
AFFINE STACKS AND DERIVED RINGS

AKHIL MATHEW AND SHUBHODIP MONDAL

Abstract. We use derived rings to revisit the theory of affine stacks due to Toën and introduce a
class of derived stacks called affine derived stacks. We discuss several applications and examples,
namely, in p-adic homotopy theory, formal groups, and prismatization.
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1. Introduction

Let k be a commutative ring. In the following, a stack denotes an fpqc sheaf of spaces on the
category of k-algebras. In [Toë06, Def. 2.2.4], Toën defines the subclass of affine stacks over k and
shows an anti-equivalence (induced by taking global sections) between affine stacks over k and the
homotopy theory of the model category of cosimplicial k-algebras, cf. [Toë06, Cor. 2.2.3]. We refer
also to [MRT22] and [MR23] for some recent applications of the theory of affine stacks.

The class of affine stacks can be described intrinsically as the smallest class of stacks containing
the objects K(Ga, n) and stable under limits. When k is a field, a pointed connected stack is affine
if and only if the homotopy group sheaves are representable by unipotent group schemes (possibly
of infinite type) [Toë06, Th. 2.4.1].

When k is a field of characteristic zero, the theory of affine stacks over k is also developed
by Lurie, [Lur11b, Sec. 4], at least in the connected case, in which case affine stacks correspond
to coconnective E∞-algebras R/k such that k ≃ π0(R), cf. [Lur11b, Th. 4.4.1]. Moreover, Lurie
shows that quasi-coherent sheaves on the affine stack corresponding to R can be identified with the
left-completion of Mod(R), cf. [Lur11b, Prop. 4.5.2]. The work [Lur11b] uses E∞-rings rather than
cosimplicial rings, and therefore requires a restriction to characteristic zero.

The purpose of this paper is to revisit the theory of affine stacks using the theory of derived
rings as developed by Raksit [Rak20, Sec. 4] (instead of using the model category of cosimplicial
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rings), and to generalize some of the results of Lurie and Toën to the setting of derived algebraic
geometry.

The key idea in this paper is approaching the above story via descent: in Section 2, we introduce
the notion of coconnective faithful flatness, which may be viewed as an extension of the notion of
faithful flatness for animated rings due to Lurie to the set up of derived rings. In particular, we
observe that (derived) affine stacks satisfy descent along coconnectively faithfully flat maps, which
allows us to reprove and extend the results discussed above.

To elaborate further, we fix a base animated ring k. Let us first define the class of affine derived
k-stacks.

Definition 1.1 (Affine derived stacks). Let Ani(Algk) be the ∞-category of animated k-algebras.
A derived k-stack is an accessible1 fpqc hypersheaf of anima2 on Ani(Algk). We let DerStackk

denote the ∞-category of derived k-stacks.
A derived k-stack X is said to be affine if the following conditions hold.
(1) X is nilcomplete, i.e., for all A ∈ Anik, we have X(A) ∼−→ lim←−X(τ≤nA).
(2) For each n, the restriction of X to the subcategory of n-truncated animated k-algebras

belongs to the subcategory of sheaves of anima on n-truncated animated k-algebras generated
under limits by K(Ga, i), i ≥ 0.

An affine derived k-stack is said to be n-derived for some n ≥ 0 if, as a functor, it is left Kan
extended from the subclass of n-truncated animated k-algebras.

Unlike [Toë06], we allow hypersheaves of anima on all animated rings rather than only on discrete
rings. When k is discrete, we show that 0-derived affine stacks in the sense of Definition 1.1 agree
with affine stacks in the sense of [Toë06].

We write DAlgk as the ∞-category of derived k-algebras. Let us recall [Rak20, Sec. 4] that
DAlgk provides a way of considering “nonconnective” animated rings. The ∞-category DAlgk

is defined as the ∞-category of algebras over the derived symmetric algebra monad, Sym∗, on
Mod(k).

Construction 1.2 (The derived S̃pec construction). Given a derived k-algebra R ∈ DAlgk, we
define a derived stack S̃pec R which carries an animated k-algebra A to HomDAlgk

(R, A).

It is not difficult to see that for any R ∈ DAlgk, S̃pec R is an affine derived k-stack. The
construction S̃pec : DAlgk → DerStackop

k is a left adjoint; its right adjoint is given as follows.
Given any stack X, the coherent cohomology RΓ(X,O) ∈ Mod(k) naturally has the structure of
an object of DAlgk, and X 7→ RΓ(X,OX) is the right adjoint. Our first main result states that
under mild hypotheses, affine derived stacks canonically arise in this form.

Theorem 1.3. The functor S̃pec : DAlgop
k → DerStackk is fully faithful on the subcategory of

derived k-algebras which are either bounded-below or bounded-above. The image of S̃pec on the
subcategory of n-truncated derived k-algebras is precisely the subcategory of n-derived affine k-stacks.

Theorem 1.3 generalizes [Toë06, Cor. 2.2.3] (which is precisely the case of 0-derived affine
stacks) or [Lur11b, Th. 4.4.1] (in characteristic zero, and with a connectivity hypothesis) to a
description of n-derived affine stacks for any n in terms of derived rings. As a result, we obtain
(cf. Corollary 3.12) a description of the ∞-category of affine derived k-stacks as the limit of the
∞-categories of n-truncated derived k-algebras. As a corollary of Theorem 1.3, we see that the
∞-category underlying the model category of cosimplicial algebras is canonically equivalent to the
∞-category of coconnective derived rings (see Corollary 3.7). A variant of Corollary 3.7 (without the

1That is, it commutes with sufficiently filtered colimits.
2Also called the ∞-category of ∞-groupoids or the ∞-category of spaces.
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refinement of coconnective objects) has also been obtained recently by Brantner–Campos–Nuiten
using model theoretic methods (see [LBN23, Cor. 5.29]).

Our second main result gives a comparison for quasi-coherent sheaves on an affine stack,
generalizing a result for pointed connected affine 0-derived stacks over fields of characteristic zero
due to Lurie [Lur11b, Prop. 4.5.2] and fields of arbitrary characteristic due to Mondal–Reinecke
[MR23, Prop. 2.2.28]).
Theorem 1.4. Let R be a derived k-algebra. The functor

Mod(R)→ QCoh(S̃pec R)
establishes the target as the left-completion of the source (with respect to the t-structure of Defini-
tion 2.1).

We also prove the following result, which generalizes a result due to Toën for stacks over a field
[Toë06, Th. 2.4.1].
Theorem 1.5. Let k be a ring such that every finitely presented k-module has finite flat dimension.
Let X be a pointed connected hypercomplete fpqc sheaf on discrete k-algebras. Assume that the
homotopy sheaves πi(X) are representable by unipotent affine group schemes (see Definition 4.12)
over k. Then X is an affine stack.

Remark 1.6. Note that every regular noetherian ring k satisfies the assumptions of the above
theorem [BL19, Lem. 11.3.10]. The converse of Theorem 1.5 does not hold unless k is a field; see
[MR23, Ex. 5.4.1].

We also discuss some applications and examples of affine stacks and the corresponding derived
rings. In particular, we show that quasi-affine schemes and the classifying stacks of group schemes
that are Cartier duals to formal groups are all affine stacks (see Proposition 4.7 and Proposition 4.19).
We also recall a result of Bhatt–Lurie that the stacks arising as the relative prismatization
[BL22b, Dri20] of an affine p-adic formal scheme are affine. As a consequence, we recover an
unpublished result of Bhatt (Corollary 4.21) which identifies modules over derived prismatic
cohomology with quasi-coherent sheaves on the prismatization.

Next, we use the theory of affine stacks to give an exposition of p-adic homotopy theory over
Fp-schemes, following ideas of Lurie [Lur13] (who considers E∞-rings rather than derived rings).
In [Lur13, Sec. 2], the notion of a p-constructible sheaf of anima on a qcqs scheme X is introduced,
defining a subcategory Shvp-cons(X) of the∞-category of étale sheaves of anima on X; in particular,
this condition implies that the homotopy groups of each stalk are finite p-groups.
Theorem 1.7. Let A be an Fp-algebra. Then there is a fully faithful functor

C∗(−,O) : Pro(Shvp-cons(Spec A))op → DAlgA.

In the case where A is regular noetherian, the essential image consists of those derived A-algebras
whose homotopy groups are filtered colimits of finitely generated unit Frobenius modules in the sense
of [EK04].

Finally, we prove the following theorem, which generalizes [MR23, Thm. 1.0.8] over an arbitrary
base ring.
Theorem 1.8. Let k be a discrete ring. Let Gk denote the ∞-category of augmented coconnective
derived rings R over k such that H2(R) is a projective module of rank r over k, and H∗(R) ≃
Sym∗H2(R). Then Gk is equivalent to the category of commutative formal groups of dimension r.

The proof of the above result once again relies on the notion of coconnective faithful flatness.
Relatedly, in Proposition 6.4, we prove that if F is a formal group over an arbitrary base ring
k, then the stacks K(F ∨, n) are affine. In Remark 6.10, we explain how one can recover and
extend the 1-dimensional formal group constructed by [Dri21] to the stack (Spf Zp)syn by using
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Theorem 1.8 and the derived ring obtained from (Nygaard filtered) prismatic cohomology of BGm.
This extension has recently been obtained by Manam using topological periodic cyclic homology,
who also proves an algebraization result for this formal group [Man24].

Conventions. We will freely use the language of ∞-categories and higher algebra as developed
in [Lur09], [Lur17]. We will denote by S the ∞-category of spaces, also called the ∞-category of
anima or∞-groupoids. For an ordinary base ring k, we use Anik to denote the category of animated
k-algebras and Anik,≤n to denote the category of n-truncated animated k-algebras. We denote by
DAlg the ∞-category of derived rings [Rak20]; for A ∈ DAlg, we use DAlgA to denote DAlgA/.
The category of n-truncated derived A-algebras are denoted by DAlgA,≤n. An fpqc hypersheaf of
anima on Aniop

k will be called a derived k-stack.
For an Fp-algebra R, we let Rperf := lim−→φ

R to be the direct limit perfection of R.

Acknowledgments. We are grateful to Bhargav Bhatt, Dmitry Kubrak, Shizhang Li, Jacob Lurie,
Joshua Mundinger, and Arpon Raksit for helpful conversations related to this paper. During the
preparation of this work, Mathew was a Clay Research Fellow and was also supported by the
National Science Foundation (#2152235, #2152311); Mondal was supported by MPIM (Bonn),
UBC (Vancouver), and IAS (Princeton).

2. Coconnective faithful flatness

In this section, we discuss a notion of faithful flatness for maps of derived rings (which reduces
to the usual notion in the connective case, i.e., for animated rings) and prove an analog of faithfully
flat descent.

Definition 2.1. Let R be any E1-ring. Using [Lur18, Prop. C.6.3.1], we can define a t-structure
on Mod(R) as follows:

(1) The connective objects Mod(R)≥0 are the smallest subcategory of Mod(R) generated under
colimits and extensions by R itself.

(2) The coconnective objects Mod(R)≤0 are the objects of Mod(R) which are coconnective as
underlying spectra.

By loc. cit., the t-structure on Mod(R) is compatible with filtered colimits.

Remark 2.2. When R is connective, the above is the usual t-structure on Mod(R), i.e., an object
of Mod(R) is (co)connective if and only if the underlying spectrum is (co)connective.

Let A → A′ be a map of E1-rings. It is easy to see that the base-change functor − ⊗A A′ :
Mod(A)→ Mod(A′) is right t-exact: that is, it preserves connective objects.

Definition 2.3 (Coconnective flatness). We say that the map A→ A′ of E1-rings is coconnectively
flat if extension of scalars Mod(A) → Mod(A′) is left t-exact (and therefore t-exact): in other
words, if extension of scalars preserves coconnective objects.

Definition 2.4 (Coconnectively faithful flatness). Let A→ A′ be a map of E1-rings. We say that
it is coconnectively faithfully flat if it is coconnectively flat and extension of scalars is conservative
on bounded-above objects: that is, an A-module which is n-truncated for some n vanishes if and
only if its extension of scalars to A′ vanishes.

Proposition 2.5. The map A → A′ is coconnectively faithfully flat if and only if for every
M ∈ Mod(A)≤0, the map

M →M ⊗A A′

has fiber in Mod(A)≤−1.
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Proof. Suppose M ⊗A fib(A → A′) belongs to Mod(A)≤−1 for all M ∈ Mod(A)≤0, so it follows
from the cofiber sequence

M ⊗A (fib(A→ A′))→M →M ⊗A A′

that M ⊗A A′ ∈ Mod(A)≤0. Thus, A→ A′ is coconnectively flat. Moreover, the hypothesis (and
above cofiber sequence) implies that the map M → M ⊗A A′ induces an injection on homotopy
groups (with respect to the t-structure); this implies that if M is bounded-above, then M vanishes
if and only if M ⊗A A′ vanishes.

Conversely, suppose that A → A′ is coconnectively faithfully flat. Given M ∈ Mod(A)≤0, we
wish to show that fib(M →M ⊗A A′) ∈ Mod(A)≤0. In fact, by the above exact triangle and since
M ⊗A A′ ∈ Mod(A)≤0, it suffices to show that M →M ⊗A A′ induces an injection on homotopy
groups with respect to the above t-structure; however, this can be tested (by t-exactness and
conservativity on bounded-above objects) after extension of scalars to A′, where the map has a
section. □

Remark 2.6 (Comparison with the connective case). Let A→ A′ be a map of connective E1-rings.
Then the map A→ A′ is coconnectively faithfully flat if and only if it is faithfully flat in the sense
of [Lur11a, Def. 5.2]: that is, if π0(A)→ π0(A′) is faithfully flat as a map of discrete associative
rings, and π∗(A′) ≃ π0(A′)⊗π0(A) π∗(A). This follows from [Lur17, Th. 7.2.2.15].

We now specialize to the case of derived rings.

Proposition 2.7. The class of coconnectively faithfully flat maps of derived rings is closed under
composition, base change, and filtered colimits.

Proof. The closure under composition and base change follow directly from Definition 2.4. The
closure under filtered colimits follows from Proposition 2.5, since the t-structure on modules is
compatible with filtered colimits. □

Construction 2.8 (A Grothendieck topology on DAlg). As a consequence of Proposition 2.7,
by [Lur18, Prop. A.3.2.1], there is a Grothendieck topology on DAlgop with the covering families
generated by the coconnectively faithfully flat maps and {A1 × A2 → A1, A1 × A2 → A2} for
A1, A2 ∈ DAlg. We call this the coconnectively flat topology.

Remark 2.9. Let A be a derived ring. Let A0 be an animated ring with a map A0 → A, and
let A0 → B0 be a map of animated rings. Let B = A⊗A0 B0, so that Mod(B) can be described
as B0-modules in the (A0-linear) ∞-category Mod(A). The forgetful functor Mod(B)→ Mod(A)
is t-exact (left t-exactness is automatic, and right t-exactness follows because B is connective as
A-module). Thus, Mod(B)♡ can be described as the abelian category of π0(B0)-modules in the
π0(A0)-linear abelian category Mod(A)♡.

We will frequently use the following criterion for coconnective faithful flatness; when A is a field,
the result is [Lur11b, Cor. 4.1.12].

Proposition 2.10. Let A be an animated ring. Let R be an augmented derived A-algebra, and
suppose the fiber of the augmentation f : R→ A has Tor-amplitude in degrees ≤ −1 as A-module.
Then the augmentation f : R→ A is coconnectively faithfully flat.

Lemma 2.11 (Small object argument). Let C be a presentable stable ∞-category, and let C0 ⊂ C
be a small subcategory. Given any object X ∈ C, there exists a map X → X ′ in C such that:

(1) X ′ receives no nonzero maps from any object in C0.
(2) The fiber of X → X ′ belongs to the smallest subcategory of C generated under extensions

and filtered colimits under C0.
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Proof. This follows from the small object argument in the form of [Lur18, Prop. 12.4.2.1] applied
to the map X → 0. We take the class S of maps in loc. cit. taken to be {c0 → 0, c0 ∈ C0}. Then
loc. cit. shows that there exists a factorization X → X ′ → 0 such that X is a sequential colimit of
morphisms which are pushouts along coproducts of maps in S, and such that X ′ → 0 admits the
right lifting property with respect to S. This gives the desired claims. □

Definition 2.12 (Tor-amplitude). Let R be a derived ring, and let M be an R-module. We say
that M has Tor-amplitude ≤ 0 if for every N ∈ Mod(R)≤0, one has M ⊗R N ∈ Mod(R)≤0.

Note that the collection of R-modules of Tor-amplitude ≤ 0 is always closed under extensions
and filtered colimits, and contains R[−i] for i ≥ 0.

Proposition 2.13. Suppose R is connective. Then the collection of R-modules of Tor-amplitude
≤ 0 is the smallest subcategory of Mod(R) closed under filtered colimits and extensions, and
containing R[−i], i ≥ 0.

Proof. Let M be an R-module of Tor-amplitude ≤ 0. Let C0 be the collection {R[−i], i > 0}. We
apply Lemma 2.11 to the map M → 0. It produces a map M → M ′ such that M ′ is connective
and the fiber of M →M ′ belongs to the smallest subcategory of Mod(R) generated under filtered
colimits by C0. The cofiber sequence

M →M ′ → fib(M →M ′)[1]
shows now that M ′ has Tor-amplitude ≤ 0. But since M ′, R are connective, this implies by [Lur17,
Th. 7.2.2.15] that M ′ is a flat R-module and therefore belongs to the subcategory of R-modules
generated under filtered colimits by Rn, n ≥ 0. The above cofiber sequence now shows that M
belongs to the smallest subcategory of Mod(R) closed under filtered colimits and extensions, and
containing R[−i], i ≥ 0, as desired. □

Proposition 2.14. Let A be an animated ring, and let R be a derived A-algebra. Suppose that
cofib(A→ R) has Tor-amplitude ≤ −1 as an A-module. Given an R-module M , the following are
equivalent:

(1) M has Tor-amplitude ≤ 0.
(2) The underlying A-module of M has Tor-amplitude ≤ 0.
(3) M belongs to the smallest subcategory of Mod(R) closed under extensions and filtered

colimits, and containing R[−i] for i ≥ 0.

Proof. It is easy to see that (3) implies (1). If (1) holds and N is any coconnective A-module, then
we need to show that M ⊗A N is coconnective. But M ⊗A N = M ⊗R (R⊗A N) where R⊗A N is
also coconnective because R has Tor-amplitude ≤ 0 as A-module. Thus M ⊗A N is coconnective
because of the assumption (1).

Finally, we need to show that (2) implies (3). Our strategy will be to produce a sequence of
maps

M = M0 →M1 →M2 → . . . (2.0.1)
such that for each i ≥ 0:

(1) Each Mi satisfies (2).
(2) For i ≥ 0, fib(Mi →Mi+1) satisfies (3).
(3) Each map Mi →Mi+1 is zero on π∗.

In particular, this means that inductively fib(M →Mi) satisfies (3), and M = lim−→i
fib(M →Mi),

whence M satisfies (3).
Let us now produce the above sequence; by iteration, it suffices to produce M → M1. If M

satisfies (2), then by Proposition 2.13, the underlying A-module of M belongs to the smallest
subcategory of Mod(A) closed under extensions and filtered colimits, and containing A[−i] for i ≥ 0.
It follows that the R-module R⊗A M belongs to the smallest subcategory of Mod(R) closed under
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extensions and filtered colimits, and containing R[−i] for i ≥ 0. Consider the cofiber sequence of
R-modules

R⊗A M →M →M1
def= cofib(R⊗A M →M).

Note that the first map has a section of underlying A-modules (given by A⊗A M → R⊗A M via the
unit A→ R), so its cofiber is isomorphic as A-module to cofib(A→ R)⊗A M [1]. The assumption
that cofib(A→ R) has Tor-amplitude ≤ −1 as A-module means that M1 has Tor-amplitude ≤ 0
as A-module. Moreover, since M →M1 is the zero map as underlying A-modules, it induces zero
on π∗. This produces the map M →M1 satisfying the desired conditions, and iterating produces
the sequence (2.0.1) and proves the result. □

Proof of Proposition 2.10. Applying Proposition 2.14 to fib(R → A)[1] (using the augmentation
to define the R-module structure on A) shows that this R-module has Tor-amplitude ≤ 0. This
implies that R→ A is coconnectively faithfully flat, as desired. □

Corollary 2.15. The map Sym∗
Z(Z[−n])→ Z is coconnectively faithfully flat for any n > 0.

Proof. This follows from Proposition 2.10. In fact, we need to check that Symi(Z[−n]) has Tor-
amplitude ≤ 0 as a Z-module. This follows from the following observations: Z[−n] can be written
as a finite (e.g., n-coskeletal) totalization of a cosimplicial diagram of free abelian groups; Symi

preserves such cosimplicial diagrams and their totalizations (see [BGMN22, Prop. 2.10]); and the
collection of Z-modules of Tor-amplitude ≤ 0 is stable under finite limits.3 □

Remark 2.16. The analog of this result does not appear to hold in spectral algebraic geometry
over Z (i.e., with E∞-algebras over Z rather than derived rings over Z). We do not know if there is
an analog of the theory of affine stacks in spectral algebraic geometry.

Proposition 2.17. Given any derived ring A, there exists a map A→ A′ which is coconnectively
faithfully flat and such that A′ is an animated ring.

Proof. This follows by transfinitely iterating Corollary 2.15. More precisely, we apply the small
object argument in the form of [Lur18, Prop. 12.4.2.1] with C = DAlg, S the collection of maps
Sym∗(Z[−n])→ Z for all n > 0, and to the map A→ 0. □

We now prove an analog of faithfully flat descent, following ideas of [Lur18, Sec. D.6]. To this end,
we make the construction A→ Mod(A)≤0 into a functor of A ∈ DAlg (with values in presentable
∞-categories), via extension of scalars followed by truncation in the t-structure.

Proposition 2.18 (Flat hyperdescent). The construction A 7→ Mod(A)≤0 satisfies hyperdescent
with respect to the coconnectively faithfully flat topology on DAlg.

Proof. First, we show that A 7→ Mod(A)≤0 satisfies descent for the coconnectively faithfully flat
topology. Since the construction preserves finite products, it suffices [Lur18, Prop. A.3.3.1] to show
that if A→ B is a map in DAlg which is coconnectively faithfully flat and B•

+ is the augmented
Čech nerve (so B−1 = A), then Mod(B•

+) is a limit diagram in Cat∞.
We verify this using the ∞-categorical monadicity theorem, in the form of [Lur17, Cor. 4.7.5.3].

The adjointability condition is automatic in light of [Lur18, Lem. D.3.5.6] (while we are working
with coconnective objects, all base-changes involved in the adjointability condition are along
coconnectively faithfully flat morphisms), so it suffices to show that extension of scalars Mod(A)≤0 →
Mod(B)≤0 preserves totalizations and is conservative (cf. [Lur18, Lem. D.3.5.7] for this argument
as well). Both follow because the extension of scalars functor is t-exact and conservative on the
heart, by the assumption of coconnective faithful flatness. This proves the comonadicity and we
deduce that A 7→ Mod(A)≤0 is a sheaf or the coconnectively faithfully flat topology.

3Actually, the subcategory of Mod(Z) of objects of Tor-amplitude ≤ 0 is stable under all limits, since Z is regular,
but we do not need this here. See Remark 3.17 below.
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Now we prove hyperdescent. Let ∆s,+ be the augmented semisimplicial category. Thanks to
[Lur18, Prop. A.5.7.2], it suffices to show that if C• : ∆s,+ → DAlg is a hypercovering for the
coconnectively faithfully flat topology in the sense of [Lur18, Def. A.5.7.1], then Mod(C•)≤0 is
a limit diagram in Cat∞. But we have (as augmented cosemisimplicial objects) Mod(C•)≤0 ≃
limn Mod(C•)[−n,0] under the truncation functors. Now Mod(C•)[−n,0] is a limit diagram by [Lur18,
Prop. A.5.7.2] again because A 7→ Mod(A)[−n,0] is (by what was proved above) a sheaf for the
coconnectively faithfully flat topology and is necessarily hypercomplete because it takes values in
(n + 1)-categories. □

Corollary 2.19. For any n and A ∈ DAlg, let DAlgA,≤n denote the category of n-truncated derived
rings. Then the construction A 7→ DAlgA,≤n satisfies hyperdescent in the coconnectively faithfully
flat topology on DAlg.

Proof. This is proved in a way similar to Proposition 2.18. □

Construction 2.20 (Truncation of derived rings). Given A ∈ DAlgk and n ≥ 0, we let τ
Mod(A)
≤n A

denote the n-truncation of A in the ∞-category Mod(A) with its t-structure constructed above.
We claim that τ

Mod(A)
≤n A has the structure of an object in DAlgk, and is the universal n-truncated

derived k-algebra that A maps to. To see this, we observe that the universal n-truncated derived
k-algebra that A maps to is obtained from A by repeatedly forming pushouts along the map
Sym∗(k[i])→ k for i > n, and this does not change the Mod(A)-homotopy groups in degrees ≤ n.
To emphasize this, we will sometimes write τ̃≤n for this truncation.

Note that, as a result, the category DAlgA,≤n has all colimits (and is presentable): a colimit is
computed by forming the colimit in DAlgA and then applying τ̃≤n.

Corollary 2.21. On the ∞-category DAlg, the construction A 7→ lim←−n
τ

Mod(A)
≤n A satisfies hyperde-

scent (as a functor to spectra) for the coconnective faithfully flat topology.

Proof. This follows from Proposition 2.18 upon taking the limit in n. □

Question. Let R be a derived ring which is bounded-below, i.e., πiR = 0 for i < −d. Then it
is easy to see that the t-structure on Mod(R) is hypercomplete, i.e., there are no ∞-connective
objects (because any n-connective object has (n− d)-connective underlying spectrum). Under what
conditions is the t-structure left complete, i.e., when does Mod(R) ≃ lim←−n

Mod(R)≤n?

While we do not know the answer to the above question in general, we include the following
criterion for left-completeness.
Proposition 2.22. Let R be a derived ring. Suppose there is a map R→ R′ such that:

(1) The map is descendable (in the sense of [Mat16, Def. 3.18], or [Lur18, Sec. D.3]).
(2) R′ and R′ ⊗R R′ are animated rings.

Then the t-structure on Mod(R) is left-complete.

Proof. Let R′• denote the cosemisimplicial Čech nerve of R → R′; then we have Mod(R) ≃
lim←−Mod(R′•) by [Mat16, Prop. 3.22] (and [Lur09, Lem. 6.5.3.7] to replace cosimplicial with
cosemisimplicial objects). Since we have used the semisimplicial Čech nerve, all the functors
involved are t-exact. By assumption, all the terms occurring in the inverse limit are module
∞-categories over animated rings and hence left-complete. The result follows. □

3. Embedding into derived stacks

Let us fix a base animated ring k. In this section we discuss the functor “S̃pec ” from derived
k-algebras to derived k-stacks. The main results are that this functor is fully faithful on derived
rings which are homologically either bounded-below or bounded-below (Theorem 3.4), and that
one has a comparison between modules and quasi-coherent sheaves (Theorem 3.16).
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We recall the following general fact. Let T be a site, and let B ⊂ T be a basis. Then
hypercomplete sheaves of anima on T are equivalent to hypercomplete sheaves of anima on B, via
right Kan extension, cf. [Aok, Th. A.6]. Thus, from Proposition 2.17, we obtain:
Corollary 3.1. Let C be a presentable ∞-category. Then for an accessible functor f : DAlgk → C,
the following are equivalent:

(1) f is a hypercomplete sheaf for the coconnectively faithfully flat topology.
(2) f is right Kan extended from animated k-algebras, and restricts to a hypercomplete sheaf

on animated k-algebras.

We recall (from Definition 1.1) that we write Ani(Algk) for the∞-category of animated k-algebras,
and DerStackk for the ∞-category of derived stacks, by which we refer to fpqc hypersheaves of
anima on Ani(Algk). Given a derived ring R ∈ DAlg, we obtain a stack S̃pec R ∈ DerStackk

carrying an animated k-algebra A to HomDAlgk
(R, A), cf. Construction 1.2.

Proposition 3.2. The construction S̃pec : DAlgk → DerStackop
k preserves colimits; its right

adjoint carries a stack X to the coherent cohomology RΓ(X,O) (considered as a derived k-algebra).

Proof. The first claim is evident. The second claim amounts to the assertion that if Y ∈ DerStackk

and R ∈ DAlgk, then HomDerStackk
(Y, S̃pec R) = HomDAlgk

(R, RΓ(Y,OY )); this reduces by taking
colimits to the case where Y is the spectrum of an animated k-algebra, where it follows from the
definitions. □

Proposition 3.3. The construction S̃pec : DAlgk → DerStackk carries coconnectively faithfully
flat morphisms into surjections of fpqc sheaves.

Proof. Let R → R′ be a coconnectively faithfully flat morphism in DAlgk. Given a map R → A
with A an animated k-algebra, we need to find a faithfully flat animated A-algebra B such that
R→ A→ B extends over R′. To this end, we form R′ ⊗R A, which is a derived A-algebra which is
coconnectively faithfully flat over A. By Proposition 2.17, we can find an animated ring B over
R′ ⊗R A which is coconnectively faithfully flat over R′ ⊗R A; the composite A→ R′ ⊗R A→ B is
coconnectively faithfully flat, whence faithfully flat. □

We now prove Theorem 1.3, which we restate for convenience.

Theorem 3.4 (Cf. [Toë06, Prop. 2.2.2]). The functor S̃pec : DAlgk → DerStackop
k is fully faithful

when restricted to derived rings which either are n-truncated or (−n)-connective for some n. In
particular, for any R ∈ DAlgk which is either n-truncated or (−n)-connective for some n, the
natural adjunction map

R→ RΓ(S̃pec R,O) (3.0.1)
is an equivalence.

Proof. By adjointness (Proposition 3.2), it suffices to prove the last claim.
We claim that the natural map (3.0.1) exhibits the target as the hypercompletion of the source,

as presheaves of spectra on DAlgk. To this end, we observe that the map is known to be an
equivalence for R an animated k-algebra (and such R form a basis for the topology), while the
target is a hypersheaf for the coconnectively faithfully flat topology thanks to Proposition 3.3 and
usual faithfully flat descent. The claim now follows from Corollary 3.1.

Next, we claim that the natural map (3.0.1) is isomorphic to the natural map R→ lim←−m
τ

Mod(R)
≤m R

of Construction 2.20. In fact, in light of Corollary 2.21, this follows (via Corollary 3.1) because
the natural map is an equivalence for animated rings, and the target satisfies hyperdescent for the
coconnective faithfully flat topology.

Therefore, we need to show that if R is either n-truncated or (−n)-connective, then the map from
R to lim←−m

τ
Mod(R)
≤m R is an equivalence. The former claim is immediate. For the latter, we use the
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description of τ
Mod(R)
≤m R for m > 0 given by Construction 2.20; for m≫ 0, we find that τ

Mod(R)
≤m R

is an isomorphism in degrees < m− n (as we are forming base-changes along Sym∗
k(k[i])→ k for

i > m), and the passage to the limit then proves the claim. □

We now show that n-truncated derived k-algebras embed into sheaves of anima on n-truncated
animated k-algebras (rather than all animated k-algebras), cf. Corollary 3.6. This could be proved
directly using similar arguments, but it will also be helpful to include a complementary observation.
The next result is an analog of [Lur11b, Prop. 4.4.4].

Proposition 3.5. Let R ∈ DAlgk. Then there exists an augmented cosimplicial object R• ∈
Fun(∆+, DAlgk) such that:

(1) R−1 = R.
(2) Each Ri, i ≥ 0 is an animated k-algebra.
(3) The diagram is a hypercover of R−1 in the coconnectively faithfully flat topology on DAlg.
(4) For any animated k-algebra A, the augmented simplicial space HomDAlgk

(R•, A) is a
hypercover.

Proof. We define a variant of the coconnectively flat topology on DAlgk as follows. Namely, say
that a map A→ B ∈ DAlgk is coconnectively projective if it is coconnectively faithfully flat and
any map A→ R for R an animated k-algebra extends to B.

We now claim that any object of DAlgk is covered in the coconnectively projective topology by
an animated ring; this follows similarly by running the small object argument [Lur18, Prop. 12.4.2.1
and proof] as in Proposition 2.17 by repeatedly making base-changes along maps of the form
Sym∗(V )→ k, where V is a (possibly infinite) direct sum of k[−i], i > 0. Now we can take R• to
be any hypercover of R in the coconnectively projective topology by animated rings. □

Corollary 3.6. The class of n-truncated derived k-algebras embeds contravariantly (via S̃pec )
fully faithfully into Shv(Anik,≤n) and has image the subcategory of the latter generated under limits
by K(Ga, i), i ≥ 0. This embedding carries colimits (computed in the ∞-category of truncated
k-algebras) to limits in Shv(Anik,≤n).

Proof. Let R be an n-truncated derived k-algebra. Then by Proposition 3.5, the functor S̃pec R is
left Kan extended from n-truncated animated k-algebras, whence the result follows from Theorem 3.4.

□

Corollary 3.7 (Comparison between derived and cosimplicial rings). Corollary 3.6 (in the case
n = 0) together with [Toë06, Cor. 2.2.3] implies that the underlying ∞-category of the model
category of cosimplicial rings and the ∞-category of coconnective derived k-algebras are canonically
equivalent.

Definition 3.8 (Affine derived stacks). A derived k-stack X is said to be affine if
(1) X is nilcomplete: that is, for any A ∈ Anik, we have X(A) ∼−→ lim←−X(τ≤mA).
(2) For each m, its restriction to Anik,≤m belongs to the subcategory of Corollary 3.6 (equiva-

lently, is corepresentable by an m-truncated derived ring).

Remark 3.9. The subcategory of DerStackk given by the affine derived k-stacks is closed under
limits.

Example 3.10. For any derived k-algebra R, the functor HomDAlgk
(R,−) is an affine derived

k-stack. In fact, its restriction to the subcategory of n-truncated animated k-algebras is given by
HomDAlgk

(τ̃≤nR,−).

Example 3.11. The derived stack K(Ga, n) is affine: it is the spectrum of the free derived
k-algebra, Sym∗

k(k[−n]).
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Corollary 3.12. There is an anti-equivalence of ∞-categories between the ∞-category of affine
derived k-stacks and the homotopy limit lim←−n

DAlgk,≤n where the transition maps are given by τ̃≤n

(using the notation of Construction 2.20).

Proof. This follows from Corollary 3.6. □

Remark 3.13. Due to the convergence issues, the theory of affine derived stacks behaves slightly
differently than the theory of affine stacks in [Toë06].

(1) In general, we do not know how the inverse limit in Corollary 3.12 compares with the
∞-category DAlgk. When k has characteristic zero, the existence of periodic derived
k-algebras (such as k[t±1] with |t| = 2) implies that the functor S̃pec : DAlgk → DerStackk

is not fully faithful in general.
(2) Note that by Remark 3.9 and the adjoint functor theorem, for every derived k-stack X,

there is a universal map to an affine derived k-stack X → U(X). However, there is also
a canonical map to an affine derived k-stack, namely, X → S̃pec RΓ(X,OX), which in
general is different from the above.

Both these issues do not appear if one restricts attention to n-truncated derived k-algebras
throughout (e.g., 0-derived stacks or higher stacks as in [Toë06, Lur11b]), and we expect these
issues to be irrelevant in most situations of practical interest.

By abuse of notation, we will refer to a functor on n-truncated animated k-algebras as an affine
derived stack if it is corepresentable by a derived k-algebra.

In the remainder of the section, we prove the comparison for quasi-coherent sheaves (as in
Theorem 1.4, restated for convenience as Theorem 3.16).

Definition 3.14 (Quasi-coherent sheaves). Given a derived k-stack X, we define QCoh(X) via
right Kan extension of A 7→ Mod(A) for animated k-algebras A, cf. [Lur18, Def. 6.2.2.1], so

QCoh(X) = lim←−
Spec A→X,A animated

Mod(A).

When X = S̃pec R for a derived k-algebra R, we have a comparison functor Mod(R)→ QCoh(S̃pec R).

Remark 3.15 (The t-structure on QCoh(S̃pec R)). If X = S̃pec R for R a derived k-algebra and
we can form a cosimplicial object R• as in Proposition 3.5, then by Proposition 3.3 and the theory
of fpqc descent gives QCoh(X) = lim←−Mod(R•). Consequently, we obtain a t-structure on QCoh(X)
such that an object is connective (resp. coconnective) if and only if its pullback to R0 is connective
(resp. coconnective). Note that the t-structure is independent of any choices: an object is connective
if and only if its pullback to any affine scheme is connective. However, the explicit identification of
the coconnective objects uses the presentation.

The next result is proved in [Lur11b, Prop. 4.5.2] in the case where R is a coconnective k-algebra
with k ≃ H0(R) for k a field of characteristic zero.

Theorem 3.16. Let R ∈ DAlgk. Then the functor Mod(R) → QCoh(S̃pec R) is t-exact (with
respect to the t-structure on the former of Definition 2.1 and on the latter of Remark 3.15), and
exhibits the target as the left-completion of the source.

Proof. The t-exactness follows from the explicit description in Remark 3.15: choose a coconnectively
faithfully flat map R → R0 with R0 an animated k-algebra, and observe that (by construction)
Mod(R) → Mod(R0) is t-exact. The target QCoh(S̃pec R) is left-complete by the description
QCoh(S̃pec R) = lim←−Mod(R•) (using the notation of Proposition 3.5). To see the last claim, it thus
suffices to verify the equivalence Mod(R)≤0

∼−→ lim←−Mod(R•)≤0, which follows from Proposition 2.18.
□
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Let us point out that the analogue of Theorem 3.16 often holds for stacks that are not affine. In
[MR23, Prop. 2.2.28], such a result was proven for pointed connected weakly affine stacks ([MR23,
Def. 2.2.1]) over a field. In the present paper, we do not discuss the most general statement along
these lines, but we note the following case in Proposition 3.18 which would be useful for later
applications.
Remark 3.17. In the next result (Proposition 3.18), we work with rings A such that every finitely
presented A-module has finite flat dimension. This applies to regular noetherian rings, but also
to some non-noetherian examples such as valuation rings or the polynomial ring Z[x1, x2, . . . ] in
infinitely many variables. The assumption implies that the collection of objects X ∈ Mod(A) with
Tor-amplitude in degrees ≤ 0 is closed under totalizations. This follows because by a filtered colimit
argument, the condition of Tor-amplitude can be tested with respect to finitely presented discrete
A-modules. In the latter case the desired condition on Tor-amplitude follows from commutation
of totalization; i.e., totalizations of coconnective objects commute with tensors with objects of
bounded-above Tor-dimension, as one sees by approximation by finite totalizations.
Proposition 3.18. Let A be a discrete ring such that every finitely presented A-module has finite
flat dimension. Let G be a flat affine commutative group scheme over Spec A and let n ≥ 2 be an
integer. Then the natural functor Mod(RΓ(BnG,O)) → QCoh(BnG) is t-exact and exhibits the
target as a left completion of the source.
Proof. Note that QCoh(BnG) is equipped with a t-structure such that an object is connective (resp.
coconnective) if and only if its pullback along the natural map Spec A→ BnG is connective (resp.
coconnective). The t-exactness of Mod(RΓ(BnG,O))→ QCoh(BnG) follows by construction and
because the map RΓ(BnG,O)→ A is coconnectively faithfully flat; the latter assertion follows from
the hypothesis on the ring A and flatness of G→ Spec A (see Proposition 2.10 and Remark 3.17).
By restriction, we obtain a functor

U∗ : Mod(RΓ(BnG,O))≤0 → QCoh(BnG)≤0,

which we will show to be an equivalence, which would prove the proposition. Note that U∗ admits
a right adjoint which we denote by U∗ : QCoh(BnG)≤0 → Mod(RΓ(BnG,O))≤0; this can be
identified as the global section functor. By choosing an explicit flat hypercover (cf. [MR23, Ex.
2.2.2]) for BnG, one sees that4 U∗ commutes with filtered colimits. By Definition 2.4 and the fact
that RΓ(BnG,O)→ A is coconnectively faithfully flat, it follows that U∗ is conservative. Therefore,
to show that U∗ is an equivalence, it suffices to show that the counit U∗U∗ → id is an equivalence.
Since QCoh(BnG) is right complete and U∗, U∗ preserves filtered colimits, it would be enough to
show that U∗U∗F → F is an equivalence for F ∈ QCoh♡(BnG). Since n ≥ 2, and QCoh♡(BnG) is
a 1-category, it follows by descent along Spec A→ BG that Mod♡(A) ≃ QCoh♡(BnG). Therefore,
in order to show that U∗U∗F → F is an isomorphism for F ∈ QCoh♡(BnG), by considering filtered
colimits, one may assume that F corresponds to a finitely presented discrete A-module V . By our
hypothesis on A, V has finite flat dimension. Using descent along Spec A→ BnG and the fact that
totalizations of coconnective objects commute with tensors with objects of bounded-above Tor-
dimension, we see that RΓ(BnG, V ) ≃ RΓ(BnG,O)⊗A V ; therefore, RΓ(BnG, V )⊗RΓ(BnG,O) A ≃
V ⊗A RΓ(BnG,O)⊗RΓ(BnG,O) A ≃ V. This yields the claim. □

Proposition 3.19. Under the assumptions of Proposition 3.18, let F1,F2 ∈ QCoh(BnG)≤0.
Then the natural map θF1,F2 : RΓ(BnG,F1)⊗RΓ(BnG,O) RΓ(BnG,F2)→ RΓ(BnG,F1 ⊗F2) is an
isomorphism.
Proof. By filtered colimit considerations, similar to proof of Proposition 3.18, it is enough to
prove that θF1,V2 is an isomorphism, where V2 is a finitely presented A-module viewed as an
object of QCoh(BnG) via pullback. Repeating the same argument, it is enough to prove that

4Here we use that totalization of coconnective objects commute with filtered colimits
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θV1,V2 is an isomorphism, where V1 is a finitely presented A-module. Note that V1 ⊗A V2 has
bounded above Tor-dimension. Since totalizations of coconnective objects commute with tensors
with objects of bounded-above Tor-dimension, by descent along Spec A → BnG, it follows that
RΓ(BnG, V1 ⊗ V2) ≃ RΓ(BnG,O)⊗A V1 ⊗A V2. This gives the desired statement. □

Lemma 3.20. Let A be a discrete ring such that every finitely presented A-module has finite flat
dimension. Let G1 and G2 be two flat affine commutative group scheme over Spec A. Then for any
n ≥ 0, we have a natural isomorphism RΓ(BnG1,O)⊗A RΓ(BnG2,O) ≃ RΓ(Bn(G1 ×G2),O).

Proof. The claim follows directly for n = 0. Via induction and the assumption on A, it follows that
RΓ(BnGi,O) has Tor-amplitude in ≤ 0 for i = 1, 2 and all n ≥ 0. To show the desired claim, let us
assume that for a given n ≥ 0, we have natural isomorphism RΓ(BnG1,O) ⊗A RΓ(BnG2,O) ≃
RΓ(Bn(G1 ×G2),O). By descent, we see that

RΓ(Bn+1G1,O)⊗A RΓ(Bn+1G2,O) ≃ lim
[k]∈∆

RΓ(BnG1,O)⊗k ⊗A lim
[l]∈∆

RΓ(BnG2,O)⊗l.

Using our assumption on A and commuting tensoring of objects with bounded above Tor-
dimension with totalization of coconnective objects, the right hand side above is isomorphic
to lim[k]×[l]∈∆×∆ RΓ(BnG1,O)⊗k ⊗A RΓ(BnG2,O)⊗l; which is further isomorphic to

lim
j∈∆

RΓ(BnG1,O)⊗j ⊗A RΓ(BnG2,O)⊗j ,

since ∆op is sifted. Now limj∈∆ RΓ(BnG1,O)⊗j ⊗A RΓ(BnG2,O)⊗j ≃ limj∈∆(RΓ(BnG1,O)⊗A

RΓ(BnG2,O))⊗j ≃ limj∈∆ RΓ(Bn(G1×G2),O)⊗j ≃ RΓ(Bn+1(G1×G2),O); thus we are done by
induction. □

Lemma 3.21. Let A be a discrete ring such that every finitely presented A-module has finite
flat dimension. Let G be a flat affine commutative group scheme over Spec A. For any ordinary
A-algebra C and any n ≥ 0, we have a natural isomorphism RΓ(BnG,O)⊗A C ≃ RΓ(BnGC ,O).

Proof. When n = 0, the claim follows diectly since G is flat. Via induction and our assumption on
A, it follows that RΓ(BnG,O) has Tor-amplitude in ≤ 0 for all n ≥ 0. To show the desired claim,
let us assume that for a given n ≥ 0 and any given A-algebra C, we have a natural isomorphism
RΓ(BnG,O)⊗A C ≃ RΓ(BnGC ,O). By descent along Spec A→ Bn+1G, we have

RΓ(Bn+1G,O)⊗A C ≃
(

lim
[k]∈∆

RΓ(BnG,O)⊗k

)
⊗A C.

Let us write C ≃ colimiCi, where each Ci is a finitely presented A-module. The right hand side
above can be rewritten as colim

((
lim[k]∈∆ RΓ(BnG,O)⊗k

)
⊗A Ci

)
. By assumption, each Ci has

bounded Tor-dimension, so by commutation of totalization of coconnective objects with tensoring
with modules of bounded Tor-dimension, we obtain

colim
((

lim
[k]∈∆

RΓ(BnG,O)⊗k

)
⊗A Ci

)
≃ colim

(
lim

[k]∈∆

(
RΓ(BnG,O)⊗k ⊗A Ci

))
.

By induction and Lemma 3.20, each term appearing in the totalization in the right hand side
is coconnective, and therefore, commutes with filtered colimits. Therefore, the right hand side
simplifies to

lim
[k]∈∆

(
colim

(
RΓ(BnG,O)⊗k ⊗A Ci

))
≃ lim

[k]∈∆

((
RΓ(BnG,O)⊗k ⊗A C

))
≃ lim

[k]∈∆
RΓ(BnGC ,O)⊗k,

where the last step follows from induction. Applying descent along Spec C → Bn+1C, thr right
hand term is naturally isomorphic to RΓ(Bn+1GC ,O), which finishes the proof. □
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Lemma 3.22. Let A be a discrete ring such that every finitely presented A-module has finite flat
dimension. Let G be a flat affine commutative group scheme over Spec A and let n ≥ 2 be an
integer. Then we have a natural isomorphism

A⊗RΓ(BnG,O) A ≃ RΓ(Bn−1G,O)
of derived rings.

Proof. We have the following pullback diagram

Bn−1G Spec A

Spec A BnG.

g′

f ′

g

f

By Proposition 3.18, it suffices to prove that f∗g∗O ≃ g′
∗f ′∗O. It would suffice to prove that the

O-module pushforward of OA along g is quasi-coherent. This follows from faithfully flat descent
along Spec A→ BnG, along with Lemma 3.21. □

4. Examples of affine stacks

If k is a field, then a pointed connected fpqc sheaf on discrete k-algebras is affine if and only if the
homotopy group sheaves are representable by pro-unipotent group schemes, cf. [Toë06, Cor. 2.2.3]
or (in characteristic zero) [Lur11b, Prop. 4.4.8]. In this section, we prove a generalization of this
result, and also include several additional examples of affine derived k-stacks (not restricting k to
be a field) and their corresponding derived rings.

4.1. Generalities.

Proposition 4.1. Let X be a derived k-stack. Let k → k′ be a map of animated rings. If X is
affine, then the base-change X ×Spec k Spec k′ is affine.

Proof. Follows from Remark 3.9. □

Proposition 4.2. Let X be a derived k-stack. Suppose k → k′ is faithfully flat and the base-change
X ⊗k k′ is affine (as a derived k′-stack). Then X is affine.

Proof. For each n, let X≤n denote the restriction of X to n-truncated animated k-algebras. It
suffices to see that X≤n is corepresentable by an n-truncated derived ring. Now the constructions
that carry k to “sheaves of anima on n-truncated animated k-algebras” and to “n-truncated derived
k-algebras” both satisfy flat descent in k. Therefore, testing whether an object of the former belongs
to the image of the latter (via the fully faithful embedding) can be done locally in the flat topology,
whence the result. □

Proposition 4.3. Let X→ Y be a map of derived k-stacks. Suppose that:
(1) Y is an affine stack.
(2) There is a map Spec A→ Y with A an animated k-algebra, which is surjective in the fpqc

topology, such that the fiber product Spec A×Y X is an affine A-stack.
Then X is an affine stack.

Proof. This follows in a way similar to the proof of Proposition 4.2 because the construction which
carries an n-truncated R ∈ DAlgk to the ∞-category DAlgR,≤n satisfies hyperdescent for the
coconnectively faithfully flat topology (Corollary 2.19). □

Corollary 4.4. Let k be a ring, and G an affine group scheme over k. Suppose BG is an affine
stack. If X is any affine k-scheme with a G-action, then the quotient stack X/G is affine. □
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Remark 4.5 (Relative affineness). Let X→ Y to be a map of derived k-stacks. One may define
X to be a relative affine derived stack over Y if for every affine derived scheme Spec A with a
map Spec A → Y, the base change Spec A ×Y X is an affine derived stack. For example, (using
Corollary 4.8) it follows that Pn is relatively affine over BGm.

Example 4.6 (Moduli of formal groups). Let G be the affine group scheme parametrizing formal
power series g(t) in one variable such that g(0) = 0 and g′(0) = 1 (under composition). Then G is
a unipotent group scheme and by Proposition 4.11, it follows that BG is an affine stack. Let L
denote the Lazard ring. Then G has a natural action on Spec L. By Corollary 4.4, it follows that
the quotient stack Spec L/G is an affine stack. LetMFG denote the module stack of formal groups,
which is equipped with a natural map MFG → BGm. The pullback of MFG along the fpqc cover
∗ → BGm is the stack Spec L/G, which as we showed, is affine. Therefore, MFG is relatively affine
over BGm. See [Man24, Prop. 3.17, Rmk. 3.18].

4.2. Quasi-affine derived schemes. In this subsection we show that quasi-affine derived schemes
are affine as derived stacks; in fact, we have the following more precise result. Compare [Lur18,
Cor. 2.4.2.2] for the analog in spectral algebraic geometry.

Proposition 4.7. Let X be a quasi-affine derived k-scheme. Then for any animated k-algebra A,
we have a natural equivalence

HomDSchk
(Spec A, X) ≃ HomDAlgk

(RΓ(X,OX), A).

Proof. Suppose X is an open subset of Spec B for B an animated ring, and is the complement
of the closed subset Z ⊂ Spec B defined by x1, . . . , xn ∈ π0(B). In fact, by base-change, we have
that RΓ(X,OX) ∈ DAlgB is an idempotent object, i.e., RΓ(X,OX)⊗B RΓ(X,OX) = RΓ(X,OX).
Thus, the map of anima HomDAlgk

(RΓ(X,OX), A)→ HomDSchk
(Spec A, X) = HomDAlgk

(B, A) is
an inclusion of a union of connected components and it only remains to determine the image. That
is, we need to determine when a map B → A factors over RΓ(X,OX). If such a factorization
exists, then A/(x1, . . . , xn) = 0 since B/(x1, . . . , xn) = 0, which implies that Spec(A)→ Spec(B)
has image in the open complement of Z. Conversely, if Spec(A)→ Spec(B) has image in the open
complement of Z, then B → A factors over B → RΓ(X,OX)→ A as desired. □

For the next result, cf. also the discussion preceding [Toë06, Cor. 2.2.11] and [MR23, Ex. 2.1.13.].

Corollary 4.8. A quasi-affine derived k-scheme is an affine derived k-stack.

Proof. Follows from Proposition 4.7. □

4.3. Geometric stacks. A 0-derived stack is called geometric if it can be presented via a flat Hopf
algebroid, cf. [Lur18, Def. 9.3.0.1]; for example, this applies to the quotient of an affine scheme by
a flat affine group scheme. A key consequence of geometricity is the Tannaka duality results proved
in loc. cit. and [BHL17].

In this subsection, we describe some examples of geometric stacks which are affine; to prove
affineness, we often use Tannakian reconstruction techniques of [Lur18, Ch. 9], following ideas used
in [Mon22b].

Construction 4.9. Let (C,⊗, 1) be a presentably symmetric monoidal ∞-category equipped with
a right-complete t-structure (C≥0, C≤0) which is compatible with the tensor structure (i.e., 1 ∈ C≥0
and C≥0 is closed under tensor products). Then the natural symmetric monoidal, cocontinuous
functor

⊗1 : Mod(EndC(1))→ C
is right t-exact.
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Proposition 4.10. Let X be locally Noetherian geometric stack. Suppose the functor of Construc-
tion 4.9,

Mod(RΓ(X,OX))→ QCoh(X)
exhibits QCoh(X) as the left-completion of Mod(RΓ(X,OX)) in the sense of [Lur18, Prop. C.3.6.3].
Then X is an affine stack.

Proof. The functor X on animated k-algebras is the sheafification of its left Kan extension from
discrete k-algebras. Thus, it suffices to show that the restriction of X to discrete k-algebras is an
affine stack, i.e., belongs to the smallest subcategory of sheaves on discrete k-algebras generated
under limits by K(Ga, n), n ≥ 0. Using Tannaka duality in the form of [Lur18, Th. 9.5.4.1], we
find that for any discrete k-algebra A, we have a fully faithful functor

X(A) ≃ Fun⊗,L
≥0 (QCoh(X), Mod(A))

between A-points of X and symmetric monoidal, cocontinuous, right t-exact functors QCoh(X)→
Mod(A). Since by assumption QCoh(X) is the left-completion of Mod(RΓ(X,OX)) and since
Mod(A) is automatically left-complete, we find by the universal property [Lur18, Prop. C.3.6.3] that
cocontinuous, right t-exact functors from QCoh(X)→ Mod(A) are identified with such functors
from Mod(RΓ(X,OX))→ Mod(A), and similarly after imposing symmetric monoidal structures;
thus we find that

X(A) ≃ Fun⊗,L(Mod(RΓ(X,OX)), Mod(A)),
since any symmetric monoidal cocontinuous functor Mod(RΓ(X,OX))→ Mod(A)) is automatically
right t-exact (as the connective objects of the source are generated under colimits and extensions by
the unit). But by Morita theory [Lur17, Prop. 7.1.2.7], this is identified with maps of E∞-algebras
RΓ(X,OX)→ A. Writing RΓ(X,OX) as a colimit of free E∞-algebras, we find that the functor
A 7→ X(A) on discrete k-algebras A belongs to the subcategory of sheaves of anima generated by
the K(Ga, n), n ≥ 0, whence is an affine stack. □

Proposition 4.11. Let k be a ring such that every finitely presented k-module has finite flat
dimension. Let G = Spec A be a flat affine group scheme over k. Suppose every nonzero G-
representation in k-modules has a nontrivial fixed vector. Then the stack BG is affine.

Proof. By Proposition 4.10, it suffices to show that QCoh(BG) is the left-completion of Mod(RΓ(BG,O)).
For V ∈ QCoh(BG)≤0, we show that the natural map

RΓ(BG, V )⊗RΓ(BG,O) k → V (4.3.1)
is an equivalence. Note that both sides are exact functors and preserve filtered colimits (on
QCoh(BG)≤0), so we reduce to the case where V ∈ QCoh(BG)♡ is discrete.

Since we can (by assumption) filter V exhaustively where all the successive subquotients have
trivial G-action, we may assume G acts trivially on V and (by passage to filtered colimits) that
the underlying k-module of V is finitely presented, and thus has finite Tor-dimension over R by
assumption. It follows easily5 that RΓ(BG, V ) = V ⊗k RΓ(BG,O) and that (4.3.1) is therefore an
equivalence.

Now we claim that RΓ(BG,O)→ k is coconnectively faithfully flat. This follows from Proposi-
tion 2.10, noting that the fiber of the map RΓ(BG,O) → k has Tor-amplitude in degrees ≤ −1
(this fact uses our assumption, cf. Remark 3.17, and the canonical resolution for RΓ(BG,O)).

It follows that the adjunction Mod(RΓ(BG,O)) ⇄ QCoh(BG) restricts to an adjunction on
coconnective objects, and the right adjoint RΓ(BG,−) is fully faithful; since the left adjoint is
conservative by coconnective faithful flatness, we find that the adjunction induces an equivalence
Mod(RΓ(BG,O))≤0 ≃ QCoh(BG)≤0, whence QCoh(BG) is the left-completion Mod(RΓ(BG,O))≤0
and the result follows. □

5Totalizations of coconnective objects commute with tensors with objects of bounded-above Tor-dimension, as
one sees by approximation by finite totalizations.
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4.4. Generalization of a result of Toën and Lurie. If k is a field, then a pointed connected fpqc
sheaf on discrete k-algebras is affine if and only if the homotopy group sheaves are representable by
pro-unipotent group schemes, cf. [Toë06, Cor. 2.2.3] or (in characteristic zero) [Lur11b, Prop. 4.4.8].
It is natural to wonder if this theorem holds over a more general base. One direction of this result
can already be easily seen to fail over a base ring such as Zp (e.g., see [MR23, Ex. 5.4.1]). However,
the other direction of this theorem holds over any ring A which has the property that every finitely
presented A-module has finite flat dimension (as noted earlier, this includes all regular noetherian
rings). In this section, we fix a ring A with this property. First, we formulate a definition of
unipotent group schemes over A based on the notion of affine stacks.

Definition 4.12. Let A be a ring such that any finitely presented A-module has finite flat dimension.
An affine flat group scheme G over Spec A is called unipotent if BG is an affine stack.

Remark 4.13. By Proposition 4.11 and Theorem 3.16, the above definition is equivalent to the
more classical notion of any nonzero G-representation in A-modules having a nontrivial fixed vector.

Proposition 4.14. Let G be a flat affine commutative group scheme over a base A fixed as before.
Suppose that BG is an affine stack. Then BnG is an affine stack for all n ≥ 1.

Proof. We can assume n ≥ 2. By induction on n, we may also assume that Bn−1G is an affine
stack. Let U(BmG) := S̃pec RΓ(BmG,O). By Lemma 3.22, we have a pullback diagram

U(Bn−1G) ∗

∗ U(BnG).

By induction, Bn−1G ≃ U(Bn−1G). By our assumption on A, the map RΓ(BnG,O) → A is
coconnectively faithfully flat (cf. proof of Proposition 3.18). By Proposition 3.3, it follows that
the map ∗ → U(BnG) must be an effective fpqc epimorphism. By descent, along ∗ → U(BnG),
we see that colimk∈∆op(Bn−1G)×k ≃ U(BnG). Applying descent along ∗ → BnG to simplify the
right hand side of the latter isomorphism, we obtain BnG ≃ U(BnG). This proves that BnG is
affine. □

Remark 4.15. The definition of unipotence as in Definition 4.12 is well behaved. For example, it
follows that inverse limit of unipotent group schemes (with vanishing R1lim) is again unipotent.
Let 0 → G′ → G → G′′ → 0 be a short exact sequence of unipotent commutative group shemes
over A such that G′ and G′′ are unipotent. Then G is also unipotent. Indeed, one has BG ≃
BG′′ ×B2G′ Spec A. Since B2G′ is affine by Proposition 4.14, it follows that BG is affine too, hence
the claim.

Now we are ready to prove the following:

Proposition 4.16. Let A be a base ring fixed as before. Let X be a pointed connected hypercomplete
fpqc sheaf of anima on discrete A-algebras. Assume that the homotopy sheaves πi(X, ∗) are
representable by flat unipotent affine group schemes. Then X is an affine stack.

Proof. Since X is hypercomplete and the fpqc topology is replete, by [MR22, Thm. A], X ≃
lim←− τ≤nX. Since the property of being an affine stack is closed under limits, we can assume that X
is n-truncated. We will prove the statement by induction on n. When n = 0, the statement is clear
since in this case X, being connected, is isomorphic to Spec A. For n ≥ 1, we suppose that the
statement has been established for (n− 1)-truncated stacks. For an n-truncated pointed connected
stack X satisfying the hypothesis of our proposition, we have a pullback diagram
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K(πn(X), n) ∗

X τ≤n−1X.

Since πn(X) is unipotent, by Proposition 4.14, K(πn(X), n) is an affine stack. By induction,
τ≤n−1X is an affine stack. By Proposition 4.3, it follows that X too, is an affine stack. This finishes
the proof. □

4.5. Duals to formal groups. Let k be a ring. Let G = Spec A be a flat, affine group scheme
over R which arises as the Cartier dual to a formal group over k. This means in particular that A is
a flat commutative, cocommutative Hopf algebra over k such that, as a coalgebra, A is isomorphic
to a divided power coalgebra on a finitely generated projective R-module M (cf. [Lur, Sec. 1.1.2]).

It follows that the abelian category of quasi-coherent sheaves on BG is identified with the category
of Sym∗(M∨)-modules such that each element of M∨ acts locally nilpotently; the tensor product
is the k-linear tensor product. By [Lur18, Cor. 10.4.6.8], QCoh(BG) is the left-completion of the
derived ∞-category of its heart; in this case, we find that QCoh(BG) ⊂ Mod(Sym∗

k(M∨)) is the
subcategory where the elements of M∨ act locally nilpotently on homotopy, and the left-completion
is redundant.

It follows that H∗(BG,O) is an exterior algebra over k.

Proposition 4.17. We have Mod(RΓ(BG,O)) ≃ QCoh(BG), compatibly with t-structures. More-
over, the map RΓ(BG,O)→ k is descendable.

Proof. In fact, the above discussion (and identification) proves the claim, since the unit is a compact
generator for QCoh(BG).

The functor QCoh(BG)→ Mod(k) is identified with the forgetful functor from torsion Sym∗
k(M∨)-

modules to Mod(k). Descendability amounts to the statement that any sufficiently long composite
of maps in QCoh(BG) whose successive maps pull back to nullhomotopic maps in Mod(k) is itself
nullhomotopic; this assertion now follows from Lemma 4.18. □

Lemma 4.18. Let M →M1 → · · · →Mn+1 be a sequence of maps in Mod(k[x1, . . . , xn]) each of
which restricts to a nullhomotopic map in Mod(k). Then the composite M →Mn+1 is nullhomotopic
in Mod(k[x1, . . . , xn]).

Proof. This follows easily using the fact that M admits an (n+1)-step filtration in Mod(k[x1, . . . , xn])
whose associated graded terms are obtained by extension of scalars from Mod(k). □

Proposition 4.19. Let G be a group scheme over k. If G is Cartier dual to a formal group as
above, the stack BG is affine.

Proof. Since BG is a geometric stack such that QCoh(BG) is compactly generated by the unit
(Proposition 4.17), Tannaka reconstruction in the form of [BHL17, Th. 4.1] (or [Lur18, Cor. 9.4.4.7])
identifies BG(A) with the space of cocontinuous symmetric monoidal functors QCoh(BG) →
Mod(A) which preserve connective objects. But we have seen that QCoh(BG) ≃ Mod(RΓ(BG,O))
(with the corresponding t-structure), whence this is identified with E∞-maps RΓ(BG,O) → A.
This proves the affineness claim. □

4.6. Relative prismatization. In this subsection, we recall some aspects of relative prismatization
and a result of Bhatt–Lurie that the relative prismatization of an affine formal scheme is always
affine. We use this to deduce an unpublished result of Bhatt that compares quasi-coherent sheaves
on the prismatization and modules over prismatic cohomology.

Let (A, I) be a prism in the sense of [BS], and let A = A/I.
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The theory of loc. cit. constructs the derived prismatic cohomology of animated A-algebras. This
yields a functor ∆−/A from animated A-algebras6 to (p, I)-complete derived A-algebras.

Let R be a p-complete animated A-algebra. The work [BL22b] (see also [Dri20]) defines (via
its functor of points) a derived A-stack WCartSpf(R)/A on (p, I)-nilpotent animated A-algebras
and identifies under mild finiteness hypotheses (on R), ∆R/A ≃ RΓ(WCartSpf(R)/A,O), cf. [BL22b,
Th. 7.20].

The following result of Bhatt–Lurie shows that the relative prismatization defines an affine
derived stack (modulo any power of (p, I)).

Theorem 4.20 ([BL22b, Th. 7.17]). Let R be any p-complete animated A-algebra. Then for any
(p, I)-nilpotent animated A-algebra S, the natural map induces an equivalence

WCartSpf R/A(S) ≃ HomDAlgA
(∆R/A, S)

Quasi-coherent sheaves on WCartSpf(R)/A offer a geometric perspective on the ∞-category
of (relative) prismatic crystals on Spf(R), cf. [BL22b, Th. 6.5]. Under mild finiteness assump-
tions, QCoh(WCartSpf(R)/A) can simply identified with (p, I)-complete modules over the prismatic
cohomology. This result was explained to us by Bhatt.

Corollary 4.21 (Bhatt). Let R be any p-complete animated A-algebra such that the A/p-module
H0(LR/A/p) = Ω1

R/A
/p is finitely generated. Then the natural functor induces an equivalence

Mod(∆R/A)(̂p,I) ≃ QCoh(WCartSpf(R)/A).

Proof. It suffices to prove this claim modulo (p, I). In this case, in light of Theorem 4.20, we find
that

Mod(∆R/A/(p, I))→ QCoh(WCartSpf(R)/A/(p, I))
exhibits the target as the left-completion of the source, by Theorem 3.16. Thus, it suffices to show
that Mod(∆R/A/(p, I)) is left-complete.

Here we will use the criterion of Proposition 2.22: we need to show that there exists a map of
derived rings ∆R/A/(p, I)→ B which is descendable, where B is connective, and where the relative
tensor product B ⊗∆R/A/(p,I) B is connective.

To this end, let t1, . . . , tn ∈ R be elements whose differentials span Ω1
R/A

/p. We consider the map

R → R∞ = R ⊗A[x1,...,xn] A[x1/p∞

1 , . . . , x
1/p∞

n ]. The map ∆R/A → ∆R∞/A is descendable modulo
(p, I), as shown in [BS, Lem. 8.6] (it is a base-change of a finite coproduct of copies of the map
∆A[x]/A → ∆A[x1/p∞ ]/A). Moreover, ∆R∞/A and ∆R∞⊗RR∞/A are connective since R∞, R∞ ⊗R R∞

have vanishing Ω1
−/A

/p, in light of the Hodge–Tate comparison. □

5. p-adic homotopy theory

In this section, we discuss how aspects of p-adic homotopy theory, especially as in [Lur13], can
be formulated in the language of affine stacks (see Theorem 5.22).

Let Sp−fin ⊂ S denote the ∞-category of spaces X which are p-finite: that is, X has finitely
many connected components, X is r-truncated for some r, and all the homotopy groups at any
connected component are p-groups. The starting point for this subsection is to prove the following
basic result.

Theorem 5.1. Let k be an algebraically closed field of characteristic p. The singular cochains
functor C∗(−; k) embeds the ∞-category Sp−fin contravariantly fully faithfully into the ∞-category
DAlgk. Moreover, the embedding carries finite limits in Sp−fin to finite colimits in DAlgk, and its
essential image is contained inside the compact objects of DAlgk.

6The functor ∆−/A factors through the p-completion.
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Versions of Theorem 5.1 appear in [K9̌3, Goe95], and (for E∞-algebras instead of derived rings)
in [Man01]. In [Lur13], Lurie formulates and proves various generalizations of Theorem 5.1 where
k is replaced by an arbitrary Fp-algebra,7 Sp−fin is replaced by “p-constructible étale sheaves on
Spec k” (or more generally pro-objects therein), in the setting of E∞-algebras over k.

The purpose of this subsection is to explain a derived k-algebra version of the results in [Lur13]
using affine stacks.8

To warm up, let us sketch a proof of Theorem 5.1 in the present language, which will contain
many of the needed ingredients. The following remark will be useful.

Remark 5.2 (Cogenerators for Sp−fin). The subcategory Sp−fin ⊂ S is closed under finite limits,
and it is the smallest subcategory closed under finite limits which contains the K(Z/p, n), n ≥ 2.
In fact, this subcategory contains any finite coproduct of copies of K(Z/p, n), n ≥ 2 (where we use
Ω2K(Z/p, 2) is a finite discrete set). The claim then follows from [Lur13, Lem. 2.4.16].

Proof of Theorem 5.1. Given a space X, we consider the sheafification of the constant presheaf X
on the site of all k-algebras equipped with the étale topology (i.e., the big étale site of k). This
gives a fully faithful functor

π∗ : S → Shv(k − alget,S),
which preserves finite limits. Note that affine stacks form a full subcategory of the target. We claim
that the functor π∗ carries p-finite spaces into affine stacks. Now Sp−fin is the smallest subcategory
of S closed under finite limits which contains the spaces K(Z/p, n), n ≥ 2 (Remark 5.2). Since
the class of affine stacks is closed under finite coproducts and arbitrary limits, it suffices to show
that π∗(K(Z/p, n)) is an affine stack for any n ≥ 2; however, this follows from the Artin–Schreier
sequence, which gives a fiber sequence K(Z/p, n)→ K(Ga, n)→ K(Ga, n). It is easy to see that
RΓ(π∗(−),O) = C∗(−; k), whence the full faithfulness follows in light of Corollary 3.6.

Finally, we need to show that if X ∈ Sp−fin, then C∗(X, k) is compact as a derived k-algebra,
and that the construction X 7→ C∗(X, k) preserves finite limits. Here we will use frequently that
pullbacks of affine k-stacks correspond to pushouts in the ∞-category of coconnective derived
k-algebras (Corollary 3.6).

First, the fiber sequence K(Z/p, n)→ K(Ga, n)→ K(Ga, n) of affine stacks shows (for n ≥ 1)
leads to a square of derived k-algebras

Sym∗(k[−n])

��

// Sym∗(k[−n])

��
k // C∗(K(Z/p, n), k)

which is cocartesian in coconnective derived k-algebras. Since the pushout in all derived k-algebras
is automatically coconnective (by Corollary 2.15), it follows that the above square is also a pushout
in DAlgk, whence C∗(K(Z/p, n), k) is a compact object of DAlgk.

Now let us check that pullbacks in Sp−fin are carried to pushouts in DAlgk. Since π∗ preserves
pullbacks, it follows that pullbacks in Sp−fin are carried to pushouts in DAlgk,≤0. Thus, it
suffices to show that if X1 → Y, X2 → Y are maps in Sp−fin, then the relative tensor product
C∗(X1, k) ⊗C∗(Y,k) C∗(X2, k) is coconnective; however, this follows because the Frobenius on
C∗(X1, k)⊗C∗(Y,k) C∗(X2, k) is an isomorphism, and the Frobenius annihilates the higher homotopy
groups of an animated ring [BS17, Rem. 11.8]. By Remark 5.2 we are done. □

Next, we recall some aspects of the theory of p-constructible sheaves as developed in [Lur13,
Sec. 2.3].

7In fact, [Lur13] works with more general E∞-rings.
8The connection between the theory of affine stacks and p-adic homotopy theory, at least over a separably closed

field, already appears in [Toë06].
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Definition 5.3 (p-constructible sheaves, cf. [Lur13, Def. 2.3.1]). Let X be a qcqs scheme. We say
that a sheaf of spaces F on Xet is p-constructible if:

(1) F is n-truncated for some n.
(2) F is a coherent object (see [Lur18, Appx. A]) of the ∞-topos Shv(Xet,S).
(3) For every geometric point x : Spec k → X, the stalk x∗F is a p-finite space.

If X = Spec(π0A) for A a p-nilpotent E∞-algebra satisfying mild conditions, then in [Lur13,
Cor. 2.6.12], a fully faithful contravariant embedding from p-constructible sheaves on X into
E∞-algebras over A is constructed. We will prove an analog of this result in the context of derived
Fp-algebras. First, we need an analog of Remark 5.2 in this more general context, which we will
deduce from the structural results in [Lur13].

Proposition 5.4. Let R be a commutative ring. Then the class of p-constructible objects in
Shv((Spec R)et,S) is the smallest class containing K(F , n) for F a constructible sheaf of Fp-vector
spaces on Spec R and closed under finite limits.

Proof. We denote X = Spec R. Let us first prove the result in the case where F is locally constant:
that is, when there exists a finite Galois cover f : X ′ → X such that f∗F is the constant
sheaf associated to a p-finite space. In this case, we can resolve F by a (finite) totalization of
f∗f∗F , f∗f∗f∗f∗F , . . . of pushforwards of constant sheaves on X ′ (with values a p-finite space). For
constant sheaves, the claim follows from Remark 5.2, so f∗F belongs to the smallest subcategory of
Shv(X ′) generated under finite limits by K(A, n) for constant sheaf of finite dimensional Fp-vector
spaces A on X ′; pushing forward, we obtain the desired claim in this case.

Now let us treat the general case. By [Lur13, Th. 2.3.24], there exists a finite stratification by
closed subschemes

X = X0 ⊃ X1 ⊃ X2 ⊃ X3 ⊃ · · · ⊃ Xn+1 = ∅
such that each Xi has quasi-compact open complement in X, and such that F|Xi\Xi+1 is locally
constant.

We have already proved the result when n = 0 (so that F itself is locally constant), and in
general we prove it by induction on n. By the inductive hypotheses, we may assume that there
exists a closed subscheme i : Z ⊂ X with quasi-compact open complement j : U ⊂ X such that

(1) i∗F ∈ Shv(Z) belongs to the subcategory generated under finite limits by K(F , n), where
F is a constructible sheaf of Fp-vector spaces on Z.

(2) j∗F ∈ Shv(U) becomes constant (with values in p-finite spaces) after pullback along a finite
Galois cover.

We have a pullback square in Shv(X),

F

��

// i∗i∗F

��
j∗j∗F // i∗i∗j∗j∗F

Note that the bottom arrow only depends on j∗F . By induction, we may assume that j∗F ∈ Shv(U)
belongs to the subcategory generated under finite limits by K(A, n), for n ≥ 0, where A is a
constructible sheaf of Fp-vector spaces. Thus, F belongs to the subcategory of Shv(X) generated
by pullbacks of diagrams

i∗i∗F

��
K(j∗A, n) // K(i∗i∗j∗A, n)
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for various n ≥ 0. Using the pulback diagram

K(j∗A, n)

��

// K(i∗i∗j∗A, n)

��
0 // K(j!A, n + 1)

the result now follows. □

Proposition 5.5. Let R be an Fp-algebra, and X = Spec R. Let F ∈ Db
cons(Xet,Fp). The pullback

of F to the big étale site of X belongs to the thick subcategory generated by Ga.

Proof. By [Sta24, Tag 09YU], we may assume that R is Noetherian. Further, the constructible
derived ∞-category Db

cons(Xet,Fp) is generated as a thick subcategory by the objects f∗(Fp), for
f : Y → X a finite, finitely presented morphism, cf. [Mat22, Lem. 6.19]. Thus, we may assume F =
f∗(Fp). Suppose Y = Spec(R[x1, . . . , xn]/(v1, . . . , vm)). We set S := R[x1, . . . , xn]/(v1, . . . , vm).
We define S′ :=

⊗m
i=1 cofib(R[x1, . . . , xn] vi−→ R[x1, . . . , xn]), where the (derived) tensor product is

taken over R[x1, . . . , xn]. Then S′ is an animated R[x1, . . . , xn]-algebra such that π0(S′) ≃ S. We
claim that S′ is a perfect complex over R. Note that S′ has finite Tor-dimension as an R[x1, . . . , xn]-
module, and therefore, also as an R-module. Thus it suffices to prove that S′ is pseudo-coherent.
Using Koszul complexes, and the fact that R[x1, . . . , xn] is Noetherian, one sees that πi(S′) = 0
for i > m and πi(S′) is a finite R[x1, . . . , xn]-module for all i. Thus it follows that πi(S′) is also
finite as an S-module. Since S is finite as an R-module, πi(S′) is a finite R-module. Since R is
Noetherian, by [Sta24, Tag 066E], S′ is pseudo-coherent, and thus, is a perfect complex over R, as
claimed.

Since S′ is a perfect complex over R, using the Artin-Schreier sequence, we see that the functor
that sends an R-algebra R′ to RΓet(S′ ⊗R R′,Fp) belongs to the thick subcategory generated by
Ga. Using the fact that for any animated Fp-algebra, Frobenius induces the zero map on πi for
i > 0, and the Artin-Schreier sequence, it follows that RΓet(S′ ⊗R R′,Fp) ≃ RΓet(S ⊗R R′,Fp).
This proves the proposition. □

Proposition 5.6. Let A be an Fp-algebra and X = Spec(A). Let F ∈ Shvp-cons(Xet,S). Then the
pullback of F to the big étale site is an affine A-stack. Moreover, it belongs to the subcategory of
affine A-stacks generated under finite limits and retracts by the K(Ga, n), for n ≥ 0.

Proof. By Proposition 5.4, it suffices to consider the case when F = K(A, n) for A being a
constructible abelian sheaf of Fp-vector spaces on X. Then, the result follows from Proposition 5.5.

□

Our next result is an analog of the correspondence for E∞-rings that is proved in [Lur13,
Cor. 2.6.12].

Definition 5.7. Let X = Spec A for an Fp-algebra A and F ∈ Shvp-cons(Xet,S). We define
C∗(F , O) to be the derived ring of global sections of F viewed as an affine stack.

Theorem 5.8. The ∞-category of Shvp-cons(Xet,S) contravariantly embeds fully faithfully into
DAlgA, via the embedding sending a sheaf F to C∗(F ,O). This embedding carries finite limits
in Shvp-cons(Xet,S) to finite colimits in DAlgA. Moreover, for any such F , the derived algebra
C∗(F ,O) is a compact object of DAlgA.

Proof. We follow the strategy of the proof of Theorem 5.1.
Namely, we can (fully faithfully) pull back Shvp-cons(Xet,S) into sheaves on the big étale site of

X; this embedding preserves finite limits, and we have seen (Proposition 5.6) it has image inside
affine stacks. Consequently, we obtain the fully faithful embedding into DAlgA as stated in the
theorem.
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Given p-constructible sheaves F1,F2 → G, we have a map of derived k-algebras,
C∗(F1,O)⊗C∗(G,O) C∗(F2,O)→ C∗(F1 ×G F2,O). (5.0.1)

We know that this map becomes an equivalence after applying τ̃≤0, since pullbacks of affine A-stacks
map to pushouts of coconnective derived A-algebras. Thus, it suffices to show that the pullback on
the left-hand-side remains coconnective.

Suppose first that A is a polynomial Fp-algebra (potentially on infinitely many generators).
Then each of the derived A-algebras C∗(F1,O), C∗(G,O), C∗(F2,O) can be written as totalizations
of cosimplicial A-algebras each of whose terms is an étale A-algebra. Therefore, these derived
Fp-algebras become perfect after base-change along the faithfully flat map A→ Aperf . Therefore,
the derived A-algebra C∗(F1,O) ⊗C∗(G,O) C∗(F2,O) becomes perfect after base-change along
A→ Aperf and is therefore coconnective by [BS17, Rem. 11.8]. In this case, we moreover have that
both sides have Tor-amplitude in degrees ≤ 0 over A.

The general case now reduces to the case of a polynomial algebra, by choosing a surjection from
a polynomial algebra and base-changing all terms involved (noting the Tor-amplitude ≤ 0 property
remarked in the last paragraph).

The compactness now follows from Proposition 5.6, which shows that for an Fp-étale sheaf A,
we have that K(A, n) for n≫ 0 is compact as a derived A-algebra. □

After passage to pro-objects, Theorem 5.8 extends and yields a fully faithful embedding, as
follows.
Proposition 5.9. Let A be an Fp-algebra and X = Spec A. Then the pullback functor induces a
fully faithful, cocontinuous embedding C∗(−,O) : Pro(Shvp-cons(Xet,S))op ⊂ DAlgA. □

In the remainder of the section, we precisely identify the image of Proposition 5.9 in the case of
a regular Fp-algebra using results of Emerton–Kisin, [EK04]. We need to first recall some facts
about Frobenius modules.
Definition 5.10 (Frobenius modules). Let A be an Fp-algebra. A Frobenius module over A is
an A-module M equipped with a map F : φ∗M → M , for φ∗ the base-change functor along
the Frobenius φ : A → A. A Frobenius module can also be regarded as a left module over the
twisted polynomial ring A[F ] (where the commutation is Fa = apF ). We will consider the derived
∞-category of Frobenius modules, or of the ring A[F ], denoted D(A[F ]).
Example 5.11. Let R be a derived A-algebra. Then the homotopy groups of R are Frobenius
modules over A, via the internal Frobenius endomorphism of derived Fp-algebras R→ R (which is
semilinear over the Frobenius of A).

In the following, we need the following upgrade of the above example.
Construction 5.12 (From derived algebras to Frobenius modules). Note that we have a forgetful
functor DAlgA → D(A[F ]). We will denote its left adjoint as

freeA[F ] : D(A[F ])→ DAlgA.

Example 5.13. Considering Fp as a Frobenius module over itself, it follows from the definition
that freeFp[F ] Fp ≃ Fp[x]/(xp − x).
Definition 5.14 (Finitely generated unit Frobenius modules). A Frobenius module M over A is
said to be finitely generated unit if:

(1) The map F : φ∗M →M is an isomorphism.
(2) M is finitely generated as an A[F ]-module.

If only (1) is assumed, then M is said to be unit.
An object of D(A[F ]) is said to be finitely generated unit if it is bounded and the homology

groups are finitely generated unit. We let Dfgu(A[F ]) ⊂ D(A[F ]) be the subcategory of finitely
generated unit objects.



24 AKHIL MATHEW AND SHUBHODIP MONDAL

The class of finitely generated unit A[F ]-modules is studied by Lyubeznik [Lyu97]. It is an
abelian subcategory of the category of A[F ]-modules, and is closed under subobjects inside the
(also abelian) category of unit A[F ]-modules. We refer to [BL19, Sec. 11.3] for an account of the
subcategory Dfgu(A[F ]) ⊂ D(A[F ]) (and actually a generalization when A is not regular). It is
shown in loc. cit. that any object of Dfgu(A[F ]) is compact as an object of D(A[F ]).

Definition 5.15 (Solvable Frobenius modules). A Frobenius module M over A is said to be
solvable if it is a filtered colimit of finitely generated unit A[F ]-modules. An object of D(A[F ]) is
said to be solvable if the homology groups are solvable A[F ]-modules. A derived A-algebra R is
said to be solvable if the underlying object of D(A[F ]) is solvable.

Proposition 5.16. (1) The category of solvable A[F ]-modules is an abelian subcategory of the
category of unit A[F ]-modules which is closed under subobjects, quotients, and extensions.

(2) Any bounded-above object of Dsolv(A[F ]) can be written as a filtered colimit of objects in
Dfgu(A[F ]).

Proof. Part (1) easily follows from the corresponding results for finitely generated unit modules.
For part (2), since Dfgu(A[F ]) consists of compact objects in D(A[F ]), it suffices to show that any
object of Dsolv(A[F ]) belongs to the localizing subcategory generated by Dfgu(A[F ]), which follows
from the constructions. □

Example 5.17. Let A be a regular Fp-algebra and A′ be an étale A-algebra. Then A′ (with
its Frobenius action) is a finitely generated unit A[F ]-module. This is a very special case of the
following general result.

Theorem 5.18 (Emerton–Kisin [EK04]). Let X = Spec A for a regular Fp-algebra A. The functor
RHom(−,Ga) establishes a fully faithful, contravariant embedding from Db

cons(X,Fp) into D(A[F ]),
with image exactly the finitely generated unit objects.

Proposition 5.19. Let X = Spec A for a regular Fp-algebra A. If F ∈ Shvp-cons(X), then
C∗(F ,O) ∈ DAlgA is solvable.

Proof. This follows because C∗(F ,O) can be written as the totalization of a cosimplicial object
in étale A-algebras (by coherence of F), and any étale A-algebra defines a finitely generated unit
A[F ]-module. □

Proposition 5.20. Let X = Spec A for a regular Fp-algebra A and M ∈ Dfgu(A[F ]). Then the
derived A-algebra freeA[F ](M) can be written as C∗(F ,O) for some p-constructible sheaf F on X.
In particular, freeA[F ](M) is solvable by Proposition 5.19.

Proof. First, freeA[F ](M) base-changed along A→ Aperf to a derived Aperf -algebra which is easily
seen to be perfect, whence coconnective; here we also use that A→ Aperf is faitfully flat by Kunz’s
theorem since A is regular.

Now let us consider the affine A-stack corepresented by freeA[F ](M). By definition, this affine
stack is given by the functor which sends an A-algebra A′ to Ω∞RHomA[F ](M, A′). By the mod
p Riemann–Hilbert correspondence of [EK04] (cf. the last two paragraphs of the proof of [Mat22,
Th. 6.20]) it follows that this functor is Ω∞(π∗F) for some F ∈ Db

cons(X,Fp). In particular, the
affine stack corresponds to a p-constructible sheaf on X, whence the result. □

Remark 5.21. The above argument does not use the full strength of the results of [EK04]. Rather,
one uses that if M is a finitely generated unit Frobenius module, then the construction carrying an
A-algebra A′ to RHomA[F ](M, A′) is the pullback from the small étale site to the big étale site of
an object of Db

cons(X,Fp). This can be checked directly with a henselian rigidity argument (as is
done in [Mat22, Th. 6.20]).
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Theorem 5.22. Let X = Spec A for a regular Fp-algebra A. Then the fully faithful embedding of
Proposition 5.9,

C∗(−,O) : Pro(Shvp-cons(Xet,S))op ⊂ DAlgA

has image precisely the solvable A-algebras.

Proof. Using the bar resolution to resolve a derived A-algebra by free algebras (on underlying
A[F ]-modules) and Proposition 5.20, we see that it suffices to show that freeA[F ](M) belongs to
the essential image of C∗(−,O) for M ∈ D(A[F ]) solvable and coconnective. By passage to filtered
colimits (Proposition 5.16), we reduce to the case where M ∈ Dfgu(A[F ]), which we have proved in
Proposition 5.20. □

In the case of a separably closed field, the analog of this result for E∞-rings is established in
[Lur13, Th. 3.5.8].

6. Formal groups and derived rings

In this section, we will establish certain equivalence of categories between certain class of
augmented derived rings and formal lie groups. Using these, we explain a different construction of
a 1-dimensional formal group constructed by Drinfeld in [Dri21].

Proposition 6.1. Let A be a discrete ring. Let FA denote the ∞-category of augmented derived
rings R over A such that π1(S̃pec R) is an abelian sheaf, H1(R) is a projective module of rank
r over A, and H∗(R) ≃ ∧∗H1(R). Then FA is equivalent to the category of formal lie groups of
dimension r via a functor that sends a formal lie group

F 7→ RΓ(BF ∨,O).

Proof. Let R ∈ FA. We will study the tensor product A⊗R A. Using the bar resolution, we obtain
the following simplicial object in D(A)

· · ·R⊗A R
// //// R //// A (6.0.1)

whose colimit is the tensor product A⊗R A. Note that the terms of (6.0.1) are coconnective and
have compatible increasing exhaustive N-indexed filtrations coming from the truncation functors.
By taking colimit, we obtain an increasing exhaustive N-indexed filtration on A⊗R A, which will
be denoted by Filn. One sees that the n-th graded piece grn of this filtration is given by Bn[−n],
where B0 ≃ A and for n ≥ 1, Bn is the colimit of the following simplicial object

Cn := · · ·Hn(R⊗3) ////
//// H

n(R⊗2) ////// Hn(R) //// 0 .

We note that V := H1(R) is a projective module over A of rank r and the simplicial object C1 is of
the form

· · ·V ⊕3 ////
//// V

⊕2 ////// V //// 0 .

Considering V as an abelian group, we observe that the above simplicial object is isomorphic to
the classifying object BV.

Since H∗(R) ≃ ∧∗H1(R), it also follows that H∗(R⊗k) ≃ ∧∗H1(R⊗k). Thus we see that Cn is
computed by applying ∧n termwise to the simplicial object C1. Since C1 ≃ BV, it follows that Bn ≃
∧n(V [1]). By the décalage formulas, we have ∧n(V [1]) ≃ (ΓnV )[n]. Therefore, grn ≃ Bn[−n] ≃ ΓnV.
In particular, grn is discrete. Therefore, we conclude that A⊗R A is also discrete. Repeating the
same argument and base changing along A→ A/I for any ideal I ⊂ A, we can also conclude that
A⊗R A is flat over A. Since A⊗R A has the structure of a Hopf algebra, G := Spec (A⊗R A) is a
flat group scheme over A.

Lemma 6.2. In the above set up, S̃pec R ≃ BG as pointed affine stacks. In particular, BG is an
affine stack.
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As a consequence of the above lemma and Theorem 3.4, it follows that the ∞-category FA

embeds into the category of pointed stacks of the form BH, for some affine group scheme H.
However, the latter is a 1-category; therefore, FA is a 1-category as well.

Now we proceed onto proving that dual of G = Spec (A⊗RA) is a formal lie group. By Lemma 6.2,
G ≃ π1(S̃pec R); therefore G is commutative by our hypothesis. In other words, A ⊗R A is a
cocommutative Hopf algebra equipped with a filtration Filn stable under comultiplication whose
associated graded is ⊕n≥0ΓnV. Let B := HomA(A⊗R A, A). Then B is a commutative A-algebra
Let Jn ⊂ B be the set of A-module maps f : A ⊗R A → A such that f(x) = 0 for x ∈ Filn.
By design, Jn is the kernel of the surjective map B → (Filn)∗. Because Filn is stable under
comultiplication, it follows that Jn is an ideal of B and B ≃ lim←−n

B/Jn. Note that we have
an exact sequence 0 → J2 → J1 → J1/J2 → 0. By construction, it follows that J1/J2 ≃ V ∗,
where V = H1(R). Since V is prorjective, the latter exact sequence must split and we obtain a
map J1/J2 ↪→ J1 ↪→ B of A-modules. Since B is a commutative A-algebra, we obtain a map
Sym∗

A(J1/J2)→ B. This map is filtered with respect to the natural decreasing filtrations on both
sides. Since Jn/Jn+1 ≃ (ΓnV )∗ ≃ SymnV ∗, it follows that the latter map induces isomorphism on
the graded pieces. Since B is complete with respect to the filtration, it follows that we have an
isomorphism (Sym∗(V ∗))∧ ≃−→ B.

Thus, we obtain a functor from FA to the category of formal lie groups which is an inverse to
the functor described in the proposition. □

Proof of Lemma 6.2. Note that S̃pec R is automatically pointed by the map Spec A→ S̃pec R that
is induced by the augmentation of R. Since G ≃ Spec (A ⊗R A), by virtue of Cech descent, it
would be enough to show that Spec A→ S̃pec R is an fpqc epimorphism. By Proposition 2.10, one
knows that the map R → A is coconnectively faithfully flat. By Proposition 3.3, it follows that
Spec A→ S̃pec R is an fpqc epimorphism, which finishes the proof of the lemma. □

Proposition 6.3. Let A be a discrete ring. Let GA denote the ∞-category of augmented derived
rings R over A such that H2(R) is a projective module of rank r over A, and H∗(R) ≃ Sym∗H2(R).
Then GA is equivalent to the category of formal lie groups of dimension r via a functor that sends a
formal lie group

F 7→ RΓ(B2F ∨,O).

Proof. It suffices to prove that GA ≃ FA, where FA is as defined in Proposition 6.1. Using
faithfully flat descent along Spec A→ B2F ∨, one may check (similar to [MR23, Prop. 6.2.3]) that
RΓ(B2F ∨,O) can be naturally viewed as an object of GA and the description in the proposition
indeed defines a functor. This also determines a functor FA → GA. Let B ∈ GA and consider the
naturally augmented A-algebra A⊗B A. Let V := H2(B). Similar to Proposition 6.1, using the bar
complex and the double speed Postnikov filtration on B, one may equip A⊗B A with an increasing
exhaustive filtration Fil∗ such that the graded pieces grn are computed by Symn(V [1])[−2n] ≃
(∧nV )[−n]. This shows that B 7→ A⊗B A indeed determines a functor from GA → FA.

As before, since the map B → A is coconnectively faithfully flat, it follows that Spec A→ S̃pec B

is an effective epimorphism. Writing S̃pec A ⊗B A = BG by using Proposition 6.1, we see that
S̃pec B ≃ B2G; in particular the latter is an affine stack. Now we can conclude that the functors
described above are inverse to each other. □

Note that as a corollary of the above proof, for a formal group F , one sees that the stack BnF
is affine for n = 1, 2. We show that this is true in general.

Proposition 6.4. Let A be a discrete ring. Let F be an r-dimensional formal group over A. Then
BnF ∨ is an affine stack for all n.
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Proof. We give two proofs. For the first proof, we note that in order to prove that BnF ∨ is an
affine stack, we may argue locally and may assume that F is a formal group law of dimension
r. By using [Haz12, Thm. 11.1.5] and [Haz12, Lem. 11.4.7], it is enough to argue in the case of
the universal formal group law HU of dimension m defined over the polynomial ring Z[U ]. By
Proposition 4.19, it follows that BH∨

U is an affine stack. Since Z[U ] is a polynomial algebra (in
infinitely many variables), it has the property that every finitely presented A-module has finite flat
dimension. Therefore, by Proposition 4.14, we obtain that BnH∨

U is an affine stack, as desired.
Now we give sketch of a second argument, which takes a more direct approach. Let V :=

Hom(F ∨,Ga). By our hypothesis, it follows V is a projective A-module of rank r. This implies
that the natural augmentation map Γ∗(V [−n]) → A is coconnectively faithfully flat. We may
suppose that n ≥ 1. Further, we may choose an isomorphism F ≃ Sym∗(V ∗)∧ of algebras, which
equivalently produces an isomorphism O(F ∨) ≃ Γ∗(V ) of cocommutative coalgebras. We note the
following lemma:

Lemma 6.5. For n ≥ 1, we have an isomorphism RΓ(BnF ∨,O) ≃ Γ∗(V [−n]) of E1-algebras.

Proof. Note that we have an isomorphism O(F ∨) ≃ Γ∗(V ) of augmented cocommutative coalgebras.
In order to compute RΓ(BnF ∨,O), one may apply faithfully flat descent along ∗ → BnG; by
virtue of the cobar construction, we inductively obtain that RΓ(Bn−1F ∨,O) is isomorphic to
Γ∗(V [−n + 1]) as augmented coalgebras. Once again, by faithfully flat descent, RΓ(BnF ∨,O) is
obtained by applying the cobar construction to the augmented coalgebra RΓ(Bn−1F ∨,O). By
[Lur17, Thm. 5.2.2.17], it follows that we have an isomorphism RΓ(BnF ∨,O) ≃ Γ∗(V [−n]) of
E1-algebras. In fact, by using the iterated cobar construction (see [Lur17, § 5.2.3]), by a similar
argument, one obtains an isomorphism RΓ(BnF ∨,O) ≃ Γ∗(V [−n]) of En-algebras for all n ≥ 0. □

Since the augmentation map Γ∗(V [−n]) → A is coconnectively faithfully flat, it follows that
RΓ(BnF ∨,O) → A is also coconnectively faithfully flat. By Proposition 3.3, it follows that
Spec A → S̃pec RΓ(BnF ∨,O) is an fpqc epimorphism. Note that for n ≥ 1, we have a pullback
square

S̃pec RΓ(Bn−1F ∨,O)) Spec A

Spec A S̃pec RΓ(BnF ∨,O).

Indeed, to show that the above is a pullback diagram, we need to show that the natural map
A⊗RΓ(BnF ∨,O) A −→ RΓ(Bn−1F ∨,O)

is an isomorphism of derived rings. To this end, it is enough to show that the natural map is an
isomorphism in the derived category of A-modules. However, this follows from the isomorphism
A ⊗Γ∗(V [−n]) A ≃ Γ∗(V [1 − n]) and the isomorphism of E1-algebras RΓ(BnF ∨,O) ≃ Γ∗(V [−n])
from Lemma 6.5.

Now, by induction, we may assume that Bn−1F ∨ is an affine stack, i.e.,
Bn−1F ∨ ≃ S̃pec RΓ(Bn−1F ∨,O). Since the map Spec A → S̃pec RΓ(BnF ∨,O) is an effective
fpqc epimorphism, descent along the associated Cech cover and the above pullback square implies
that we have a natural isomorphism BnF ∨ ≃ S̃pec RΓ(BnF ∨,O). This gives the claim. □

Let us now explain how to use Proposition 6.3 to reconstruct the 1-dimensional formal group
law over Σ := (Spf Zp)∆ from [Dri21], whose Cartier dual is a flat affine group scheme over Σ that
is denoted as GΣ. In [Dri21], GΣ is constructed by using the stack G∆

m, and crucially uses the
delta structure of Gm. We give a different approach using the stack BGm and Proposition 6.3. Let
µ : (BGm)∆ → Σ denote the natural map. Then we have R∗µ∗O ≃ Sym∗R2µ∗O as objects of
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Dp−complete(Σ) (cf. [Mon22a]), moreover, R2µ∗O ≃ OΣ {−1} . By using Proposition 6.3, it follows
that there exits a 1-dimensional formal group FΣ over Σ such that S̃pec Rµ∗O ≃ B2F ∨

Σ . The next
proposition shows that this recovers the construction from [Dri21].

Proposition 6.6. In the above set up, we have F ∨
Σ ≃ GΣ.

Proof. Our proof will freely use the properties of GΣ as studied in [Dri21]. More precisely, by using
[Dri21, Cor. 2.7.3], it follows that we have a pullback square

BGm ∗

B(G∆
m) B2GΣ.

Since RΓ(BGm,O) ≃ k, it follows that RΓ(B2GΣ,O) ≃ RΓ(B(G∆
m),O). By [Dri21, Thm. 2.7.5],

GΣ is dual to a 1-dimensional formal group over Σ. Let u : B(G∆
m) → Σ denote the natu-

ral map. By [Dri21, Thm. 2.7.10] and Proposition 6.3, it follows that R2u∗O ≃ OΣ {−1} and
R∗u∗O ≃ Sym∗R2u∗O. Now, using the discussion before Proposition 6.6, we see that the natural
map B(G∆

m) → (BGm)∆ induces an isomorphism S̃pec Rµ∗O ≃ S̃pec Ru∗O. This gives a natu-
ral map B2F ∨

Σ → B2GΣ of pointed stacks, which by construction and the affineness of B2GΣ
(Proposition 6.4), is an isomorphism. This gives F ∨

Σ ≃ GΣ, as desired. □

Below, we will use our approach of reconstructing GΣ using BGm to construct certain refinements,
which we will denote by GΣ′ and GΣ′′ . To this end, we will need the following lemma, which computes
the full Nygaard filtration on absolute prismatic cohomology of BGm.

Lemma 6.7. Let R be a quasiregular semiperfectoid algebra. We have a natural isomorphism⊕
i≥0

Film−i
Nyg ∆R {n− i} [−2i] ∼−→ FilmNygRΓ∆(BGm) {n} .

Proof. The proof is similar to [BL22a, Lem. 9.1.4]. Let t denote the tautological class in
H2

syn(BGm,Zp(1)) corresponding to the identity map BGm → BGm. The classes ti for i ∈ N
induce a natural map ⊕

i≥0
Film−i

Nyg ∆R {n− i} [−2i] −→ FilmNygRΓ∆(BGm) {n} .

We will show that this is an isomorphism. For m ≤ 0, the claim follows from the discussion before
Proposition 6.6. By induction, it would be enough to show that the induced map⊕

i≥0
grm−i

Nyg ∆R {n− i} [−2i] −→ grm
NygRΓ∆(BGm) {n}

is an isomorphism. Let S be a perfectoid algebra that maps surjectively to R. Using this, the above
map can be identified with the induced map⊕

i≥0
Film−i

conj ∆R {m− i} [−2i] −→ FilmconjRΓHT(BGm) {m} .

To check that the above map is an isomorphism, we can again pass to graded pieces. Then
grm

conjRΓHT(BGm) {m} is naturally isomorphic to ∧mLBGm/S [−m]∧p. By the transitivity fiber
sequence for cotangent complex, L∧p

BGm/S ≃ O[−1]⊕L∧p
R/S . Therefore, we have ∧mLBGm/S [−m]∧p ≃⊕

i≥0 ∧m−iL∧p
R/S [−i−m] ≃ grm−i

conj ∆R {m− i} [−2i]. This yields the required isomorphism on graded
pieces, which finishes the proof. □
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Now let Σ′ := (Spf Zp)N . There is a natural map u : (BGm)N → Σ′. In this language, Lemma 6.7
admits the following translation:

Proposition 6.8. In the above set up, R∗u∗O ≃ Sym∗R2u∗O; moreover, R2u∗O ≃ OΣ′ {−1} .

Proof. Let R be a quasiregular semiperfectoid algebra. By a result proven by Bhatt–Lurie (see
[Bha23, Cor. 5.5.11]), we have a natural isomorphism of stacks

(Spf R)N ≃

(
Spf

⊕
i∈Z

FiliNyg∆R {i}

)
/Gm.

Under this isomorphism, the line bundleO(Spf R)N {−1} corresponds to the graded
⊕

i∈Z FiliNyg∆R {i}-
module

⊕
i∈Z Fili−1

Nyg∆R {i− 1} . Now let v : (BGm,R)N → (Spf R)N denote the natural map. As a
consequence of the previous discussion and Lemma 6.7, we see that R2v∗O ≃ O(Spf R)N {−1} and
R∗v∗O ≃ Sym∗R2v∗O. By quasisyntomic descent, we obtain the desired claim. □

Proposition 6.9. In the above set up, there exists a 1-dimensional formal group over Σ′ denoted
by FΣ′ (that extends FΣ) such that S̃pec Ru∗O ≃ B2F ∨

Σ′ .

Proof. Follows from Proposition 6.3. □

Remark 6.10. Let Σ′′ be as defined in [Dri20], which is also denoted by (Spf Zp)syn. Using the
coequalizer description of Σ′′ from [Dri20, 8.2.1], it follows that FΣ′ from Proposition 6.9 glues to a
1-dimensional formal group FΣ′′ over Σ′′.
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