
RECONSTRUCTION OF THE STACKY APPROACH
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SHUBHODIP MONDAL

Abstract. In this short paper, we use Tannakian reconstruction techniques to
prove a result that explains how to reconstruct the stacky approach to de Rham
cohomology from the classical theory of algebraic de Rham cohomology via an
application of the adjoint functor theorem.

1. INTRODUCTION

Let k be a perfect field of characteristic p > 0. The stacky approach to de
Rham cohomology due to Drinfeld recovers the theory of de Rham cohomology
via cohomology of the structure sheaf of certain stacks [Dri18]. More precisely,
for a smooth scheme X over k, he constructs a stack XdR such that RΓdR(X) '
RΓ(XdR,O). The case of X = A1

k here is particularly important. The ring scheme
structure on A1

k induces a ring stack structure on A1,dR which can be used to determine
the stacks XdR for any smooth scheme X over k (see [LM21, Section 2.4]). Let us
use Ga to denote A1

k with the enhancement of a ring scheme and GdR
a to denote A1,dR

equipped with the enhancement of a ring stack. The ring stack GdR
a has been used in

[LM21, Theorem 1.6] to give a proof of Drinfeld’s refinement of the Deligne–Illusie
theorem (c.f. [BL22b, Remark 5.16]). Actually, all the multiplicative endomorphisms
of de Rham cohomology as a functor have been classified in [LM21, Theorem 4.24],
which really uses the ring stack GdR

a . This, of course, also recovers the Sen operators,
which was also only recently observed due to the work of Drinfeld and Bhatt–Lurie.
Roughly speaking, for a scheme X over W2(k), the new Sen operators act on the de
Rham cohomology of X (after base changing to k); this is further studied in [BL22a,
Section 3.5].

Given the fundamental nature of these new results, one might naturally arrive at
a slightly philosophical question that Illusie asked the author: does the ring stack
GdR

a give any information about the theory of de Rham cohomology that could not be
seen otherwise? The goal of this note is to prove that that is not the case. The ring
stack GdR

a is not an enrichment of the theory of de Rham cohomology, it is actually
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equivalent to the theory of de Rham cohomology. In fact, it is “dual” to the theory
of de Rham cohomology.

The goal of this note is to prove the above claim precisely. To do so, we will
develop the stacky approach to de Rham cohomology from the scratch by using the
classical theory of algebraic de Rham cohomology. The tools we use to do so are
only:

(1) The classical algebraic de Rham complex, as considered in [Gro66].
(2) One computation from derived de Rham cohomology, developed earlier by

Illusie [Ill72], Beilinson [Bei12] and Bhatt [Bha12].
(3) The theory of higher categories, as developed by Lurie in [Lur09]. In particular,

we use the adjoint functor theorem and left Kan extensions.

The main result is Theorem 2.0.1 below. We will need some preparations before
stating it. Note that in above, GdR

a := Cone(G]
a → Ga). For details on the cone

construction, we refer to [Dri21, Section 1.3] or [LM21, Section 2.1]. The Tannakian
reconstruction techniques used in our paper is useful in more general situations
concerning derived categories of representations, see Remark 3.0.7.

1.1. Warning. This note is only about reconstruction of the stacky approach to
de Rham cohomology. We do not make any claims about reconstruction of the
stacks Σ,Σ′,Σ′′ from [Dri21] in the context of absolute prismatic cohomology. For a
discussion on this, see Remark 3.0.8.

1.2. Notations and categorical prerequisites.

(1) We fix a prime p. Let k be a perfect field of characteristic p. We use Algk to
denote the category of ordinary k-algebras. Further, we let Polyk denote the
category of finitely generated polynomial algebras over k and Algsm

k denote
the category of smooth k-algebras.

(2) Let Ga denote the affine line A1 viewed with the enhancement of a ring
scheme. Let G]

a denote the divided power completion of Ga at the origin,
which has a group scheme structure. In fact, G]

a has the natural structure of
a Ga-module. See [Dri21, Section 3.2 - 3.5] for more details.

(3) We will let S denote the∞-category of spaces, or equivalently the∞-category
of ∞-groupoids, or the ∞-category of anima.

(4) We let ARingsk denote the ∞-category of animated k-algebras. There is a
forgetful functor ARingsk → S which preserves small limits.

(5) All schemes and stacks (in the classical sense) are identified with the functors
they represent. More precisely, an object in the category Fun(Algk,S) is
simply called a stack. An object in the category Fun(Algk,ARingsk) is simply
called a ring stack. There is a natural forgetful functor

Fun(Algk,ARingsk)→ Fun(Algk,S).
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(6) Let C,D be two ∞-categories. Let FunL(C,D) be the category of functors
that are left adjoints and let FunR(C,D) be the category of functors that are
right adjoints. Then FunL(C,D)op ' FunR(C,D). [Lur09, Prop. 5.2.6.2].

(7) Let C be a presentable ∞-category and let F : ARingsk → C be a colimit
preserving functor. By the adjoint functor theorem [Lur09, Prop. 5.5.2.9], we
have a right adjoint G : C → ARingsk. Composing along ARingsk → S gives
an accessible limit preserving functor C → S, which must be corepresentable
by an object M ∈ C. We note that M ' F (k[x]). This follows via adjunction
and the fact that the forgetful functor ARingsk → S is corepresented by k[x].

(8) Finally, let CAlg(D(k)) denote the ∞-category of commutative algebra
objects in the derived ∞-category of k-vector spaces, or equivalently E∞-
algebras over k. There is a colimit preserving functor ARingsk → CAlg(D(k))
that we will somewhat abusively call id.

(9) We use cohomological conventions, i.e., the full subcategory of connective
objects in D(k) is denoted by D(k)≤0. They are characterized by the property
that the cohomology H i(·) = 0 for i > 0.

(10) For an object T ∈ CAlg(D(k)), we will let LModT denote the derived ∞-
category of left modules over T. Thinking of T as a ring spectrum, they are
modeled by T -module spectra. When T is an ordinary ring, it is equivalent
to the derived ∞-category D(T ), which can be modeled by chain complexes
over T.

1.3. Acknowledgements. I am grateful to Benjamin Antieau, Bhargav Bhatt and
Luc Illusie for helpful conversations and their encouraging comments on this paper.
Special thanks to the referee for very helpful comments on this paper and to Vladimir
Drinfeld for helpful correspondence. I also thank the support of NSF grant DMS
#1801689.

2. Recovering the stacky approach from de Rham cohomology

Let A be a smooth algebra over k. Let Ω∗A denote the algebraic de Rham complex.
Then Ω∗A has the additional structure of a commutative differential graded algebra.
The latter structure can be used to view Ω∗A as an object in the more flexible
∞-category of commutative algebra objects in the derived ∞-category of k-vector
spaces, denoted as CAlg(D(k)).

This gives a functor dR : Algsm
k → CAlg(D(k)) from the category of smooth k-

algebras to CAlg(D(k)). Via left Kan extension along the inclusion Algsm
k → ARingsk,

we can equivalently view the above as a functor

dR : ARingsk → CAlg(D(k)).

Here and onwards, ARingsk denotes the ∞-category of animated k-algebras.

So far, we have been forcefully employing the language of ∞-categories to the
situation. But now it is time to collect the rewards. In the above set up, the functor
dR preserves colimits. This follows from [Lur09, Prop. 5.5.8.15] and was observed

3



RECONSTRUCTION OF THE STACKY APPROACH TO DE RHAM COHOMOLOGY

already in [Bha12]. Here we are also implicitly using that dR as defined above is also
naturally equivalent to the left Kan extension of dR : Polyk → CAlg(D(k)) along
the inclusion Polyk → ARingsk. This compatibility was observed in [Bha12] and is
a consequence of the derived Cartier isomorphism [Bha12, Proposition 3.5]. Now,
since dR preserves colimits, by an application of the adjoint functor theorem, it has
a right adjoint. Let us call the right adjoint

dR∨ : CAlg(D(k))→ ARingsk.

Note that the category of ordinary k-algebras Algk is a full subcategory of
CAlg(D(k)). By restricting the functor dR∨ above, we get a functor

dR∨◦ : Algk → ARingsk.

Theorem 2.0.1. We have a natural isomorphism of ring stacks

dR∨◦ ' Cone(G]
a → Ga).

Proof. Note that dR is naturally equipped with the Hodge filtration, which induces
an arrow gr0 : dR → id in FunL(ARingsk,CAlg(D(k))). Here, id really means the
natural functor id : ARingsk → CAlg(D(k)), which preserves colimits. By the
adjoint functor theorem we get an arrow id∨ → dR∨ in FunR(CAlg(D(k)),ARingsk).
Restricting along Algk → CAlg(D(k)) gives an arrow

id∨◦ → dR∨◦

in Fun(Algk,ARingsk).

Lemma 2.0.2. We have id∨◦ ' Ga as ring stacks (Section 1.2 (5)). In particular,
both are representable by schemes.

Proof. This is a definition chase that we omit. See Section 1.2 (7). �

Therefore, we get a map H : Ga → dR∨◦ of ring stacks. Note that taking the
fibre (kernel) of the above map gives a functor KerH : Algk → D(k)≤0, where
D(k)≤0 denotes the ∞-category of connective k-vector spaces (we use cohomological
indexing) or in other words, animated k-vector spaces. We are going to identify
KerH explicitly.

Lemma 2.0.3 (Bhatt). We have an isomorphism k ⊗dR(k[x]) k[x] ' Dx(k[x]), where
the latter denotes divided power envelope of k[x] at the ideal (x). The tensor product
is taken along the map gr0 : dR(k[x])→ k[x].

Proof. The key is to use that

k ⊗dR(k[x]) k[x] ' LdRk/k[x],

where the right hand side denotes derived de Rham cohomology. The latter can
be computed by using the conjugate filtration and the cotangent complex [Bha12,
Lemma 3.29]. �

4



SHUBHODIP MONDAL

This shows that KerH ' G]
a as a functor from Algk → D(k)≤0. In particular,

KerH is representable by an affine scheme.

Lemma 2.0.4. The functor dR∨◦ is an fpqc sheaf of animated rings.

Proof. It is enough to check that the composite functor of dR∨◦ along ARingsk → S,
which gives a functor Algk → S is a sheaf of spaces. But that functor sends
B → MapsCAlg(D(k))(dR(k[x]), B), (see Section 1.2 (7)) and thus the claim follows
by classical faithfully flat descent. �

This constructs a map Cone(G]
a → Ga)→ dR∨◦ in Fun(Algk,ARingsk). We needed

the above lemma because formation of the cone on the LHS involves sheafification.

Having constructed a map of ring stacks, now we need to check that they are
isomorphic. This can be done at the level of stacks by forgetting the ring structure,
i.e., we can check that Cone(G]

a → Ga) → dR∨◦ is an equivalence in Fun(Algk,S),
after using the functor ARingsk → S, where the latter denotes the ∞-category of
spaces. This will rely on a Tannakian reconstruction result for Y := Cone(G]

a → Ga).

Lemma 2.0.5. Let B be a k-algebra. Then the groupoid of SpecB valued points of
Y , denoted as Y(B) ' MapsCAlg(D(k))(RΓ(Y ,O), B).

We will give a proof of the above lemma in the next section. Granting this proof,
we note that RΓ(Y ,O) ' dR(k[x]). To see this, we can compute the LHS by faithfully
flat descent along Ga → Y and the RHS via the Cech-Alexander complex. This
finishes the proof (c.f. proof of Lemma 2.0.4) of Theorem 2.0.1 since we obtain
Y(B) ' dR∨◦ (B). �

Remark 2.0.6. As a consequence of Lemma 2.0.5 (which will be proven in the next
section), one obtains that

Maps (SpecB, (SpecP )dR) ' MapsCAlg(D(k))(dR(P ), B),

where B is any k-algebra and P is a finitely generated polynomial algebra over k.
The maps in the left hand side are taken in the category of stacks over k. We thank
the referee for pointing this out.

Remark 2.0.7. Note that the proof of Theorem 2.0.1 explicitly reconstructs the
presentation of the stack Y = Cone(G]

a → Ga) as a quotient of Ga by G]
a by

reconstructing Ga as id∨◦ and G]
a as KerH. Thus, the proof actually allows one to

find the stack as well.

3. Tannakian reconstruction

Throughout this section let Y := Cone(G]
a → Ga). There is a natural map

Y → BG]
a whose fiber is Ga. Since Ga is an affine scheme and ∗ → BG]

a is faithfully
flat it follows that the map Y → BG]

a is an affine morphism of stacks.

Lemma 3.0.1. The stack BG]
a has cohomological dimension 1.
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Proof. By a spectral sequence argument, it is enough to prove that if F is a quasi-
coherent sheaf on BG]

a then H i(BG]
a, F ) = 0 for i > 1. Since the dual G]

a
∗

of the

group scheme G]
a is isomorphic to the formal group law Ĝa, such an F corresponds

to a nilpotent k[[T ]]-module V whose cohomology is computed by Extik[[T ]](k, V ).
We refer to [Haz78, Section 37.3.12] for more details on such duality. The claim
now follows from standard resolution of k by free modules over k[[T ]] as that yields
Extik[[T ]](k, V ) = 0 for i > 1. �

Corollary 3.0.2. The stack Y has cohomological dimension 1.

Proof. Follows from the above lemma since Y → BG]
a is affine. �

Lemma 3.0.3. The structure sheaf O is a compact generator for the derived ∞-
category of quasi-coherent sheaves on BG]

a, denoted as Dqc(BG]
a).

Proof. The structure sheaf O is compact since BG]
a has finite cohomological dimen-

sion. Proving that it is a generator amounts to showing that if RHom(O, F ) = 0 for
some F ∈ Dqc(BG]

a), then F = 0. In other words, if RΓ(F ) = 0, then we need to
show that F = 0. By the hypercohomology spectral sequence and Lemma 3.0.1, we
get that H i(BG]

a,HjF ) = 0 for all j and all i ≥ 0. In particular, H0(BG]
a,HjF ) = 0.

But since G]
a is a unipotent group scheme, a non-trivial representation must have a

fixed vector. This implies that HjF = 0 for all j and therefore F = 0, as desired. �

Corollary 3.0.4. The structure sheaf O is a compact generator for Dqc(Y).

Proof. Follows in a way similar to the proof above along with the fact that Y → BG]
a

is affine. �

Corollary 3.0.5. There is an equivalence of symmetric monoidal stable∞-categories
Dqc(Y) ' LModRΓ(Y,O).

Proof. The equivalence follows from Corollary 3.0.4 (which is compatible with the
symmetric monoidal structures since (·)⊗ (·) preserves colimits in both variables) by
using [Lur18, Thm 7.1.2.1]. �

Lemma 3.0.6. The connective objects with respect to the standard t-structure on
Dqc(Y) are generated under colimits by the structure sheaf O.

Proof. Since O is connective, it follows that objects generated under colimits by O
are all connective. Thus it would be enough to prove that if F ∈ Dqc(Y) is such that
H i(BG]

a, F ) = 0 for i < 0, then F must be coconnective, i.e., Hj(F ) = 0 for j < 0.
This again follows from the hypercohomology spectral sequence, Corollary 3.0.2
and the fact that a nonzero representation of G]

a must have a fixed vector, by
unipotence. �

Proof of Lemma 2.0.5. By the Tannaka duality theorem [Lur18, Thm 9.2.0.2], we
know that Maps (SpecB,Y) can be identified with the full subcategory of Fun⊗(Dqc(Y), Dqc(SpecB))
spanned by those k-linear symmetric monoidal functors F that has a right adjoint
G, such that G preserves colimits; F preserves connective objects, and F and G
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satisfies a projection formula, i.e., u⊗G(v) ' G(F (u)⊗ v). Note that Lemma 3.0.6
implies that F preserving connective objects is implied by the necessary condi-
tion that F (OY) ' OSpecB. Since SpecB is affine, one may also add the neces-
sary condition that G is conservative. Now we note that Dqc(SpecB) ' LModB,
and Dqc(Y) ' LModRΓ(Y,O) (by Corollary 3.0.5). Therefore, by [Lur17, Corollary
4.8.5.21] (see also [Lur17, Proposition 7.1.2.6]), the full subcategory of such functors
in Fun⊗(Dqc(Y), Dqc(SpecB)) also correspond to MapsCAlg(D(k))(RΓ(Y ,O), B). This
gives Y(B) ' MapsCAlg(D(k))(RΓ(Y ,O), B), as desired. �

Remark 3.0.7. We point out that the isomorphism Dqc(Y) ' LModRΓ(Y,O) in
Corollary 3.0.5 is very special to the stack Y = GdR

a that is being considered. For
example, it is not true that Dqc(BGa) ' LModRΓ(BGa,O) (over a perfect field k of
characteristic p). In fact, Hall, Neeman and Rydh proved [HNR15, Proposition 3.1]
that Dqc(BGa) has no nonzero compact objects (negatively answering a question of
Ben-Zvi). Their result immediately shows that such an isomorphism is impossible
since LModRΓ(BGa,O) is compactly generated. Therefore, the methods used in our
proof above gives some techniques to prove certain positive results in this direction
in specific situations.

Remark 3.0.8. We end this paper with an informal discussion regarding possible
extensions of the “reconstruction” result (Theorem 2.0.1) established in this paper.
For any n ≥ 1, the group schemes Ga and G]

a can be defined over the ring of Witt
vectors Wn(k). Furthermore, one can also define the stack YWn(k) := Cone(G]

a → Ga)
as a ring stack over Wn(k). As explained in [LM21, proposition 2.33], YWn(k) has the
natural structure of a k-algebra stack living over Wn(k). The discussion in Section 3
and Remark 2.0.6 applies mutatis mutandis to give the analogue of the reconstuction
result appearing in Theorem 2.0.1 in the context of the (n-truncated) crystalline
cohomology functor. Thus, it is also possible to reconstruct the stacky approach to
crystalline cohomology similarly via an application of the adjoint functor theorem.
We thank the referee for pointing this out. We expect a similar reconstruction method
to work in the context of the stacky approach to relative prismatic cohomology as
well. However, this has not been pursued in this paper. As pointed out in Section 1.1,
the situation in the context of absolute prismatic cohomology is much more difficult
– the derived category of the stack Σ can not be described in a manner as simple
as Corollary 3.0.5; thus one cannot expect to reconstruct Σ simply from RΓ(Σ,O).
Note that RΓ(Σ,O) is considered to be the absolute prismatic cohomology of SpfZp.
In the light of [BL22a, Proposition 3.5.15], the absolute prismatic cohomology (of
SpfZp) of all the Breuil–Kisin twists (along with the Nygaard filtration) might have
a better chance of reconstructing Σ.
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