQID-GPef. By Remark 3.4.14, it would be enough to prove that the essential image of the functor
T Fun(QRSP,Alng)g ;= QID-GP™ does not contain GP°™f. We assume on the contrary that there is

an F € Fun(QRSP,Alng)g / such that rF ~ GP®! as quasi-ideals in GP™. This implies that the arrow

f:Fp[at/P”] = F,[#'/P™]/x is sent to an isomorphism by F. The arrow f factors as F,[z!/P”] — F,[z1/P™] —
Fp[xl/ P™]/x. Applying F to it and using the first property from Definition 3.4.7 gives the following maps

Fy /7] = F,[/7] — F(F,['/7™]/2)

whose composition is an isomorphism. This shows that there are maps F,[z'/7"] — F,[21/P™] — F,[z}/?7]

whose composition is the identity. That implies that there is a map F,[21/7*] — F,[2'/?”] that sends z — .
But no such map can exist since 1+ z is a unit on the source but not on the target of the map. Now the
required adjunction follows from Proposition 3.4.10, Proposition 3.4.16 and Proposition 3.4.17 (similar to the
proof of Proposition 3.2.18) by noting the commutative diagram

Un(rUn(X)) —=—— Un(X)

]

Un(rF) ——

for any natural transformation Un(X) — F where X € NQID-G2* and F € Fun(QRSP, Alng)g O

/-
Proposition 3.4.21. The functor

Un : NQID-GE™™ — Fun(QRSP, Algy ),

defined in Proposition 3.4.19 is fully faithful.

Proof. We fix two nilpotent quasi-ideals X and Y. By using Proposition 3.4.16 and Proposition 3.4.17, there
are natural isomorphisms 7Un(X) ~ X and rUn(Y) ~ Y, where r is the functor from Proposition 3.4.10.
Therefore, Proposition 3.4.16 and Proposition 3.4.17 implies that Un is faithful. To show that it is full, it
would be enough to prove that if F' and G are two natural transformations between Un(X) and Un(Y') such
that they are the same transformation X — Y in A/ QIDf(GgerfolD after applying r, then F' = G. For this, we
note the following commutative diagram.

Un(rUn(X)) ———— Un(X)
| rle
Un(rUn(Y)) ———— Un(Y)

The diagram above shows that F' = G, as desired.
Alternatively, this follows from Proposition 3.4.20 since 7Un(X) ~ X for a nilpotent quasi-ideal X. [

Remark 3.4.22. More generally, let X and Y be two quasi-ideals in GP®! over an Artinian local ring A with
residue field F,, such that the functors Un(X) and Un(Y") satisfies the three conditions in Definition 3.4.7 and

such that there are natural isomorphisms rUn(X) ~ X and rUn(Y) ~ Y. Then the above proof shows that
there is a natural bijection Homp, gpert (Y, X) 2 Hom(Un(X), Un(Y)) where the latter Hom is computed in

Fun(QRSP, Alg4)s,-
Now we are ready to make the following definitions.

37



Ggerf—MODULES AND DE RHAM COHOMOLOGY

Definition 3.4.23. We let Fun(QRSP,AlgFP)g/}J“ denote the full subcategory of Fun(QRSRAlng)g
spanned by image of nilpotent quasi-ideals under the functor Un from Proposition 3.4.19.

Definition 3.4.24. We let Fun(QRSP, Alg]pp)ré(/:l’NUn denote the full subcategory of Fun(QRSP, AlgFP)g/
spanned by the unwinding of the nilpotent quasi-ideals whose underlying pointed G2**f-module is of fractional

rank 1 (Definition 2.2.18).

/

Definition 3.4.25. We let Fun(QRSP, Alng)f,;“/re tk=LNUD Jenote the full subcategory of Fun(QRSP, Alng)g/

spanned by the unwinding of the nilpotent quasi-ideals whose underlying pointed GP°"-module is pure of
fractional rank 1 (Definition 2.5.7).

perf
a

Thus we obtain the following chain of inclusion of categories

Fun(QRSP, Algg )2 ="V  Fun(QRSP, Algg )y V" € Fun(QRSP, Algg ) /™ C Fun(QRSP, Algg )

&/ &/

which are all full subcategories of Fun(QRSP, Alng)® /

Proposition 3.4.26. The category Fun(QRSP, AlgFP)gf}J“ has a final object given by the functor (- )per :
QRSP — AlgFP that sends S — Spers = colimy, 50 5.

Proof. This follows from the fact that the zero quasi-ideal SpecF, — GP! is a nilpotent quasi-ideal
(Example 3.4.12), Remark 3.3.6 and Proposition 3.4.21. O

Proposition 3.4.27. The category Fun(QRSP,AlgIFp)f,;(/zl’j\/Un has a final object given by the functor
id : QRSP — AlgFP that sends S — S.

Proof. This follows from Proposition 2.3.1, Example 3.4.6 and Proposition 3.4.21. O

Proposition 3.4.28. The category Fun(QRSP,Alg]Fp)IgJ/re k=LNUD 1,05 a final object given by the functor
Un(u*W[F]).

Proof. This follows from Proposition 2.5.8 and Proposition 3.4.21. O

3.5 The generalized Hodge filtration

Let X be a fixed pointed GP*-module over F,. The goal of this section is to construct a decreasing filtration
on the functor Un(X) defined on QRSP algebras which will be called the “Hodge filtration”. This will be done
by explicitly constructing a functorial filtration on Un(X)(S) = Envx(S”, Ker(S” — S)). We will show that
under the assumption that X is a fractional rank-1 pointed GP*f-module, gr® of the filtration on Un(X)(S)
identifies with S. This induces a natural transformation gr® : Un(X) — id of functors. Under the additional
assumption that X is a nilpotent quasi-ideal, this natural transformation is the same as the one coming from
Proposition 3.4.27.

Construction 3.5.1 (Hodge filtration). Let X be a pointed GEf-module over F,. We will construct a
natural decreasing filtration on Envx (B, I) for (B,I) € £I. By Construction 3.1.1, for a fixed i € I, we
have a natural map I'(Xp,Ox,) = [[; I'(XB,Ox,) = Ix, (1), where the first map maps I'(Xp, Ox,) to
the i-th factor in the coproduct. The composite map is the map ev; : I'(Xp,Ox,) — Ix,(I) defined in
Remark 3.1.2.

By Construction 3.2.2; there is a natural surjection Jx,(I) — Envx (B, I). Composing this with ev;, we
obtain the map
[Z] : F(XB7OXB) — EHVX(B,I).

If m € I'(Xp,Ox,) is a homogeneous element, we will write [¢§]™ := [i](m).

For a nonnegative integer n, we let Fil"Envx (B, ) denote the ideal of Envx (B, I) generated by the

“monomials” of the form [i1]™ - - [ix]™* such that 25:1 degm,, > n, for homogeneous elements m,, €
I'(Xp,Ox,) of integral degree, k > 1 and for iy,...,i; € I. This defines a decreasing filtration which will
be called the Hodge filtration on Envx (B,I). A map ¢ : (B,I) — (B’,I') sends [i|™ — [p(i)]™, so the
construction is functorial.
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Definition 3.5.2. Let X be a pointed GE°-module over F,, and let S be a QRSP algebra. The decreasing
filtration defined by
Fil"Un(X)(S) := Fil"Envx (S°, Ker(S” — S))

will be called the Hodge filtration on Un(X)(S).

—

Definition 3.5.3. Let Un(X)(S) be the completion of Un(X)(S) with respect to the Hodge filtration. Then

—

the functor Un(X) will be called the Hodge completion of Un(X).

Example 3.5.4 (I-adic filtration). Let X = GP'f (equipped with the natural structure of a pointed G-
module). Then Envx (B, I) ~ B by Remark 3.3.4. In this case, the Hodge filtration identifies with the I-adic
filtration on B.

Example 3.5.5 (Divided power filtration). Let B be an Fp-algebra and I be an ideal of B. Then there is
a filtration on Dg(I) given by setting Fil"(Dg(I)) to be the ideal generated by divided power monomials
[i1]™ - - - [ig]™ such that 25:1 m; > n and i1,...,4; € I, which is called the divided power filtration. We
note that Fil’(Dp(I)) = Dp(I) and gr®(Dg(I)) = B/I. If we further assume that B is a perfect ring, then
we have an isomorphism Env,-y (B, ) ~ Dp(I) by Example 3.3.10 which is further a filtered isomorphism
when we equip Env,-y (B, I) with the Hodge filtration from Construction 3.5.1.

Remark 3.5.6. Let X be a pointed G,-module over an arbitrary base ring A. Let (B, I) € €4. Similar to
Construction 3.5.1, one has a map

[’L] : F(XB7OXB) — EDVX(B,I)

obtained as a composition of ev; : I'(Xp,Ox,) = Ix,(I) (Remark 3.1.2) and Ix,(I) = Envx(B,I). If
m € I'(Xp, Ox,) is a homogeneous element, we can again write [i]™ := [i](m). For a nonnegative integer n, we
let Fil"Env x (B, I) denote the ideal of Envx (B, I) generated by the “monomials” of the form [¢1]™ - - - [ig]™*
such that 2221 degm,, > n, for homogeneous elements m,, € I'(Xp,Ox,), k > 1 and for iy, ...,i; € I. This
defines a decreasing filtration which may again be called the Hodge filtration on Envx (B, I).

Example 3.5.7. When X = G, (equipped with the natural structure of a pointed G,-module), we have
Envx(B,I) ~ B (Remark 3.2.4) and the Hodge filtration on the left hand side constructed in Remark 3.5.6
identifies with the I-adic filtration on B.

Lemma 3.5.8. Let X be a pointed G,-module over A and (B,I) € €4. There is a natural isomorphism
gr®(Envx (B, 1)) ~ B/I, where the gr® on the left hand side is taken with respect to the filtration constructed
in Remark 3.5.6.

Proof. Note that the zero section Spec A — G, can be thought of as a pointed G,-module which admits a
unique map to X (as a pointed G,-module). Applying the unwinding construction and using Example 3.2.5, we
get us a natural map Envy (B, ) — B/I. By functoriality of the constructions appearing in Construction 3.1.1,
Construction 3.2.2 and using Example 3.1.5, the map Envx (B, I) — B/I fits into the following commutative
diagram

Ixy(I) ———— B

! !

Envy(B,]) —— B/I.

We proceed towards computing the kernel of the map Envx(B,I) — B/I, which we will denote by K.
As noted in Remark 3.1.9, Spec Ix, (I) naturally has the structure of a G,-module over B and the map
Ix,(I) — B is the map induced on global sections by the zero section Spec B — Spec Ix,(I). We
write Tx, (1) = @,,en(Tx5(I))n. Since Spec Ix,(I) is a G,-module, by Proposition 2.1.17, it follows
that (Jx,(I))o is naturally isomorphic to B. Therefore, it follows that the kernel of the composite map
Ixp(I) = B — B/I naturally identifies with I © (Ix(I))>0, where (Ix,(I))>0 = @,50(Tx5(I))n. We
observe that all the arrows in the above diagram are surjective. Therefore, by commutativity of the above
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diagram, the kernel K of the map Envx (B, I) — B/I is generated by the image of I & (Jx,(I))>o under
the map Ix,(I) = Envx (B, I).

By Construction 3.2.2, the map Jx,(I) — Envx(B,I) is induced by taking coequalizer of two ar-
rows Symp(l) = Ix,(I). Using their descriptions from Construction 3.2.2 and writing Sympg(I) =
@,cn Symjz(I), we see that one of the arrows map I = Symp! inside (x,(I)); and the other one
maps I = SymgI inside (Fx,(I))o = B by the natural inclusion I C B. Therefore, under the map
Ix,(I) = Envx (B, I), the image of I C (Ix,(I))o is contained inside the image of (Ix,(I));. This implies
that the kernel K of the map Envx(B,I) — B/I can be generated by the image of (Ix,(I))>o under the
map Ix,(I) = Envx (B, I).

Finally, we note that image of (Jx,(I))>o under the map Jx,(I) — Envx (B, I) generates the ideal
Fil'Env x (B,I) as defined in Remark 3.5.6. Indeed, the last claim can be seen by considering the map
ev; : I'(Xp,0x,) — Ix,;(I) and recalling it’s properties from Remark 3.1.9 which imply that the elements
ev;(u) for all 4 € I and all u € T'(Xp, Ox,) such that deg(u) > 1 generate the ideal (Fx,(I))so in Ix,(I).
This finishes the proof. O

Remark 3.5.9. The proof of Lemma 3.5.8 shows that the natural transformation Envx (B, I) — gr®(Envx (B, I))
~ B/I described in Lemma 3.5.8 is the same as the one obtained by applying the unwinding construction to
the unique map from the zero section Spec A — G, (viewed as a pointed G,-module) to X.

Remark 3.5.10. Let X be a pointed G,-module over F,,. Let (B,I) € &I. By Proposition 3.3.8, there is a
natural isomorphism
Envy (B, I) ~Envyx (B, I).

By construction, it follows that this isomorphism is further a filtered isomorphism, where the filtration on
the right hand side is coming from Construction 3.5.1 and the one on the left hand side is coming from
Remark 3.5.6.

Remark 3.5.11. In the case when X is a pointed G,-module over A, analogous to Definition 3.5.3, one can

define a functor U/n(}) by completing with respect to the Hodge filtration on Envy (B, I) as constructed
in Remark 3.5.6. As an example, when X = G, (equipped with the structure of a pointed G,-module),

—

Un(G,)(B,I) is simply the I-adic completion of B.

Remark 3.5.12. Let G, be the “formal affine line” over an arbitrary base ring A. More precisely, for an
A-algebra B, the B-valued points of G, denoted as GG(B) are defined to be the set of nilpotent elements
of B, i.e., the nilradical of B. This equips G, with the structure of a “G,-module”. There is also a natural
transformation of functors G, — G, which, in some sense, equips G, with the structure of a “pointed
Gg-module”. The constructions of our paper do not deal with examples such as G, that are not representable
by an affine scheme and being representable is part of the definition of a G,-module for us. However, roughly

speaking, the functor U;(-(GTL) as discussed in Remark 3.5.11 could be thought of as “unwinding” of Gq. We
thank the referee for suggesting to include this remark.

Proposition 3.5.13. Let X be a pointed GE*t-module over F,, of fractional rank 1. Let S be a QRSP algebra.
Then the gr¥ of the Hodge filtration on Un(X)(S) is naturally isomorphic to S.

Proof. We write I = Ker(S” — S). Since X is of fractional rank 1 (Definition 2.2.18), we have gr’Env x (S, I) ~
Env,:(S°,I) ~ S. Indeed, the first isomorphism follows from Lemma 3.5.8, Remark 3.5.10 and recalling that
u*(SpecF,) ~ af (when Spec[F,, is equipped with the structure of a pointed G,-module corresponding to the
zero section SpecF, — G,). Finally, the last isomorphism follows from Remark 3.3.6. O

Example 3.5.14. We point out that the assumption that X is fractional of rank 1 is crucial in Proposi-
tion 3.5.13. Indeed, let us take X to be af x af considered to be a pointed GP*-module via projection onto
the first component af x af — af composed with the natural map af — GP°f. Then X is not fractional of

/p>® /% y1/p>
rank 1. Further, in this case, one computes directly that Un(X)(F"[m; AP [ olP ]

) and under this

identification, FillUn(X)(%/p]) is the ideal generated by the elements u’v7 such that i+ j = 1. Therefore,

/PN . . . /P
grOUn(X)(%) is not isomorphic to et 1
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Remark 3.5.15. Let X be a pointed GE°-module over F, of fractional rank 1. The natural transformation
gr’ : Un(X) — id induced by Proposition 3.5.13 is the same as the one obtained via the unwinding functor
from the Hodge map defined in Proposition 2.3.1. This follows from Remark 3.5.9 and Remark 3.5.10.

Proposition 3.5.16. Let X be a nilpotent quasi-ideal over ¥, which is of fractional rank 1 as a pointed
Ggerf—module. Then the natural transformation gr' : Un(X) — id is the unique natural transformation
between Un(X) and id viewed