IND-ETALE VS FORMALLY ETALE

SHUBHODIP MONDAL AND ALAPAN MUKHOPADHYAY

ABSTRACT. We show that when A is a reduced algebra over a characteristic zero field k
and the module of Kahler differentials €24, = 0, then A is ind-étale, partially answering
a question of Bhatt. As further applications of this result, we deduce a rigidity property
of Hochschild homology and special instances of Weibel’s conjecture [Wei80] and Vorst’s
conjecture [Vor79] without any noetherian assumptions.

1. INTRODUCTION

In this article, all rings are commutative and unital, unless otherwise mentioned. Fix a field
k. Recall that a finite type k-algebra R is étale over k if the module of K&hler differentials
Qp/y is zero.

Definition 1.1. A k-algebra is said to be ind-étale if as a k-algebra, it is isomorphic to a
direct limit of some direct system of étale algebras over k.

If R is an étale algebra, then the cotangent complex Ly, is exact, i.e., Hi(LR/k) =0 for
all i € Z. We refer to [Sta, Tag 08P5] for the definition and basic properties of the cotangent
complex. When A is a smooth algebra over k, then the cotangent complex agrees with the
module of Kahler differentials. But in general, the cotangent complex is a complex of A-
modules or more naturally, an object in the derived category D(A) of chain complexes over
A. Since the formation of cotangent complex commutes with taking direct limits, it follows
that for an ind-étale algebra A, the cotangent complex L4, is exact.

In [Bha], Bhargav Bhatt raised the following question asking whether conversely exactness
of L i — i.e., A being formally étale implies ind-étaleness of A.

Question 1.2 (Bhatt). Let k be a field of characteristic zero. Does there exist a k-algebra
A, such that the cotangent complex L 4, is exact, yet A is not ind-étale over k7 — see [Bha,
Question 0.3] and [Mor19, Question C.3].

Note that ind-étale algebras are necessarily reduced. In this note, we answer the question
above when A is additionally assumed to be reduced.

Theorem 1.3. (see Theorem 2.9) Let k be a field of characteristic zero and A be a reduced
k-algebra — not assumed to be noetherian. If 4/, = 0, then A is ind-étale.

Since the module of Kéhler differentials is the zeroth cohomology of the cotangent complex,
the exactness of L 45 implies €4/, = 0. So our theorem partially answers Question 1.2 by
showing that when the algebra A is known to be reduced, then the much weaker assumption
of Q41 = 0, implies that A is ind-étale. Thus, Theorem 1.3 now reduces Question 1.2 to the
following question:
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Question 1.4. Let k be a field of characteristic zero. Does there exist a k-algebra A such
that the cotangent complex L 4, is exact, yet A is not reduced?

Remark 1.5. Note that, merely assuming €24/, = 0 and k is a field of characteristic zero
does not imply reducedness of A, as is shown by an example originally due to Ofer Gabber.
See Remark 2.11 and [MS21, Theorem 2.2].

The main difficulty in proving Theorem 1.3 is in dealing with the lack of any finiteness
or noetherian assumptions. The key new ingredient in the proof is the observation of the
following general result, whose proof, in turn makes judicious use of localization constructions
and minimality tricks to circumvent issues caused by the lack of noetherian assumption.

Theorem 1.6 (see Theorem 2.5). Let k be a field of characteristic zero and A be a k-
algebra — not assumed to be noetherian. Suppose that there is a k-algebra injection from the
polynomial ring, ¢ : k[t1,...,ts] < A for some s > 1. Then du(t1) Adu(ta) A ... Adu(ts) is a
nonzero element of A%y .

When phrased in terms of k-transcendence degree introduced in Definition 2.1, Theorem 1.6
implies that vanishing of A%, forces the k-transcendence degree of A to be at most s — 1.

Remark 1.7. The analogue of Question 1.2 in positive characteristics has a negative answer.
There is an example due to Bhatt of a positive characteristic field k& and a k-algebra A such
that the cotangent complex IL4 /4, is exact, but A is not reduced, thus not ind-étale — see [Bha,
Proposition 0.2], where the example is attributed to Ofer Gabber.

We will use Theorem 1.3 to prove the following result about vanishing of Hochschild ho-
mology. We point out that in [AV92], certain vanishing of Hochschild homology HH;(A) for
an algebra A had been used to give a criteria of smoothness.

Proposition 1.8 (see Proposition 3.5). Let k be a field of characteristic 0. Let A be a
reduced commutative k algebra — not assumed to be noetherian. If HH;(A/k) = 0, then
HH;(A/k) =0 for all 4 > 1.

In Section 3, we briefly review the definition of Hochschild homology and prove the above
proposition. The proof is manifestly based on techniques from commutative algebra and we
point out that the commutativity assumption in Proposition 1.8 is very sharp. Example 3.6
shows that a similar assertion is false without the commutativity assumption; we learnt this
example from Antieau.

Theorem 1.6 also has some unexpected consequences. It can be used to deduce new
special instances of a question of Weibel [Wei80, Question 2.9] and Vorst’s conjecture [Vor79]
without any finiteness or noetherian assumptions. The applications in this direction were
pointed out by Morrow after we shared a draft version of our paper with him; we thank
him heartily for generously sharing his observations with us. These questions belong to the
area of K-regularity, which roughly speaking, uses algebraic K-theory to study regularity of
commutative rings. We briefly recall some necessary definitions and results in K-theory in
Section 4 and include the new applications. In what follows, Proposition 1.9 is related to the
question of Weibel and Proposition 1.10 is a non-noetherian case of Vorst’s conjecture.

Proposition 1.9 (see Proposition 4.5). Let A be a commutative k-algebra over a field k of
characteristic zero such that the module of d + 1-forms A%T1Q 4 /k = 0. Then

(1) For n < —d, the K-groups K,(A) = 0.

(2) Ais Ky-regular (see Definition 4.2) for all n < —d.
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Proposition 1.10 (see Proposition 4.6). Let A be a commutative k-algebra over a field k of
characteristic zero such that the module of Kéhler differentials €24/, = 0. If A is Kj-regular,
then A is ind-étale. Moreover, A is K,-regular for all integers n.

Acknowledgements. We are very grateful to Matthew Morrow for several helpful ex-
changes, pointing out the connections with K-theory, as well as for bringing Bhatt’s question
to our attention during the Arizona Winter School in 2018. We are also very thankful to
Ben Antieau, Bhagav Bhatt, Mel Hochster and Karen Smith for helpful conversations and to
the referee for their comments on the paper. The first named author thanks the support of
NSF grant DMS #1801689, NSF FRG grant #1952399 and the Rackham international stu-
dent fellowship; the second named author thanks the support of NSF grants DMS #2101075,
#1801697, NSF FRG grant #1952399 and Rackham one term dissertation fellowship while
working on this article.

2. MAIN RESULTS

Fix a field k. In this section, we first define and explore the notion of k-transcendence
degree of a k-algebra. Our notion of k-transcendence degree is meaningful even when the
k-algebra is not an integral domain or finite type over k, which extends the usual notion
of transcendence degree defined for field extensions. Our notion of k-transcendence degree
shows up later in Proposition 4.5. The main result of this section, Theorem 2.5, provides a
criteria for finite k-transcendence degree in terms of the vanishing of the module of differential
forms.

Definition 2.1. Let A be a k-algebra. If there exists an n € N maximal with respect to
the property that there is a k-algebra injection k[t1,...,t,] < A, then we define the k-
transcendence degree of A to be n. If no such n exists, then the k-transcendence degree of A
is defined to be infinite.

We establish some basic properties of the notion of transcendence degree listed below.

Proposition 2.2. Let A be a k-algebra, not necessarily noetherian.

(1) If A is finite type over k, then the k-transcendence degree of A is finite and is the
same as the Krull dimension of A.

(2) If A has k-transcendence degree at most n € N, then every finite type k-subalgebra
of A has Krull dimension at most n. Moreover the Krull dimension of A is at most
n.

(3) Let B be a k-algebra such that B contains A and is a finite module over A. Then
the k-transcendence degree of B is finite if and only if the k-transcendence degree of
A is finite. When both of the transcendence degrees are finite, they are the same.

(4) Let ¢ : A — C be a finite k-algebra homomorphism. If the k-transcendence degree of
Ais n € N, then the k-transcendence degree of C' is at most n.

(5) The k-transcendence degrees of A and A,eq are the same.

(6) Let A be a domain with finite k-transcendence degree. The transcendence degree of
the fraction field of A is the same as the k-transcendence degree A.

(7) If k has characteristic zero and A*Q 4/, = 0, then A has k-transcendence degree at
most s — 1.

Remark 2.3. The Krull dimension can be much lower than the k-transcendence degree. For
example, a field extension L of k can have arbitrarily large k-transcendence degree, while the
Krull dimension of L is zero.
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Proof of Proposition 2.2. (1) Let d be the Krull dimension of A. Noether normalization (see
[Sta, 000Y]) guarantees a module-finite inclusion k[x1, ..., z4] < A. So the k-transcendence
degree of A is at least d. We show that the k-transcendence degree of A is at most d. For
that, we use the next lemma to reduce the problem to the case where A is a domain.

Lemma 2.4. Let S be a multiplicative set in a commutative ring R, such that 0 ¢ S. There
is a minimal prime p of R such that S C R — p.

Proof. Since 0 ¢ S, the localization S~ R is nonzero. So S~!'R has a minimal prime q. We
can take p to be the contraction of q via the natural map R — S—'R. O

Now given a k-algebra inclusion ¢ : k[z1,...,x,] — A, take S = ¢(k[x1,...,2,]\0). Using
Lemma 2.4, choose a minimal prime p of A such that S Np = (). This means the composi-
tion of ¢ with the quotient A — % is also injective. The last injection gives an injection of

the fraction fields k(z1,...,2,) — Frac(%). So n is at most the k-transcendence degree of
Frac(%). Since the k-transcendence degree of Frac(%) is the Krull dimension of % and the

Krull dimension of % is at most d ([Ser00, Prop. 14]), n <d.

(2) The Krull dimension of any finite type k-subalgebra B of A is at most the k-transcendence
degree of B. Since the k-transcendence degree of B is at most n, we are done.

We now prove that the Krull dimension of A is at most n. Let po C p, C ... C py be chain
of prime ideals of A- where each containment is strict. For each j > 1, choose z; € pj \ pj—..
Let B be the k-subalgebra of A generated by x1,...,Zm,. So we have a chain of prime ideals
in B with strict containments,

PoNBCp,NBC...CpnNB.

So m is at most the Krull dimension of B. Since the Krull dimension of B is at most n by
part 1, the Krull dimension of A is at most n.

(3) We show that if the k-transcendence degree of A is n € N, then the k-transcendence
degree of B is also n. Given any k-algebra inclusion ¢ : k[x1,...,2z,] < B, we can choose
finite type k-subalgebras B’ C B and A’ C A, such that Im(¢) C B’, A’ C B’ and A’ — B’ is
module-finite. The choice can be made as follows: for each j, 1 < j < m, there is a nonzero
monic polynomial F; € A[t] such that Fj(¢(z;)) = 0. Take A’ to be the k-subalgebra of
A generated by the coefficients of F’s where j varies. Take B’ to be A’-subalgebra of B
generated by all the ¢(z;)’s.

Now, by (1), the k-transcendence degree of B’ is the Krull dimension of B’. Since A’ C B’ is
module-finite, the Krull dimension of A’ and B’ are the same. By (2), the Krull dimension of
A’ is at most n. So the k-transcendence degree of B’ is at most n. Thus m < n, proving that
the k-transcendence degree of B is also at most n. Again since A C B, the k-transcendence
degree of B is at least n.

If the k-transcendence degree of B is finite, the k-transcendence degree of A is also finite
as A C B. Moreover the k-transcendence degrees of A and B coincide by the argument above.

(4) Since there is a k-algebra surjection A — ¢(A), the k-transcendence degree of ¢(A)
is at most n. Since ¢(A) C C' is module-finite, by (3), the k-transcendence degree of C' is at
most that of ¢(A) and the later is at most n.
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(5) Given a set S and a k-algebra injection ¢ : k[{t; |j € S}] — A, the intersection of the im-
age of ¢ and the nilradical of A is zero. Thus composing ¢ with the surjection A — A,eq also
gives an injection. Thus the transcendence degree of A,oq is at least that of A. Conversely,
given a set S and a k-algebra injection ¢ : k[{z; |j € S}] = Ared, lift ¢ to a k-algebra map
E[{z;|j € S}] = A; the lift is necessarily injective. So the transcendence degree of A,eq is at
most that of A.

(6) Suppose that the transcendence degree of A is n € N. It is enough to show that the
transcendence degree of Frac(A) is at most n. By contradiction, assume that Frac(A) con-

tains elements %, Z—;, ceey Z:E, which are algebraically independent over k, where all a;, b;’s
are in A. Then the subalgebra ka1, ..., an4+1,b1,...,bn+1] C A has transcendence degree at
least n + 1 as its fraction field contains k:[‘g—ll, ‘;—;, ey Z:Ll ]. Since the transcendence degree of
A is n, we get a contradiction.

(7) This assertion follows from Theorem 2.5 proven below. O

Theorem 2.5. Let k be a field of characteristic zero and A be a k-algebra — not assumed
to be noetherian. Suppose that there is a k-algebra injection from the polynomial ring,
v k[t1,. .. ts] — A for some s > 1. Then du(t1) Adu(ta) A ... Adu(ts) is a nonzero element
of A:ZQA/]C‘

Proof. We first prove Theorem 2.5 assuming that A is a field and then deduce the general
case from the field case in a few steps.

Assume that A is a field. Pick a subset {x;};cs of A such that {¢(t1),...,t(ts)} U{x;}ier is
a k-transcendence basis of A; for example, {z;};c; can be chosen to be a k(u(t1),...,t(ts))-
transcendence basis of A; see [Sta, Tag 030F]. Set L to be smallest subfield of A containing
k and {c(t1),...,t(ts)} U{x;}ics. For any finite field extension L' O L where L' C A, since
L C L' is separable, we have an isomorphism,

(1) Qe @L L' = Qpyy 5

see [Liu02, Chapter 6, Lemma 1.13|. Varying L’ over finite extensions of L such that L' C A,
we get a direct system of isomorphisms from Equation (1); taking the direct limit of this
direct system of isomorphisms we get an isomorphism

(2) Qre @ A= Qy g

To get Equation (2), we have used that formation of modules of Kéhler differentials com-
mute with taking direct limit (see [Sta, Tag 00RM]) and A is the direct limit of the fields
L'. Since €,/ is isomorphic to the free L-module with basis {dc(t1),...,du(ts)} U {dz;}ier,
Equation (2) implies that 4/, is a free A-module with basis {dc(t1),...,du(ts)} U {dz;}ier.
Hence di(t1) A du(t2) A... Adu(ts) is a nonzero element of A% 4 .

Given a k-algebra A as in Theorem 2.5, which is not necessarily a field, set A’ to be A

modulo the nilradical of A. Then the composition k[t1,...,s] < A — A s also injective;
denote the composition by ¢. Set S = ¢(k[t1,...,ts] \ 0). We note that S is a multiplicative
set. Using Lemma 2.4 we can choose a minimal prime p of A’ such that S C A" —p. So the

image of any nonzero element of k[ti,...,ts] under the composition k[tq,...,ts] LA A
is a unit; hence the composition is also injective. Denote the last composition by ). We have
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a commutative diagram,

Niftrosts] SRl ts] /R

(3) % /

/\SA;)QA;J/k

where the unlabelled downward arrow is induced by the canonical map A — A;. We want to
show that A*du(dti A...Adts) is nonzero. To that end, first note that Aj is a field: since p is
minimal, the only prime ideal of A} namely pAj coincides with the nilradical of A}, which is
zero as A’ and hence A}, is reduced. Now by the field case of Theorem 2.5, A*de)(dt1 A. .. Adts)
is nonzero. The commutativity of diagram 3 implies that A°diy(dt; A ... A dts) is the image
of A%du(dty A ... Adts). So A*du(dty A ... Adts) must be a nonzero element of Ay Qy /. O

As an immediate corollary we get,

Corollary 2.6. Let k be a characteristic zero field and A be a k-algebra — not necessarily
noetherian. If A% 4/, = 0, then there cannot be a k-algebra injection k[ty,. .., ts] — A.

Remark 2.7.

(1) The converse to Corollary 2.6 is false as the following example shows. For any char-
acteristic zero field k, take A = k[z]/(2?). Then Q4 = %dm, yet there cannot be
any injection from k[t] to A as A has Krull dimension zero.

(2) Theorem 2.5 need not hold when k has positive characteristic. For example, take ¢
to be the inclusion k[z] — k[z'/P]. Then d(i(x)) = 0.

Corollary 2.8. Let k be a field of characteristic zero, A be a k-algebra — not necessarily
noetherian. If Q 4/, = 0, then A is integral over k.

Proof. Contrary to the assertion of Corollary 2.8, assume that for ¢ € A the k-algebra map
from the polynomial ring k[t] to A sending ¢ to a is injective. Now Theorem 2.5 implies that
da € 4y is nonzero, contradicting our hypothesis 24/, = 0. ([l

The next results partially answers Bhatt’s question (Question 1.2).

Theorem 2.9. Let k be a field of characteristic zero and A is a reduced k-algebra. If
Qs =0, then A is ind-étale.

Proof. We shall show that any finitely generated k-subalgebra of A is étale over k; this will
prove Theorem 2.9 since A is the directed union of all finitely generated k-subalgebras.

Fix a finitely generated k-subalgebra B of A. The ring B is integral over k as A is integral
over k by Corollary 2.8. Therefore B has Krull dimension zero. Hence every minimal prime of
B is maximal. Since B is noetherian, B has only finitely many minimal primes and hence B

has only finitely many maximal ideals — say my, ..., m,. By the Chinese remainder theorem,
we have
B B B
(4) - & — XX —.
Ni—ym; g my

Since A is reduced, so is B. Hence N}_ym; = 0. Thus from Equation (4), we get that

B = m% X m% Since k has characteristic zero and B is finite type over k, for each 4,
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1 <i<r, B/m;is a finite, separable field extension of k, so ng_/k = 0; see [Sta, Tag090W]).
Finally we conclude Qp/, = 0, since as abelian groups

Qp = @:19%/;47-
Thus B is étale over k, as desired. ]

Remark 2.10. With additional restrictions on A, the reducedness hypothesis on A in The-
orem 2.9 becomes redundant. For example, when k is a perfect field of any characteristic, if
Q4/r = 0 and additionally A is noetherian; or a local ring with maximal ideal m such that

ﬂNm” = 0; or A is an N-graded k-algebra with Ag is noetherian, then A is automatically
ne

reduced; see [MS21, Theorem 3.1, Corollary 3.3, Theorem 3.6] for details.

Remark 2.11. For any characteristic zero field k, Gabber has constructed a k-algebra R,
such that Qp_ /= 0, but Ro is not reduced. The idea is to first construct a direct system
{R; | i € N}, of finite dimensional local k-algebras such that the maps R; — R;;1 are injective
and the induced maps Qg /x — Qg,, /& are all zero maps. Then Ry is taken to be the union
of all R;’s. See [MS21, Theorem 2.2] for the details of Gabber’s construction.

3. APPLICATION TO HOCHSCHILD HOMOLOGY

We give an application of Theorem 2.9 in Hochschild homology. We begin by giving a
minimal review of Hochschild homology here.

Definition 3.1. Let A be a commutative ring over a field k. Then the n-th Hochschild
homology HH,,(A/k) is defined to be Tor2®+4(A, A).

Remark 3.2. Note that Hochschild homology can be defined for any associative k-algebra
which is not necessarily commutative. If we denote A° to denote the opposite algebra of A, one
can in general define HH,,(A) := Tor/?®*4°(A, A). Thus, HH, (A) is really a “noncommutative
invariant” of A, even if A is a commutative algebra.

Remark 3.3. There is an explicit chain complex which can be used to compute Hochschild
homology groups in general. It is given by

2 AR ARQL A AR A— A— 0,
where A lives in degree zero. The differentials d : A®"*1 s A®k™ are given by

ap®- - @y — A1 Q- - Dy —ARDA1AD- - -Qap+- - +(—1)"ap®" - - @p_1an+(—1)"apao®- - @a,_1.

The complex described above can be viewed as an object in the derived category of A de-
noted as D(A), where it is quasi-isomorphic to A ®ﬁ®k 40 A. This object will be denoted by
HH(A/k) € D(A).

We recall an important result about the object HH(A/k). The result is phrased using the
language of filtered objects in derived categories and we refer the reader to [BMS19] for the
necessary definitions. The proposition below is obtained by left Kan extending the Postnikov
filtration from the smooth case.

Proposition 3.4. (Hochschild-Kostant—Rosenberg (HKR) filtration) Let A be a commuta-
tive k-algebra as before. Then HH(A/k) — viewed as an object of (the stable co-category)
D(A) admits a natural, complete, descending N-indexed filtration, whose i-th graded piece
is isomorphic to AL 4 k] for i > 0.



8 SHUBHODIP MONDAL AND ALAPAN MUKHOPADHYAY

Proof. See [Mor19, Proposition 2.28] and [BMS19, Section 2.2]. O

Proposition 3.5. Let k be a field of characteristic 0 and A be a reduced commutative
k-algebra. If HH;(A/k) = 0, then HH;(A/k) = 0 for all + > 1.

Proof. We note that HH; (A/k) = Torf®’“A(A, A) =~ Q5. Therefore, our hypothesis implies
that 4/, = 0. Since A is reduced, it follows from Theorem 2.9 that A is in fact ind-étale
and therefore I 4/, is exact. So L, is isomorphic to 0 when viewed as an object of D(A).
Let Filfjxr(HH(A/E)) denote the HKR filtration on HH(A/k). Since the i-th graded piece
for the HKR filtration is zero for ¢ > 1 by Proposition 3.4,, we see that

() Filfixg (HH(A/k)) = Filjygg (HH(A/k))

for n > 1. Thus, we have an exact triangle

Filiixg (HH(A/k)) — HH(A/k) — A°L 4 ,.,[0] = A[0].
Using the fact that the HKR filtration is complete, we argue that HH(A/k) ~ A[0]; see for
e.g., [BMS19, Definition 5.1] for the definition of a filtered object in the derived category
being complete. Indeed, from the completeness of the HKR filtration and Equation (5), it
follows that
0 =~ Rlim Filjjxp (HH(A/k)) =~ Filjjcp (HH(A/k)).

However, by the exact triangle above, that implies that HH(A/k) ~ A[0]. This finishes the
proof. O

Example 3.6. Proposition 3.5 is false if we do not assume the ring to be commutative. A
natural source of counterexamples arise from the theory of differential operators. For n > 1,
let A,, denote the n-th Weyl algebra over a field k of characteristic 0; one can also think of A,,
as the ring of differential operators of the polynomial ring in n variables over k. Concretely,
A, is an associative unital algebra over k generated by z1,...,z, and 9',...,0" modulo the
relations x;x; = xjx;, 0;0; = 0;0; and O;x; — x;0; = 0;;, where §;; is the Kronecker delta
symbol.

There is a natural increasing and multiplicative filtration on A,, called the order filtration.
Since k has characteristic 0, the associated graded algebra of A, under the order filtration
is a commutative polynomial algebra in 2n variables. This implies that A, is a reduced
noncommutative k-algebra. We note that

k ifi =2n,
0 otherwise;

HH;(A,) = {

see [Ric04, section 3.1] or [Sri6l, section 5]. This gives a very natural counterexample to
Proposition 3.5 if the ring is not assumed to be commutative. Note that A, is even an
“almost commutative ring” in the sense of filtered rings.

4. APPLICATION TO K-REGULARITY

We begin by very briefly recalling the definition of the higher K-groups. For any associa-
tive and unital ring A, one can define the nonconnective K-theory spectrum K(A) [TT90],
[Weil3]. One defines the K-groups of A, denoted by K,,(A) for n € Z to be the n-th homotopy
group of the spectrum K(A), i.e.,

K (A) := 10 (K(A)).
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Remark 4.1. Let us give more elementary descriptions of some of the K-groups that are of
relevance to us. We note that K((A) is the Grothendieck group of A, which is obtained by
group completing the monoid of finitely generated projective A-modules.

Now we explicitly describe K1(A); see [Weil3, Chapter III, Section 1]. For a ring A, note
that we have a sequence of group inclusions

GL1(A) = GLa(A) = ... = GLy(A4) — ...

where the inclusion GL,(A) — GLp4+1(A) takes a matrix M to [é ]\04] Let us denote
the group obtained by taking union of the above sequence of inclusions by GL(A). Let
[GL(A), GL(A)] denote the derived subgroup, i.e., the subgroup generated by the commuta-
tors. Then one has

K1(A) = GL(A)/[GL(4), GL(A)]

The negative K-groups can also be described explicitly, in an inductive fashion, using an
earlier construction of Bass. For n < 0, one has

K (A) = Coker (Kpy1(A[t]) x Kny1(A[t™]) = Kny1(Alt,t7'])) .

The above description can be obtained by covering ]P’}4 by the two standard affine opens
Spec A[t] and Spec A[t~!] and using a Mayer—Vietoris sequence argument (see [TT90, Theo-
rem 6.1]).

Definition 4.2. A commutative k-algebra A is defined to be K,,-reqular if the natural map

K, (A) = K,(Alz1, ..., 2])

is an isomorphism for all r > 0.
In [Weig0, Question 2.9], Weibel asked the following questions.

Question 4.3 (Weibel). Let R be a commutative noetherian ring of Krull dimension d.

(1) Is Kp(R) =0 for n < —d?
(2) Does R happen to be K,-regular for n < —d?

In [Wei80], Weibel also answered the question when d = 0 and 1. This question was
answered in [Cor-+08] by Cortinas, Haesemeyer, Schlichting and Weibel for finite type algebras
over a field of characteristic zero. The question was completely answered by Kerz, Strunk,
and Tamme in [[KST18]. See also [[Kerl8&]. Note that when R is a regular noetherian ring,
then all the negative K-groups of R vanish [Bas68].

It was proven by Quillen in [Qui73] that a regular noetherian ring is K,-regular for all
integers n. The following was conjectured (and proven in dimensions < 1) by Vorst in [Vor79],
which predicts the converse.

Conjecture 4.4 (Vorst). If R is a commutative ring of dimension d, essentially of finite type
over a field k, then K i-regularity implies regularity.

When R is essentially of finite type over a field k£ of characteristic zero, Cortinas, Haese-
meyer, and Weibel proved that the above conjecture holds [CHWO08]. Positive characteristic
variants have been studied by Geisser and Hesselholt in [GH12] and Kerz, Strunk, and Tamme
in [KST21].
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We point out that all the results above makes certain finiteness assumptions. However, as
Vorst mentions in [Vor79], it is not clear if the finiteness assumptions are necessary in Conjec-
ture 4.4. As a consequence of Theorem 2.9, we will deduce some instances of Weibel’s question
(see Proposition 4.5) and Vorst’s conjecture (see Proposition 4.6) without any finiteness or
even noetherian assumptions.

Proposition 4.5. Let A be a commutative k-algebra over a field k& of characteristic zero
such that the module of (d + 1)-forms /\d“‘lQA/,C = 0. Then

(1) K,(A) =0 for n < —d.

(2) Ais Ky-regular for all n < —d.

Proof. By Theorem 2.5, the k-transcendence degree of A is < d. It then follows from (2),
Proposition 2.2 that any finite type k-subalgebra of A must have Krull dimension < d.
Therefore, by using [Cor+08, Theorem 6.2] and taking filtered colimits over all finite type
k-subalgebras of A, we obtain the desired conclusion. O

Proposition 4.6. Let A be a commutative k-algebra over a field k& of characteristic zero
such that the module of Kahler differentials €2 4/, = 0. If A is Kj-regular, then A is ind-étale.
Moreover, A is K,-regular for all integers n.

Proof. One observes that A being Kj-regular implies that A is reduced. In order to see
this, we note some well-known general constructions. For any commutative ring R, taking
determinant induces a natural group homomorphism det : GL(R) — R*, which factors to
give a map

det : K1(R) — R*.

Here R* is the abelian group of units of R. Note that there is also a natural map R* =
GLi(R) — K1(A) which admits a section provided by det : K;(R) — R*. Coming back to

our situation, the Kj-regularity of A in particular implies that the map K;(A) — K;(A[t])
induced by the natural inclusion A < A[t] is an isomorphism. We have the following com-
mutative diagram where the vertical arrows are given by the ‘det’ maps and the horizontal
maps are induced by the inclusion A < A[t].

A ——————— (Aft])~

J

Ki(A) —— Kui(Aft])

Since the vertical maps and the bottom horizontal maps are surjective, the inclusion A* <
(A[t])* is also surjective. If there were a nonzero nilpotent element a € A, the element
1+at € (A[t])* would not come from A*. Thus we conclude that A is reduced. Theorem 2.9
now implies that A is ind-étale. For the last part of the proposition, we again note that
the K-groups commute with taking direct limits and étale algebras are K,,-regular for all n,
which yields the claim. O

Note that Proposition 4.6 provides a criteria for an algebra being ind-étale in terms of
certain condition on the differential forms and Kj-regularity. It seems to be an interesting
question to find higher dimensional generalizations of this proposition, which would give a
criteria for ind-smoothness. Motivated by proposition 4.6, we formulate the following question
which we do not know how to answer.
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Question 4.7. Let k£ be a field of characteristic zero and A be a k-algebra such that
AHLQ 4 sk = 0. Suppose that A is K, regular for all n. Is A necessarily a direct limit of
smooth k-algebras?

The above question imposes K,,-regularity condition on the algebra A, which is motivated
by Vorst’s conjecture. However, we point out that there is a difference between the formula-
tion of classical Vorst conjecture and Question 4.7 or Proposition 4.6. In the classical version
(see Conjecture 1.1) the K-regularity assumption and the conjectured regularity, both involve
absolute notions such as K-groups and regular rings; the essentially finite type hypothesis
serves as an assumption making other techniques (such as the crucial usage of the cdh topol-
ogy) applicable in the problem. But, in Question 4.7, the K-regularity assumption involves
absolute notions whereas the desired conclusion in the question, namely the ind-k-smoothness
is a relative notion (as it refers to the base k); the AT, /i = 0 assumption however is again
a relative assumption. The latter ensures for example, that all finite type k-subalgebras of A
have dimension at most d (by Proposition 2.2, (2) and (7)).
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