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Abstract. Building on Toën’s work on affine stacks, we develop a certain homotopy theory for
schemes, which we call “unipotent homotopy theory.” Over a field of characteristic p > 0, we
prove that the unipotent homotopy group schemes πU

i ( · ) introduced in our paper recover the
unipotent Nori fundamental group scheme [Nor76], the p-adic étale homotopy groups [AM69],
as well as certain formal groups [AM77] introduced by Artin and Mazur. We prove a version of
the classical Freudenthal suspension theorem as well as a profiniteness theorem for unipotent
homotopy group schemes. We also introduce the notion of a formal sphere and use it to show
that for Calabi–Yau varieties of dimension n, the group schemes πU

i ( · ) are derived invariants
for all i ≥ 0; the case i = n is related to recent work of Antieau and Bragg [AB22] involving
topological Hochschild homology. Using the unipotent homotopy group schemes, we establish a
correspondence between formal Lie groups and certain higher algebraic structures.
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1. Introduction

In this paper, we develop a notion of “unipotent homotopy theory” for schemes. For schemes
over fields of positive characteristic, the resulting unipotent homotopy group schemes contain a
lot of topological as well as arithmetic information. We will, in particular, see that the unipotent
homotopy group schemes provide interesting new invariants for varieties whose cohomology is
especially simple, a phenomenon perhaps more familiar in topology, for example, in the case of
spheres. Before delving into the precise definitions and applications, we discuss some relevant
contexts.

One of the most classical homotopical notions for schemes is the étale fundamental group
introduced by Grothendieck [Gro63a], which is a profinite group. Grothendieck also conjectured in
[Gro63b, § X.2] that the étale fundamental group should admit natural enhancement of a group
scheme, which would contain more information than only the finite étale coverings of a scheme. The
first construction of such an object was given by Nori [Nor76], who introduced the fundamental
group scheme πN

1 (X,x) for a pointed scheme (X,x) defined over a field. Nori’s construction uses
the notion of essentially finite vector bundles introduced by him and the Tannakian formalism (see,
e.g., [SR72, DMOS82, Del90]).

In [AM69], Artin and Mazur introduced the notion of étale homotopy type of a scheme (see also
[Fri82]); for some notable applications, see, e.g., [Qui68, Fri73, Sul74, Fri82, SS16]. The theory of
étale homotopy types in particular gives rise to the higher étale homotopy groups of a scheme, which
generalize the notion of étale fundamental groups from [Gro63a]. However, the natural analogous
question of constructing higher homotopy group schemes that would extend Nori’s fundamental
group scheme πN

1 (X,x) [Nor76] has not been addressed.
Note that there are several fundamental difficulties in using the Tannakian formalism to define

higher homotopy group schemes. Let us briefly illustrate one of the issues. If G is a commutative
group scheme, then as a consequence of the Tannakian formalism, one can recover G from the
category Rep(G) of representations of G, or equivalently, the category of vector bundles on BG.
From a homotopical point of view, this recovers G as “πN

1 (K(G, 1)).” However, a similar construction
fails to recover G as “πN

2 (K(G, 2))”; this is because the category of quasi-coherent sheaves on K(G, 2)
is trivial for all group schemes G. In fact, the derived ∞-category Dqc(K(G, 2)) of quasi-coherent
sheaves on K(G, 2) can often be trivial, i.e., Dqc(Spec k); for a concrete example, one can take
G = Gm (see Example 2.2.32). Moreover, even if Dqc(K(G, 2)) is nontrivial, e.g., when G = Ga, it
is unclear in positive characteristic how to recover G from it.

In our paper, we resolve the question of constructing higher homotopical analogues of the
Nori fundamental group scheme “up to unipotent completion.” More precisely, we introduce
the unipotent homotopy group schemes πU

i (X,x) for a pointed scheme (X,x) over a field k that
extend the unipotent Nori fundamental group scheme from [Nor82] (which is simply the unipotent
completion of πN

1 (X,x) when k has characteristic p > 0). Our method of construction takes an
entirely different approach. We completely bypass the Tannakian machinery used in the existing
construction of the Nori fundamental group scheme by employing Toën’s work on higher stacks and
affine stacks [Toë06] instead.

Affine stacks were introduced by Toën as a solution to Grothendieck’s schematization problem,
which proposed to extend the foundations of algebraic stacks suitably in order to accommodate
homotopy types. In particular, Toën showed that affine stacks can be used to model simply
connected rational and p-adic homotopy types. Roughly speaking, the classical results [Qui69b,
Sul77, BG76, Kri93, Goe95, Man01] in rational and p-adic homotopy theory allow one to embed
simply connected rational and p-adic homotopy types in a suitable category of cosimplicial or
E∞-algebras. Toën proved that algebras of the former kind can further be embedded contravariantly
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into the category of higher stacks; a higher stack that lies in the essential image of this embedding
is called an affine stack. For a more precise discussion of the definitions, see Section 2.1. Note that
the category of higher stacks contains the category of schemes as well. Our work was fueled by the
following observation.
Theorem 1.0.1. Let (X,x) be a pointed scheme of finite type over a field k such that H0(X,O) ' k.1
Let U(X) be the affine stack which is universal with respect to the property of receiving a map from
X. Then there is a natural isomorphism

π1(U(X), x) ∼−→ πU,N
1 (X,x),

where the right-hand side denotes the unipotent fundamental group scheme constructed by Nori.
(cf. Proposition 3.1.7)

Our observation in Theorem 1.0.1 led us to take the following perspective: affine stacks are
in some sense an abstract notion of a “unipotent homotopy type.” This motivates the following
definitions.
Definition 1.0.2. Let X be a scheme over a field k. The affine stack U(X) from Theorem 1.0.1 is
called the unipotent homotopy type of X.
Definition 1.0.3. Let (X,x) be a pointed, cohomologically connected scheme over k. We define

πU
i (X) := πi(U(X), x).

The sheaves πU
i (X) are representable by unipotent group schemes and will be called the i-th

unipotent homotopy group scheme of X.
Remark 1.0.4. For us, a group scheme G over a field k is unipotent if it is affine and every nonzero
representation of G over k has a nonzero fixed vector. Note that we do not assume the group
schemes to be of finite type. For example, an infinite product of Ga is a unipotent group scheme.
Remark 1.0.5. The notion of unipotent homotopy type can be defined for any higher stack
X over an arbitrary base ring, and it is determined by RΓ(X,O) naturally equipped with the
structure of a derived commutative ring (see Remark 2.1.9 and Remark 2.1.16). However, the
geometric language of affine stacks plays a crucial role in our paper, which is already manifested in
Definition 1.0.3. Moreover, our definition via the universal property (as in Theorem 1.0.1) and the
geometric approach taken in this paper play an important role in the proofs.

Let us now explain our main results regarding the unipotent homotopy group schemes introduced
above.
Theorem 1.0.6 (Profiniteness theorem). Let X be a proper, cohomologically connected, pointed
scheme over a field k of characteristic p > 0. Then for all i, the unipotent homotopy group schemes
πU
i (X) are profinite group schemes. (cf. Proposition 4.3.1.)

One may think of Theorem 1.0.6 as an analogue of a result of Artin–Mazur [AM69, Thm. 11.1]
who proved that the étale homotopy groups of geometrically unibranch varieties are profinite.
While Artin and Mazur use geometric and simplicial arguments to deduce their result from the
profiniteness of Galois groups, our proof uses the theory of Frobenius modules on higher stacks that
we discuss and is closer in spirit to the Riemann–Hilbert correspondence in characteristic p > 0;
cf. [EK04, BP09, BL19]. Additionally, our proof requires certain results on profinite unipotent
group schemes and their representations which are developed and studied in Section 4.2. If k is
of characteristic zero, then Theorem 1.0.6 does not hold. Indeed, if E is an elliptic curve over a
characteristic zero field, then πU

1 (E) ' Ga, which is not profinite.
Our next result shows that the unipotent homotopy group schemes actually refine the Artin–

Mazur étale homotopy groups [AM69] in the p-adic context.

1A scheme X over k such that H0(X,O) ' k will be called cohomologically connected.
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Theorem 1.0.7 (Unipotent–étale comparison theorem). Let X be a proper, cohomologically
connected, pointed scheme over an algebraically closed field of characteristic p > 0. Then for all
i, the pro-p-finite completed i-th Artin–Mazur p-adic étale homotopy group πét,AM

i (X)p (see the
discussion following Definition 4.4.2) is naturally isomorphic to the maximal pro-étale quotient of
πU
i (X). (cf. Proposition 4.4.7.)

The first step in the proof of Theorem 1.0.7 is a different definition of p-adic étale homotopy
group schemes introduced in Definition 4.4.2 and its comparison with πét,AM

i (X)p established in
Proposition 4.4.3; the latter result crucially relies on p-adic homotopy theory. We also need to use
some Frobenius semi-linear algebra adapted to the “derived” setting that we study in Section 4.1.
Additionally, we use Theorem 1.0.6 and certain results on profinite group schemes developed in
Section 4.2. Lastly, we invoke the general theory of Milnor sequences for replete topoi, which has
been studied recently by the authors in [MR25].

In another paper [AM77], Artin–Mazur constructed certain commutative formal groups from
algebraic varieties. These formal groups have been a major source of interest, especially in the study
of Calabi–Yau varieties; see, e.g., [Art74, Shi79, vdGK03]. Our next results show that in many cases
of interest, these formal groups can be recovered by dualizing certain unipotent homotopy group
schemes. By the duality discussed in Remark 5.1.4, one can ask whether the dual of an affine group
scheme corresponds to a commutative formal Lie group (Definition 5.2.2) or a non-commutative
formal Lie group (Definition 5.1.6). To this end, we first prove the following general statement,
which allows us to construct formal Lie groups via unipotent homotopy theory.

Theorem 1.0.8. Let n ≥ 1 be an integer and X be a pointed higher stack over a field k satisfying
the conditions

H0(X,O) ' k, Hi(X,O) = 0 for all 0 < i < n, and Hn+1(X,O) = 0. (1.0.1)

Further, let us assume that dimkH
n(X,O) = g. Then the dual of πU

n (X) is a commutative formal
Lie group of dimension g if n > 1 and is a non-commutative formal Lie group of dimension g if
n = 1. (cf. Construction 6.2.6.)

Unlike the construction in [AM77], our construction of the formal Lie groups in Theorem 1.0.8
does not rely on the étale cohomology groups of Gm and is also able to recover non-commutative
formal Lie groups. Instead, the proof of Theorem 1.0.8 relies on establishing certain foundational
results on representability of duals of unipotent group schemes by formal Lie groups—this is the
subject of Section 6.1. Using our work in Section 6.1, we prove the following result which establishes
a correspondence between formal Lie groups and certain “higher algebraic” structures.

Theorem 1.0.9. Let k be a field. The full subcategory of the ∞-category (DAlgccn
k )/k (see Def-

inition 2.1.8) spanned by those B ∈ (DAlgccn
k )/k that satisfy H0(B) = k, dimkH

2(B) = g and
H∗(B) ' Sym∗H2(B) is equivalent to the category of commutative formal Lie groups over k of
dimension g via the functor that sends a formal Lie group E 7→ RΓ(K(E∨, 2),O). (cf. Proposi-
tion 6.2.3.)

In Proposition 6.2.1, we prove a similar classification result for non-commutative formal Lie
groups, proposing an answer to a problem posed by Nori [Nor82, p. 75]; also see Proposition 6.2.2
for a variant of Theorem 1.0.9. The proofs of these results rely on unipotent homotopy theory;
more precisely, the inverse to the functor described in Theorem 1.0.9 is obtained by taking π2 of
the affine stack associated with B.

Finally, let us state the result that compares our formal Lie groups arising from Theorem 1.0.8
with the ones constructed by Artin–Mazur in a geometric context, proposing a homotopical answer
to [AM77, p. 92, Qn. (a)].
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Theorem 1.0.10. Let n ≥ 1 be an integer. Let X be a pointed proper scheme over an algebraically
closed field k of characteristic p > 0 satisfying the conditions in (1.0.1). Let Φn

X denote the n-th
Artin–Mazur formal group defined in this context. Then if n > 1, Φn

X is naturally isomorphic to
the dual πU

n (X)∨ of the n-th unipotent homotopy group scheme of X. If n = 1, Φn
X is naturally

isomorphic to (πU
1 (X)ab)∨ (cf. Proposition 6.3.6.)

Note that Theorem 1.0.7 and Theorem 1.0.10 show that the unipotent homotopy group schemes
recover the p-adic étale homotopy groups from [AM69] as well as the formal groups from [AM77]
in many interesting cases. Roughly speaking, according to the principle in which homotopy groups
relate to homology groups by the classical Hurewicz theorem in algebraic topology, Theorem 1.0.10
says that the dual group schemes of the Artin–Mazur formal groups can now be thought of as a
“homology theory” for the unipotent homotopy theory. While one needs to impose certain hypotheses
to guarantee that certain deformation functors defined by Artin–Mazur are pro-representable by
formal groups, the unipotent homotopy group schemes we consider are always representable. Further,
Theorem 1.0.10 makes it clear that for a scheme X over a field k of characteristic p > 0, the
unipotent homotopy group schemes πU

i (X) contain nontrivial arithmetic information. For example,
if X is a K3 surface, the dual of πU

2 (X) recovers the formal Brauer group and thus the height
of X. Applying Theorem 1.0.8 to certain stacks introduced in [Dri22] (see also [BL22, Mon22b]),
in many cases of interest (e.g., K3 surfaces), one can moreover recover the formal groups arising
from de Rham cohomology that were constructed by Artin and Mazur [AM77, § III] using the
multiplicative de Rham complex; see Construction 6.3.9.

We discuss more examples in Section 5. We show that the unipotent homotopy types of curves
and abelian varieties are of the form K(πU

1 , 1), as one might expect. Further, in Proposition 5.4.3,
we show using the methods from our paper that the unipotent fundamental group scheme admits
a flat variation for certain families of curves and abelian varieties, giving a construction for a
claim made in [Nor82]. As an application of Proposition 5.4.3, we explain in Example 5.4.5 how
the filtered circle from [MRT22] can simply be obtained as the unipotent homotopy type of the
classical family of curves that degenerates nodal curves to a cuspidal curve. In Example 5.4.6, we
construct the unipotent fundamental group scheme of the universal curve over Mg,1, which could
be of possible further interest.

Next, we discuss applications of unipotent homotopy theory to questions surrounding derived
equivalences. In [BO01], Bondal–Orlov showed that if two smooth projective varieties X and
Y with ample (anti-)canonical bundle are derived equivalent, then X and Y are isomorphic as
varieties. A classical question in algebraic geometry arising from the foundational work of Bondal
and Orlov is the following: if X and Y are two derived equivalent algebraic varieties over k, how
are certain invariants associated with X and Y related? For example, a conjecture of Orlov [Orl05]
asks whether the rational Chow motive M(·)Q of a smooth projective variety is a derived invariant.
In positive characteristic, the work from our paper prompts the following line of investigation:

Question 1.0.11. For what class of smooth projective varieties X and Y defined over an alge-
braically closed field k of characteristic p > 0 does X and Y being derived equivalent imply that
there is an isomorphism of unipotent homotopy types U(X) ' U(Y )?

One can also ask variants of this question by demanding that in addition to derived equivalence,
certain other invariants associated to X and Y coincide. Note that if X and Y are derived equivalent
smooth projective varieties with ample (anti-)canonical bundle, then U(X) ' U(Y ) because [BO01]
implies that X ' Y . In Proposition 5.3.9, we show that there exist abelian threefolds X for which
πU

1 (X) and πU
1 (X∨) are not isomorphic; we construct such abelian varieties by carefully analyzing

the moduli space of certain Dieudonné modules of dimension 3 (see Proposition 5.3.7), extending
work of Oda–Oort [OO78, Prop. 4.1] to certain non-supersingular cases. This shows that U(X) and
U(X∨) cannot be isomorphic, even though the abelian varieties X and X∨ are derived equivalent.
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Question 1.0.11 is particularly interesting in the case of Calabi–Yau varieties (Definition 7.1.1).
Since the canonical bundle of a Calabi–Yau variety is trivial, the techniques from [BO01] do not
yield useful conclusions. In this paper, we use our homotopical techniques to give a positive answer
to Question 1.0.11 in the case when X and Y are derived equivalent Calabi–Yau varieties.

Theorem 1.0.12. Let X and Y be two derived equivalent Calabi–Yau varieties of dimension n
over an algebraically closed field k of characteristic p > 0. Then there exists an isomorphism
U(X) ' U(Y ) of unipotent homotopy types of X and Y . (cf. Theorem 7.2.3.)

In order to state our next result, we will need a definition.

Definition 1.0.13. Let CYn denote the 1-category of Calabi–Yau varieties of dimension n over an
algebraically closed field of characteristic p > 0. Let NCYn denote the 1-category whose objects
are the objects of CYn; for any two Calabi–Yau varieties X and Y , the set of morphisms is defined
to be the set of isomorphism classes of objects of Dperf(X ×k Y ) and the composition is given by
convolution (cf. [SP22, Tag 0G0F]). Note that there is a natural functor N : CYn → NCYop

n that
sends a map f : X → Y of Calabi–Yau varieties to the isomorphism class of the structure sheaf of
the graph OΓf

∈ Dperf(Y ×k X).

Remark 1.0.14. Any object K ∈ Dperf(X ×k Y ) induces a k-linear exact functor Dperf(X) →
Dperf(Y ), which is called the associated Fourier–Mukai transform [Muk81]; note that these Fourier–
Mukai functors are generally not symmetric monoidal. Conversely, by a result of Orlov [Orl97,
Thm. 2.19], any k-linear exact equivalence arises uniquely (up to natural isomorphism) as a
Fourier–Mukai functor.

Now we can formulate the next result, which proves that in odd characteristic, the unipotent
homotopy type of Calabi–Yau varieties of dimension at least 3 is functorial even in the “non-
commutative sense.” In particular, if X and Y are derived equivalent, then U(X) and U(Y ) are
canonically isomorphic in the homotopy category of higher stacks over k, which we denote by
hShv(k)—this gives a functorial strengthening of Theorem 1.0.12. More precisely, we have the
following statement:

Theorem 1.0.15. Let k be an algebraically closed field of characteristic p > 2 and n > 2 be an
integer. Let U : CYn → h Shv(k) be the functor obtained by sending X to the unipotent homotopy
type U(X). Then there is a canonical functor Ũ : NCYop

n → h Shv(k) such that Ũ ◦N is naturally
equivalent to U. (cf. Theorem 7.2.4.)

Theorem 1.0.12 implies that if X and Y are two derived equivalent Calabi–Yau varieties of
dimension n, then πU

i (X) ' πU
i (Y ) for all i ≥ 0; in particular, one has πU

n (X) ' πU
n (Y ). Concretely,

the latter isomorphism means that the Artin–Mazur formal Lie groups of X and Y are isomorphic
(see Theorem 1.0.10), which had previously been observed by Antieau–Bragg [AB22] using certain
constructions from [Hes96]. Our proof builds on their observation regarding the use of [Hes96], but
requires a significant amount of new homotopical ingredients. The main insight is that from the
standpoint of unipotent homotopy theory, Calabi–Yau varieties behave in some sense like spheres.
More precisely, for every 1-dimensional commutative formal Lie group E, we construct a (higher)
stack SnE := Σn−1BE∨, which one may think of as a formal n-sphere. In Proposition 7.2.14, we
prove that if X is a Calabi–Yau variety of dimension n with Artin–Mazur formal group ΦnX , then
U(X) is (noncanonically) isomorphic to the unipotent homotopy type of SnΦn

X
. Relatedly, we also

prove in Proposition 7.1.3 that the p-completion of the Artin–Mazur étale homotopy type of an
ordinary Calabi–Yau variety of dimension n is equivalent to the p-completion of the n-sphere; this
gives an “algebraic model” for the p-adic unstable homotopy of spheres.

However, to construct the canonical functor Ũ as in Theorem 1.0.15, one needs further ingredients.
We use our construction of the Artin–Mazur–Hurewicz class (Construction 6.3.7) as well as the

https://stacks.math.columbia.edu/tag/0G0F
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notion of TR from [Hes96]; additionally, we need to establish the vanishing πU
n+1(SnΦn

X
) = 0 for

n > 2. The intuition behind this vanishing statement comes from the stable homotopy groups of
spheres: if Sn is the usual n-sphere, then for n > 2, the classical homotopy group πn+1(Sn) ' Z/2Z.
If k is a field of odd characteristic, one may therefore hope that the unipotent homotopy group
scheme πU

n+1(SnΦn
X

) = 0. To turn this hope into a proof, we first prove a generalization of the
classical Freudenthal suspension theorem in the world of unipotent homotopy theory—this plays an
important role in understanding the unipotent homotopy theory of Calabi–Yau varieties similar to
the role the classical version plays in understanding the homotopy theory of spheres. We prove
the following version of the Freudenthal suspension theorem that is general enough to be used for
studying unipotent homotopy of algebraic varieties as well as homotopy theory of spaces.

Theorem 1.0.16 (Freudenthal suspension theorem in unipotent homotopy theory). Let n ≥ 0
be an integer. Let X be a pointed connected higher stack over a field k such that Hi(X,O) is
finite-dimensional for all i ≥ 0 and πU

i (X) = {∗} for i ≤ n. Then there are natural maps
πU
i (X) → πU

i+1(ΣX) which are isomorphisms of group schemes for i ≤ 2n and a surjection for
i = 2n+ 1. (cf. Corollary 3.4.11.)

The hardest part of the proof is the surjectivity of the map πU
2n+1(X) → πU

2n+2(ΣX); here,
the assumption that Hi(X,O) is finite-dimensional is crucial. For example, Lemma 3.4.6 and
Lemma 3.4.7 crucially rely on such finiteness assumptions and they play an important role in the
proof of Theorem 1.0.16. To a certain extent, this is because the functor U(·) does not preserve
limits in general and we need to establish several results regarding cohomology and base change
in the context of higher stacks as an essential ingredient in the proof of Theorem 1.0.16. To this
end, we also discuss the theory of quasi-coherent sheaves on affine stacks (which is not discussed in
[Toë06]). More generally, we concretely describe the derived ∞-category of quasi-coherent sheaves
on a fairly general class of stacks that we call weakly affine (see Proposition 2.2.28); this description
generalizes a result of Lurie in the case of affine stacks over fields of characteristic zero [Lur11a,
Prop. 4.5.2]. Using Proposition 2.2.28, in Section 2.3, we prove certain results regarding cohomology
and base change.

Relying on Theorem 1.0.16 along with a careful study of certain tensor constructions for
group schemes (see Remark 7.2.18 for the relation of the tensor product of group schemes from
Definition 3.3.10 with the existing literature) carried out in Section 7.2, we prove the following
(cf. Corollary 7.2.29):

Theorem 1.0.17. Let X be a Calabi–Yau variety of dimension n ≥ 3 over an algebraically closed
field k of characteristic p > 0. Then

πU
n+1(X) '


W [F ] if p = 2 and X is not weakly ordinary,
Z/2Z if p = 2 and X is weakly ordinary,
0 otherwise, i.e., if p 6= 2.

The construction of Ũ as in Theorem 1.0.15 can now be completed by using Proposition 7.2.14
and the fact that πU

n+1(X) = 0 for an n-dimensional Calabi–Yau variery X over an algebraically
closed field of characteristic p > 2 and dimX ≥ 3. The calculation in Theorem 1.0.17 is really
a consequence of a more general calculation for the homotopy of the formal n-spheres that we
introduce (see Corollary 7.2.27) and the fact that the unipotent homotopy type of a Calabi–Yau
variety is isomorphic to a formal sphere. Finally, we mention two consequences of Theorem 1.0.12
and Theorem 1.0.15.

Corollary 1.0.18. Let X and Y be two derived equivalent Calabi–Yau varieties of dimension n
over an algebraically closed field k of characteristic p > 0. Then RΓ(X,O) and RΓ(Y,O) are
isomorphic as E∞-algebras over k.
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Corollary 1.0.19. Let k be an algebraically closed field of characteristic p > 2 and n > 2. Then
there is a canonical functor from NCYn to the homotopy category of E∞-algebras over k that sends
X to RΓ(X,O).

Further remarks. In this subsection, we briefly mention some natural directions and questions
arising from our paper. The notion of unipotent homotopy type studied in this paper can be
applied to any higher stack. Recently, the stacky approach to p-adic cohomology theories due to
Bhatt–Lurie [BL22] and Drinfeld [Dri24b] constructs certain stacks such as X� (resp. Xcrys, XdR)
which can be used to understand prismatic (resp. crystalline, de Rham) cohomology theory along
with the relevant notion of coefficients. It seems interesting to further investigate the unipotent
homotopy types of these stacks as well. As an instance of this perspective, in [MM25, Prop. 6.6],
a version of Theorem 1.0.9 has been used to reconstruct the 1-dimensional formal group over
(Spf Zp)� due to Drinfeld [Dri24a] as the dual of πU

2 ((Bµp∞)�); here Bµp∞ is the classifying stack
of the p-divisible group µp∞ (cf. [Mon21, Def. 3.21]).

When X is a K3 surface over an algebraically closed field of positive characteristic, the height of
the Artin–Mazur formal group of X is either ≤ 10 or ∞ ([Art74, Mil76]). At present, it is unknown
if there is any such numerical bound on the height in the case of Calabi–Yau varieties. Note that
from the perspective of unipotent homotopy theory, every n-dimensional Calabi–Yau variety is
equivalent to a formal n-sphere (see Proposition 7.2.14). The question of whether there exists a
Calabi–Yau variety X with Artin–Mazur formal group E is therefore equivalent to asking if there
is a Calabi–Yau variety X of dimension n such that U(X) ' U(SnE). We wonder if there is any
reasonable way to “approximate” the stack SnE to at least produce a smooth proper scheme X
(possibly of large dimension) whose n-th Artin–Mazur formal group would be E.

The calculation of πU
n+1(X) for a Calabi–Yau variety X of dimension n ≥ 3 plays a crucial role

in producing the canonical isomorphism in Theorem 1.0.15. It would be interesting to obtain more
computations of higher unipotent homotopy group schemes of Calabi–Yau varieties. As explained
before, this is equivalent to computing higher unipotent homotopy group schemes of the formal
spheres. Relatedly, it would be interesting to obtain a version of the EHP sequence in the context
of unipotent homotopy theory, which is not pursued in this paper; see [AWW17] for the EHP
sequence in the context of A1-homotopy theory [MV99].

Theorem 1.0.9 establishes a correspondence between formal Lie groups of dimension g and certain
higher algebraic structures. Classically, formal Lie groups of dimension 1 are also closely connected
to complex-orientable cohomology theories [CF66, Qui69a]. It would be interesting to investigate
how Theorem 1.0.9 (in the case of g = 1) interacts with this picture.

Finally, we point out that the theory of étale homotopy types has been used in anabelian
geometry for higher dimensional varieties; see [SS16]. Moreover, certain unipotent fundamental
groups appear in the work of Kim [Kim05, Kim09]. We hope that the unipotent homotopy type of
a scheme X (as well as the unipotent homotopy types of the stacks X�, Xcrys, XdR, etc.) could
have possible applications in this direction as well.

Outline of the paper. We start by recalling Toën’s work on affine stacks in Section 2.1. In
Section 2.2, we discuss the theory of quasi-coherent sheaves on affine stacks and describe the
derived ∞-category of quasi-coherent sheaves of weakly affine stacks (see Proposition 2.2.28). In
Section 2.3, we establish certain cohomology and base change type results in the context of affine
stacks. We prove Theorem 1.0.1 in Section 3.1 and discuss some properties of higher unipotent
homotopy group schemes in Section 3.2. We study pro-algebraic completions of group valued sheaves
in Section 3.3. These are used in Section 3.4 to prove the Freudenthal suspension in unipotent
homotopy theory (Theorem 1.0.16). Section 4.1 discusses some Frobenius semilinear algebra in
the derived setup. Section 4.2 is devoted to the theory of profinite group schemes, with a special
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focus on the theory of profinite unipotent group schemes and their representations. The techniques
developed in Section 4.1 and Section 4.2 are then used in Section 4.3 to prove the profiniteness
theorem (Theorem 1.0.6). Subsequently, in Section 4.4, we prove the unipotent-étale comparison
theorem (Theorem 1.0.7).

After establishing these foundational results, we move on to discussing more concrete applications.
Section 5.1 and Section 5.2 describe the unipotent homotopy types of curves and abelian varieties,
respectively. In Section 5.3, we discuss moduli of certain Dieudonné modules and construct
examples showing that the unipotent fundamental group scheme is not a derived invariant for
abelian threefolds (Proposition 5.3.9). In Section 5.4, we study unipotent fundamental group
schemes of certain families and applications to a question considered by Nori (Proposition 5.4.3)
and a different construction of the filtered circle (Example 5.4.5). In Section 6.1, we prove certain
foundational results on the representability of duals of unipotent group schemes by formal Lie groups,
which are then used in Section 6.2 to construct certain formal Lie groups and prove Theorem 1.0.8
and Theorem 1.0.9. In Section 6.3, we recover the Artin–Mazur formal group (Theorem 1.0.10)
via unipotent homotopy group schemes. In Section 7.1, we discuss the unipotent homotopy type
of ordinary Calabi–Yau varieties. Finally, we prove our main applications Theorem 1.0.12 and
Theorem 1.0.15 regarding derived equivalent Calabi–Yau varieties in Section 7.2.

Notations and conventions. As in [Toë06] and [Lur09], we work with a certain Grothendieck
universe (containing the set of natural numbers); to deal with the size-related aspects of certain
constructions, [Toë06] and [Lur09] choose an enlargement of the Grothendieck universe, which will
be kept implicit in our paper similar to [Lur09]. We will freely use the theory of ∞-categories as
developed in [Lur09, Lur17, Lur18]. We denote by S the ∞-category of spaces, which is also called
the ∞-category of anima or ∞-groupoids. If C is a ∞-category and X,Y are objects of C, we will
let Map(X,Y ) denote the associated mapping space. For an ∞-category C that admits finite limits,
Pro(C) denotes the ∞-category of pro-objects of C ([Lur09, § 5.3]). For an E∞-ring R, we will let
ModR denote the∞-category of R-modules. An E∞-ring R called discrete if πi(R) ' 0 for all i 6= 0.
In such a case, ModR is simply the derived ∞-category of R-modules D(R) and we will sometimes
prefer the latter notation in this context to avoid confusion. While discussing t-structures, we will
follow the homological convention. Unless otherwise mentioned, limits and colimits are taken in
the ∞-categorical sense and the tensor products are “derived.” A higher stack will often simply
be called a stack. We will denote the derived ∞-category of quasi-coherent sheaves on a (higher)
stack X by Dqc(X). Given a map f : X → Y of (higher) stacks, f∗ (resp. f∗) will always denote
the “derived” pushforward (resp. pullback) discussed in Section 2. A higher stack X over a field k
is called connected if π0(X) ' {∗}; X is called cohomologically connected if H0(X,O) ' k. For
a scheme X over k, we will let Dperf(X) denote the k-linear triangulated 1-category of perfect
complexes; note that if X is smooth, then Dperf(X) ' Db

coh(X) ([SP22, Tag 0FDC]). For a discrete
commutative ring A, we will let AlgA denote the category of discrete (commutative) A-algebras and
DAlgccn

A denote the∞-category constructed in Definition 2.1.8. For B ∈ DAlgccn
A , we will denote the

associated (affine) higher stack by SpecB (see Definition 2.1.12). Note that if B ∈ AlgA ⊂ DAlgccn
A ,

then SpecB is equivalent to the classical affine scheme associated with B, so there is no clash of
notation. We will let Ga (resp. Gm) denote the additive (resp. multiplicative) group scheme and
Ĝa (resp. Ĝm) denote the additive (resp. multiplicative) formal group.
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2. Some results on affine stacks

In this section, we discuss some foundational material on affine stacks that will be useful to us
later on. In Section 2.1, we begin by recalling the definitions of higher stacks and affine stacks
following [Toë06] in an (∞, 1)-categorical language. In Section 2.2, we discuss the theory of quasi-
coherent sheaves on affine stacks that did not appear in [Toë06]. The main result in Section 2.2
is Proposition 2.2.28, which extends a similar result of Lurie for affine stacks in characteristic 0
([Lur11a, Prop. 4.5.2 (7)]) to weakly affine (see Definition 2.2.1) stacks in all characteristics.

2.1. Definition of affine stacks. This subsection provides a quick reminder on Toën’s work on
affine stacks [Toë06].

Notation 2.1.1. For a fixed discrete commutative ring A, we will denote the category of discrete
A-algebras by AlgA and the category of affine schemes by AffA. Let D(A) denote the derived
∞-category of A-modules. Let S denote the ∞-category of spaces. Let PShv(A) := Fun(Affop

A ,S)
denote the ∞-category whose objects will be called presheaves (of spaces).

Definition 2.1.2. We let Shv(A) denote the full subcategory of PShv(A) spanned by objects that
are sheaves with respect to the fpqc topology on AffA (see [Lur09, Ch. 6]). The objects of Shv(A)
will be called (higher) stacks over A. The natural inclusion Shv(A)→ PShv(A) preserves all small
limits.

Remark 2.1.3. Similar to [Toë06], by our conventions, AlgA is the category of A-algebras in a
fixed universe; thus it can be regarded as a small category (by enlarging the universe). Therefore
the functor Shv(A)→ PShv(A) admits a left adjoint given by sheafification.

Definition 2.1.4. The category Shv(A) has a final object {∗} and we let Shv(A)∗ denote the
category of pointed objects, i.e., the coslice category {∗} /Shv(A). Its objects will be called pointed
(higher) stacks.

Definition 2.1.5. Let X be a pointed (higher) stack. For n ≥ 0, we define πn(X, ∗) ∈ Shv(A) to
be the sheafification of the presheaf on AffA that sends SpecS to πn(X(SpecS), ∗). The pointed
sheaf πn(X, ∗) is naturally a sheaf of groups for n > 0, which is further commutative for n > 1. For
a stack X, we define π0(X) ∈ Shv(A) to be the sheafification of the presheaf on AffA that sends
SpecS 7→ π0(X(SpecS)). A stack X is called connected if π0(X) ' {∗}. A pointed connected stack
will refer to the data of a map p : {∗} → X such that p is an effective epimorphism in Shv(A).

Example 2.1.6. For a commutative affine group scheme G over A, one can define the Eilenberg–
MacLane stacks K(G, i), which have the property that πn(K(G, i), ∗) ' G for n = i and is trivial
otherwise. This type of stacks will play a crucial role in our paper later on. Note that K(G, 1) is
simply the classifying stack of G, which will also be denoted as BG.

Definition 2.1.7. We let Shv(A)∧ denote the full subcategory of hypercomplete objects of Shv(A)
(see [Lur09, Prop. 6.5.2.13]). This can also be defined as the ∞-category associated with the model
category considered in [Toë06, § 1.1].

Definition 2.1.8. We let DAlgccn
A denote the∞-category arising from the simplicial model structure

defined in [Toë06, Thm. 2.1.2] on the category Alg∆
A of cosimplicial algebras over A. By [Lur09,

Cor. 4.2.4.8], DAlgccn
A has all small limits and colimits.

Remark 2.1.9. Let us explain the motivation behind the notation DAlgccn
A for the ∞-category

defined above. The approach to affine stacks due to Toën uses cosimplicial algebras. In [MM25],
Mathew and Mondal give a generalization to the theory of affine stacks, called “affine derived stacks”,
that uses derived commutative rings [Rak20]. They prove that the ∞-category of cosimplicial rings
is equivalent to the∞-category of coconnective derived commutative rings; see [MM25, Cor. 3.7] (cf.
[LBN23, Cor. 5.29]). Note that the definition of derived commutative rings is purely ∞-categorical
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and does not require model structures. There is a natural functor from the ∞-category of derived
commutative rings to the ∞-category of E∞-rings that preserves small limits and colimits (see
[Rak20, Prop. 4.2.27]), but not an equivalence in general.
Definition 2.1.10. The natural inclusion functor AlgA → DAlgccn

A gives rise to a functor AffA →
(DAlgccn

A )op. The derived global sections functor RΓ(·,O) : PShv(A)→ (DAlgccn
A )op is the left Kan

extension of AffA → (DAlgccn
A )op along AffA → PShv(A). If X ∈ PShv(A), we will call RΓ(X,O)

the derived global sections of X.
Definition 2.1.11. There is a natural functor DAlgccn

A → D(A) that preserves all limits. By the
adjoint functor theorem, the above functor admits a left adjoint L : D(A)→ DAlgccn

A . For i ∈ Z≥0,
we define SymA[−i] := L(A[−i]) (cf. [Toë06, Lem. 2.2.5]).
Definition 2.1.12 (Affine stacks). Let B ∈ DAlgccn

A . Let hB : DAlgccn
A → S denote the functor

corepresented by B. Restricting hB along the inclusion AlgA → DAlgccn
A , we obtain a functor

hB
∣∣
AffA

: Affop
A → S. By faithfully flat descent, it follows that hB

∣∣
AffA

is a (higher) stack, which
will be denoted as SpecB.

An object of Shv(A) will be called an affine stack over A if it is isomorphic to SpecB for some
B ∈ DAlgccn

A .
Example 2.1.13. An affine scheme is an example of an affine stack. The stacks K(Ga, i) are all
affine. Indeed, K(Ga, i) ' Spec SymA[−i]. However, for i > 0, the stacks K(Gm, i) are not affine.
Example 2.1.14. It is worth pointing out that zero truncated affine stacks are not necessarily
affine schemes. In fact, an interesting class of such examples are given by quasi-affine schemes. This
is essentially a consequence of [Lur18, Thm. 2.6.0.2] (cf. [BHL17, Thm. 2.3]). Indeed, if X is a quasi-
affine scheme over A, then [Lur18, Thm. 2.6.0.2] implies that X(B) ' MapCAlg(D(A))(RΓ(X,O), B)
for any B ∈ AlgA, where CAlg(D(A)) denotes the ∞-category of E∞-algebras over A. Since the
natural functor DAlgccn

A → CAlg(D(A)) preserves limits, it has a left adjoint. This implies that X
is an affine stack.
Remark 2.1.15. It follows from the definition that the inclusion of the category of affine stacks
into the category of all stacks preserves limits. It also follows that affine stacks are actually
hypercomplete, i.e., they are objects of Shv(A)∧.
Remark 2.1.16. Note that by adjoint functor theorem, the functor Spec: (DAlgccn

A )op → PShv(A)
is a right adjoint and the left adjoint is given by the derived global section functor. By [Toë06,
Cor. 2.2.3], we have RΓ(SpecB,O) ' B. The category of affine stacks is therefore equivalent to
(DAlgccn

A )op.
Toën proved the following result that gives a classification of pointed connected affine stacks

over a field in terms of concrete structures such as group schemes.
Theorem 2.1.17 ([Toë06, Thm. 2.4.1, Thm. 2.4.5]). Let k be a field and ∗ → X a pointed object
of Shv(k)∧ such that π0(X) ' {∗}. Then X is an affine stack if and only if the sheaves πi(X, ∗)
are representable by unipotent affine group schemes over k for all i > 0.
Remark 2.1.18. By [Toë06, Thm. 2.4.5], it moreover follows that if B ∈ DAlgccn

k is an augmented
object such that H0(B) ' k, then SpecB is a pointed connected stack. Note that the unipotent
group schemes in Theorem 2.1.17 above are not necessarily of finite type.

For any pointed higher stack X, one can associate the pro-system of n-truncations (τ≤nX)
which is called the Postnikov tower of X. If X is a pointed and connected stack, then the fibre of
τ≤nX → τ≤n−1X is given by the stack K(πn(X), n) from Example 2.1.6. If X is an affine stack, it
follows that X → lim←− τ≤nX is an isomorphism (see [MR25, Cor. 1.8]). The following proposition
records certain additional properties of the Postnikov tower in the context of pointed connected
affine stacks over a field.
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Proposition 2.1.19 (Postnikov tower for affine stacks). Let X be a pointed connected affine stack
over k. In this situation

(1) The stacks τ≤nX are naturally pointed connected affine stacks.
(2) The natural maps Hi(τ≤nX,O) → Hi(X,O) induce isomorphisms for i ≤ n and an

injection for i = n+ 1.
(3) The natural map X → lim←− τ≤nX is an isomorphism.

Proof. This is obtained by combining the statements appearing in the proof of Theorem 2.4.5 and
Corollary 1.2.3 in [Toë06]. �

We will end this section by noting the following property of affine stacks.

Proposition 2.1.20. Let X ∈ Shv(A)∧ be an affine stack. Then there is a simplicial affine scheme
X• := (SpecAn) such that X ' lim−→[n]∈∆ SpecAn in Shv(A)∧.

Proof. This follows from choosing a cofibrant object of Alg∆
A that models the affine stack X. We

refer to the proof of [Toë06, Thm. 2.2.9] for more details. �

2.2. Quasi-coherent sheaves on affine stacks. The main goal of this subsection is to understand
the derived ∞-category of quasi-coherent sheaves on an affine stack. In fact, as we prove in
Proposition 2.2.28, one can completely describe the derived ∞-category of quasi-coherent sheaves
on a fairly general class of pointed connected higher stacks, which we call weakly affine.

Definition 2.2.1 (Weakly affine stacks). Let k be a field. A pointed connected higher stack X
over k is weakly affine if

(1) There exists a simplicial affine scheme X• := (SpecAn) such that X ' lim−→[n]∈∆ SpecAn in
Shv(k)∧.

(2) π1(X, ∗) is representable by a unipotent affine group scheme over k.

Example 2.2.2. By Theorem 2.1.17 and Proposition 2.1.20, any pointed connected affine stack
over a field k is weakly affine. However, the class of weakly affine stacks is more general. For
example, note that K(G,n) satisfies (1) for any affine commutative group scheme G. Indeed, under
the Dold–Kan correspondence, the D(k)-valued presheaf G[n] on Affk corresponds to a simplicial
presheaf whose terms are finite products of G and hence are representable by affine schemes. One
can thus write K(G,n) as a colimit of a simplicial affine scheme in Shv(k)∧. Therefore, K(G,n)
is weakly affine for n ≥ 2. On the other hand, if G is not unipotent, K(G, 1) is not weakly affine
because it does not satisfy (2).

A description of quasi-coherent sheaves and other derived categories associated with affine stacks
does not appear explicitly in [Toë06]. Therefore, we will begin by documenting their constructions
and some basic properties here.

Given a discrete commutative ring A, we denote by D(A) the derived ∞-category of A-modules.
This is a presentable stable ∞-category and is equipped with a t-structure whose connective
part D(A)≥0 (resp. coconnective part D(A)≤0) is the full subcategory of D(A) spanned by those
M ∈ D(A) for which Hi(M) = 0 for all i > 0 (resp. i < 0); see [Lur17, Prop. 1.3.5.9, Prop. 1.3.5.21].
The tensor product of chain complexes equips D(A) with the structure of a symmetric monoidal
∞-category in the sense of [Lur17, Def. 2.0.0.7].

We fix a base ring A as before and consider Shv(A) as in Definition 2.1.2. For any X ∈ Shv(A),
we set Shv(X) := Shv(A)/X .

Definition 2.2.3 (cf. [Lur09, Not. 6.3.5.16]). A D(Z)-valued sheaf on X is a functor Shv(X)op →
D(Z) between ∞-categories that preserves all limits. The ∞-category of D(Z)-valued sheaves on
X is denoted by ShvD(Z)(X).
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One can prove exactly as in [Lur18, Prop. 1.3.4.6] that ShvD(Z)(X) is a stable ∞-category
equipped with a symmetric monoidal structure.

Remark 2.2.4. Consider the limit preserving functor D(Z) → S obtained as a composition of
the truncation D(Z) → D(Z)≥0 with the forgetful functor D(Z)≥0 → S. Postcomposition with
D(Z)→ S induces a functor τ≥0 : ShvD(Z)(X)→ Shv(X). Similarly, postcomposition with the shift
[n] : D(Z)→ D(Z) on the stable ∞-category D(Z) induces the shift functor [n] : ShvD(Z)(X)→
ShvD(Z)(X).

Definition 2.2.5. Let F be a D(Z)-valued sheaf on X. For any n ∈ Z, we define the n-th
cohomology sheaf of F as

H n(F ) := (τ≤0τ≥0(F [n])) ∈ Shv(X)

where F [n] and τ≥0 are defined as in Remark 2.2.4 and τ≤0 : Shv(X) → τ≤0 Shv(X) is the 0-
truncation functor [Lur09, Prop. 5.5.6.18]. In particular, H n(F ) is a discrete object of Shv(X)
(in the sense of [Lur09, Def. 5.5.6.1]).

Proposition 2.2.6. We consider the following two full subcategories of ShvD(Z)(X):
(1) The full subcategory ShvD(Z)(X)≥0 ⊂ ShvD(Z)(X) spanned by those F ∈ ShvD(Z)(X) such

that the sheaves H n(F ) = 0 for n > 0;
(2) The full subcategory ShvD(Z)(X)≤0 ⊂ ShvD(Z)(X) spanned by those F ∈ ShvD(Z)(X) such

that τ≥0F ∈ Shv(X) is a discrete object.
Then (ShvD(Z)(X)≥0,ShvD(Z)(X)≤0) defines a right complete t-structure on ShvD(Z)(X).

Proof. Follows in a way entirely similar to [Lur18, Prop. 1.3.2.7]. �

Definition 2.2.7. In Definition 2.1.12, we constructed a colimit preserving functor Spec: DAlgccn
A →

Shv(A)op. By the adjoint functor theorem, Spec is left adjoint to a limit preserving functor
Shv(A)op → DAlgccn

A . Concretely, this functor is determined by sending an affine scheme SpecB to
B. For X ∈ Shv(A), it restricts to a limit preserving functor OX : Shv(X)→ DAlgccn

A , which can
be viewed as an object of ShvD(Z)(X); if no confusion is likely to arise, we simply denote it by O.
It follows from the construction that OX lies in the heart of the t-structure from Proposition 2.2.6.
Further, OX has the structure of a commutative algebra object ([Lur17, § 2.1.3]) of ShvD(Z)(X).

Definition 2.2.8. The ∞-category Mod(OX) is the category ModOX
(ShvD(Z)(X)) of modules

over the commutative algebra object OX of ShvD(Z)(X) ([Lur17, § 4.5.1]).

Lemma 2.2.9. We consider the following two full subcategories of Mod(OX):
(1) The full subcategory Mod(OX)≥0 ⊂ Mod(OX) spanned by those F ∈ Mod(OX) such that

H n(F ) = 0 for n > 0;
(2) The full subcategory Mod(OX)≤0 ⊂ Mod(OX) spanned by those F ∈ Mod(OX) such that

the underlying D(Z)-valued sheaf is an object of ShvD(Z)(X)≤0.
Then (Mod(OX)≥0,Mod(OX)≤0) defines a right complete t-structure on Mod(OX).

Proof. Follows in a way entirely similar to [Lur18, Prop. 2.1.1.1]. �

Next, we define the derived category of quasi-coherent sheaves; cf. also [Lur11a, § 4.5] for a
similar account in a slightly different setting.

Definition 2.2.10. Let X ∈ Shv(A). One defines the derived ∞-category of quasi-coherent sheaves
on X to be Dqc(X) := lim←−SpecT→X D(T ), where the limit ranges over all maps from affine schemes
SpecT to X (over A) and D(T ) denotes the derived ∞-category of T -modules.
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Remark 2.2.11. Note that if X∧ ∈ Shv(A)∧ denotes the hypercompletion of X ∈ Shv(A), we have
a natural equivalence of categories Dqc(X∧) ' Dqc(X). More generally, Definition 2.2.10 makes
sense for any X ∈ PShv(A) and there is an equivalence Dqc(X)→ Dqc(X∧) where X∧ ∈ Shv(A)∧
is the hypercompletion of X; see [Lur18, Rem. 6.2.3.3]. We use the notion of derived ∞-categories
associated with presheaves in only one place in this paper in Proposition 2.2.19.

Remark 2.2.12. Let X be a weakly affine stack over a field k. Let X• := (SpecAn) be a simplicial
affine scheme such that X ' lim−→[n]∈∆ SpecAn in Shv(k)∧. Then it follows from Remark 2.2.11 that
Dqc(X) ' lim←−[n]∈∆D(An). In particular, Dqc(X) is a presentable stable ∞-category; cf. [Lur18,
Prop. 6.2.3.4].

Note that the category Dqc(X) has all small colimits and for any map f : X → X ′ in Shv(A), there
is a pullback functor f∗ : Dqc(X ′)→ Dqc(X) that preserves small colimits [Lur18, Prop. 6.2.3.4].
Moreover, for each affine scheme SpecT , faithfully flat descent gives a natural fully faithful functor
λT : D(T ) ' Dqc(SpecT )→ Mod(OSpecT ) that preserves all small colimits. Since X 7→ Mod(OX)
is the right Kan extension of its restrictions along the Yoneda embedding AffA ↪→ Shv(A) (cf.
[Lur18, Rem. 2.1.0.5]) and essentially by definition so is X 7→ Dqc(X) (cf. [Lur18, Prop. 6.2.1.9]),
one obtains a natural colimit preserving, fully faithful functor λX : Dqc(X) → Mod(OX) for all
X ∈ Shv(A). Roughly speaking, this means that an object of Dqc(X) can be viewed as an fpqc
sheaf of OX -modules, in analogy with the classical situation.

Definition 2.2.13. Let X be a pointed connected stack over a field k.
(1) Let Dqc(X)≥0 ⊂ Dqc(X) be the full subcategory spanned by those K ∈ Dqc(X) such that

λX(K) ∈ Mod(OX)≥0.
(2) Let Dqc(X)≤0 ⊂ Dqc(X) be the full subcategory spanned by those K ∈ Dqc(X) such that

λX(K) ∈ Mod(OX)≤0.

In Proposition 2.2.15, we show that Definition 2.2.13 actually defines a t-structure; note that
this is not formal and we crucially use the assumption that X is a pointed connected stack over a
field k; that is, there is an fpqc effective epimorphism Spec k → X.

Proposition 2.2.14. Let X be a pointed connected stack over a field k and K ∈ Dqc(X). The
following are equivalent:

(1) K ∈ Dqc(X)≥0 (resp. K ∈ Dqc(X)≤0).
(2) u∗K ∈ D(k)≥0 (resp. u∗K ∈ D(k)≤0) for the fpqc effective epimorphism u : Spec k → X.
(3) v∗K ∈ D(T )≥0 (resp. v∗K ∈ D(T )≤0) for all maps v : SpecT → X.

Proof. Note that for any L ∈ D(k), we have L ∈ D(k)≥0 (resp. L ∈ D(k)≤0), if and only if
λk(L) ∈ Mod(OSpec k)≥0 (resp. λk(L) ∈ Mod(OSpec k)≤0). Since u is an effective epimorphism, one
can use the definition of Mod(OX)≥0 via cohomology sheaves (resp. use [Lur09, Prop. 6.2.3.17], for
example) to obtain the equivalence of (1) and (2).

The implication (3) =⇒ (2) is clear; for the implication (2) =⇒ (3), note that since u : Spec k →
X is an fpqc effective epimorphism, any map v : SpecT → X admits a faithfully flat cover
SpecT ′ → SpecT which fits into the square

SpecT ′ Spec k

SpecT X.

u

v

Then (u∗K)⊗k T ′ ' (v∗K)⊗T T ′. This shows that u∗K ∈ D(k)≥0 (resp. u∗K ∈ D(k)≤0) if and
only if v∗K ∈ D(T )≥0 (resp. v∗K ∈ D(T )≤0) because both T → T ′ and k → T ′ are faithfully
flat. �
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Proposition 2.2.15. Let X be a pointed connected stack over a field k. Then the subcategories
(Dqc(X)≥0, Dqc(X)≤0) form a right complete t-structure on Dqc(X).

Proof. Since (Mod(OX)≥0,Mod(OX)≤0) is a right complete t-structure and λX is a fully faithful
functor between stable∞-categories which preserves small (co)limits, it suffices to show the following:
given K ∈ Dqc(X), the coconnective truncation of λX(K) lies in the essential image of λX .

To analyze the coconnective truncation of K, we will prove that for any maps v : SpecT → X
and a : SpecS → SpecT , the natural morphism

(τ≤0(v∗K))⊗T S −→ τ≤0((v ◦ a)∗K) (2.2.1)
in D(S) is an equivalence. Once we show this, we naturally obtain an object of Dqc(X) denoted as
τ≤0K, which is essentially uniquely determined by the requirement that for any map v : SpecT → X,
we have v∗(τ≤0K) ' τ≤0(v∗K). Since λX(τ≤0K) is coconnective, we obtain a natural map
τ≤0λX(K)→ λX(τ≤0K). This natural map is an isomorphism because the functor Mod(OX)→
ShvD(Z)(X) is conservative and the coconnective truncation in ShvD(Z)(X) is given by applying
the coconnective truncation in PShvD(Z)(X) (which is induced from the coconnective truncation
on D(Z)) and sheafifying. Therefore, the coconnective truncation of λX(K) lies in the essential
image of λX , as desired.

It remains to prove that (2.2.1) is an isomorphism. For this, we can proceed similarly to the
proof of Proposition 2.2.14 using the fpqc effective epimorphism u : Spec k → X. The map v admits
a faithfully flat cover u′ : SpecT ′ → SpecT which fits into the diagram

SpecS′ SpecT ′ Spec k

SpecS SpecT X

(2.2.2)

where S′ := T ′ ⊗T S.
By the faithful flatness of S → S′, it suffices to show that

(τ≤0(v∗K))⊗T S′ ' (τ≤0((v ◦ a)∗K))⊗S S′. (2.2.3)
Note that since k is a field, the maps k → T ′ and k → S′ are both flat. Since tensoring along flat
maps is t-exact, by chasing through (2.2.2), one directly verifies that the source and target of (2.2.3)
are both naturally isomorphic to (τ≤0(u∗K))⊗k S′. This finishes the proof. �

Remark 2.2.16. By the construction of the t-structure in Definition 2.2.13, the natural functor
λX : Dqc(X)→ Mod(OX) is t-exact.

Definition 2.2.17. For a pointed connected stack X over a field k, we let QCoh(X) := Dqc(X)♥
be the heart of the t-structure from Proposition 2.2.15.

Remark 2.2.18. Let X be a pointed connected stack over a field k. Using faithfully flat descent
(see the proof of Proposition 2.2.14), it follows that if K ∈ QCoh(X), and v : SpecT → X is any
map, then v∗K corresponds to a discrete flat module over T .

Proposition 2.2.19. Let X be a pointed connected stack over a field k. Then the truncation
X → τ≤1X induces an equivalence of categories

QCoh(τ≤1X) ' QCoh(X).

Proof. The stack X is classified by a left fibration X → Algk under the straightening equivalence
(which is an∞-categorical analogue of the Grothendieck construction, see e.g., [Joy08, § 20], [Lur09,
§2.2]). Let Mod♥ denote the category whose objects are pairs (R,M) where R is a k-algebra and
M ∈ D(R)♥. A morphism (R1,M1) → (R2,M2) is given by a pair of morphisms f : R1 → R2
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and g : M1 ⊗R1 R2 → M2 in the symmetric monoidal category D(R2)♥. This way, we obtain a
natural left fibration q : Mod♥ → Algk. We note that Mod♥ is a 1-category. Let flMod♥ ⊂ Mod♥
denote the full subcategory spanned by (R,M) ∈ Mod♥ such that M is a flat module over R. By
restriction, we obtain a left fibration q′ : flMod♥ → Algk.

By Remark 2.2.18, QCoh(X) is equivalent to the full subcategory of FunAlgk
(X ,flMod♥) spanned

by those functors that send every morphism of X to a q′-coCartesian morphism.
Let X ′ : Algk → S be the composition of the functor X : Algk → S with τ≤1 : S → S. We denote

the left fibration that classifies X ′ by X ′ → Algk. Since flMod♥ is a 1-category and the natural
map X → X ′ induces an equivalence on homotopy categories, we have

FunAlgk
(X ′,flMod♥) ' FunAlgk

(X ,flMod♥).

One can identify the full subcategory of FunAlgk
(X ′,flMod♥) spanned by those functors that

send every morphism in X ′ to a q′-coCartesian morphism with a full subcategory of Dqc(X ′) :=
lim←−SpecT→X′ D(T ) (cf. Remark 2.2.11). Let us denote this full subcategory by Dfl,♥

qc (X ′). Note
that there is a natural map X ′ → τ≤1X which induces an isomorphism Dqc(τ≤1X) ' Dqc(X ′) by
Remark 2.2.11. One observes that under this equivalence, the full subcategory Dfl,♥

qc (X ′) ⊂ Dqc(X ′)
identifies with QCoh(τ≤1X). This proves the desired equivalence of categories

QCoh(τ≤1X) ' QCoh(X). �

Remark 2.2.20. As a consequence of Proposition 2.2.19, the set of global sections of any quasi-
coherent sheaf on a pointed connected stack X can be computed on τ≤1X.
Remark 2.2.21. Let X be a pointed connected stack such that Dqc(X) is a presentable stable
∞-category. Then the functor λX : Dqc(X)→ Mod(OX) is colimit preserving and therefore admits
a right adjoint which one may call “coherator” and denote by

QX : Mod(OX)→ Dqc(X).
As a right adjoint to a t-exact functor, QX is left t-exact.
Construction 2.2.22. If B is any E∞-ring, one can consider the∞-category ModB of B-modules.
Then ModB has a t-structure such that (ModB)≥0 is generated by B under extensions and small
colimits (see [Lur17, Prop. 1.4.4.11]). By construction (see e.g., [Lur17, Rmk 1.2.1.3]), under this
t-structure, an object M ∈ (ModB)≤0 if and only if MapModB

(B,M [−1]) ' 0, i.e., the underlying
spectrum of M is coconnective. This implies that the t-structure on ModB is right complete.
Construction 2.2.23. Let X be a pointed connected stack over a field k. Every map of
stacks SpecT → X induces a map RΓ(X,O) → T in DAlgccn

k . This defines a pullback func-
tor ModRΓ(X,O) → D(T ) which further gives rise to a functor

U∗ : ModRΓ(X,O) → lim←−
SpecT→X

D(T ) ' Dqc(X).

For M ∈ ModRΓ(X,O), we will denote the image of M under the above functor by M̃ ∈ Dqc(X).
Note that ˜RΓ(X,O) = OX under the above construction. The functor U∗ preserves all small
colimits. By the adjoint functor theorem, U∗ must have a right adjoint U∗ : Dqc(X)→ ModRΓ(X,O)
which identifies with the functor F 7→ RΓ(X,F ), when the latter is regarded as an RΓ(X,O)-
module. Additionally, we point out that U∗ is a symmetric monoidal functor for the natural
symmetric monoidal structures on ModRΓ(X,O) and Dqc(X).
Proposition 2.2.24. In the above set up, the functor

U∗ : ModRΓ(X,O) → Dqc(X)
is t-exact.



18 SHUBHODIP MONDAL AND EMANUEL REINECKE

Proof. Since U∗ preserves small colimits and U∗(RΓ(X,O)) = O, it follows from the construction
of the t-structure on ModRΓ(X,O) that U∗ is right t-exact. The left t-exactness of U∗ follows from
the following lemma, which finishes the proof of the proposition. �

Lemma 2.2.25 ([Lur11a, Cor. 4.1.12]). Let A→ B be a map of E∞-rings over k. Moreover, let us
assume that A (resp. B) has the property that the spectrum underlying A (resp. B) is coconnective
and the structure map k → A (resp. k → B) induces isomorphism k

∼−→ π0(A) (resp. k ∼−→ π0(B)).
Let M be a left A-module such that πi(M) = 0 for i > 0. Then the homotopy groups πi(B ⊗AM)
vanish for i > 0 and π0(M)→ π0(B ⊗AM) is injective.

Lemma 2.2.26. Let X be a pointed connected weakly affine stack over a field k. The functor
U∗ : Dqc(X)→ ModRΓ(X,O)

from Construction 2.2.23 is left t-exact and therefore induces a functor denoted as
U ccn
∗ : Dqc(X)≤0 → (ModRΓ(X,O))≤0

which preserves filtered colimits.

Proof. Since X is weakly affine, we can choose a simplicial affine scheme X• := (SpecAn) such
that X ' lim−→[n]∈∆ SpecAn in Shv(AlgA)∧. Further, by Remark 2.2.11, it follows that for any
F ∈ Dqc(X)≤0, we have

U ccn
∗ (F ) ' RΓ(X,F ) ' lim←−

[n]∈∆
RΓ(SpecAn,F ).

Therefore, we will be done by the following well-known lemma.

Lemma 2.2.27. Let us consider the ∞-category Fun(∆, D(Z)≤0), where ∆ denotes the sim-
plex category. Let I be a filtered category and T : I → Fun(∆, D(Z)≤0) be a functor. Then
lim−→i∈I lim←−[n]∈∆ T (i) ' lim←−[n]∈∆ lim−→i∈I T (i).

Proof. Follows from e.g., [Lur11a, Cor. 4.3.7]. �

This finishes the proof of Lemma 2.2.26. �

Finally, we are ready to prove our main result of this section, which gives a natural description
of the derived category of quasi-coherent sheaves on pointed connected weakly affine stacks. The
result below will be used in the proof of Proposition 2.3.7.

Proposition 2.2.28. Let X be a pointed connected weakly affine stack over a field k. Then U∗

from Construction 2.2.23 induces an equivalence of categories
U∗ccn : (ModRΓ(X,O))≤0 ' Dqc(X)≤0.

Proof. By construction, the functors U∗ccn and U ccn
∗ forms an adjoint pair where U∗ccn is the left

adjoint.
First, we show that the functor U∗ccn is conservative. In order to see this, let v : Spec k → X

denote the map from the point which is an fpqc effective epimorphism. It would be enough to show
that if M ∈ (ModRΓ(X,O))≤0 is such that v∗(U∗(M)) ' 0, then M ' 0. This amounts to showing
that if M ⊗RΓ(X,O) k ' 0 for some M ∈ (ModRΓ(X,O))≤0, then M ' 0. If that were false, one can
find some N ∈ (ModRΓ(X,O))≤0 such that π0(N) 6= 0 and N ⊗RΓ(X,O) k ' 0. However, since X is
a pointed and connected stack, RΓ(X,O) is naturally augmented and satisfies the assumptions in
Lemma 2.2.25; this gives a contradiction.

Since U∗ccn is conservative, to prove that U∗ccn is an equivalence, it would be enough to prove that
the counit U∗ccnU

ccn
∗ → id is an isomorphism. Since Dqc(X) is right complete and U ccn

∗ preserves
filtered colimits by Lemma 2.2.26, it would be enough to prove that for F ∈ QCoh(X), we have
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U∗ccnU
ccn
∗ (F ) ' F . By Proposition 2.2.19, we have an equivalence QCoh(X) ' QCoh(τ≤1X).

Since X is a pointed connected weakly affine stack, τ≤1X ' Bπ1(X), where π1(X) is a unipotent
affine group scheme over k. Therefore, one can identify F with a representation of π1(X). Since
π1(X) is unipotent, any finite-dimensional representation has a filtration where the graded pieces
correspond to the trivial representation. Since U ccn

∗ preserves filtered colimits, in order to check
U∗ccnU

ccn
∗ (F ) ' F , we can assume that F comes from a finite-dimensional representation of π1(X)

(see [Wat79, § 3.3]). Therefore, by the unipotence of π1(X), we reduce to checking the same when
F = O, which is clear. �

Corollary 2.2.29. Let X be a pointed connected weakly affine stack over k. Let M,N ∈ Dqc(X)≤0.
Then we have a natural isomorphism RΓ(X,M)⊗RΓ(X,O) RΓ(X,N) ∼−→ RΓ(X,M ⊗N).

Proof. Follows in a manner similar to the proof of Proposition 2.2.28 by reducing to the case
N = O. �

Remark 2.2.30. Proposition 2.2.28 extends a result of Lurie ([Lur11a, Prop. 4.5.2.(7)]) for affine
stacks in characteristic 0 to weakly affine stacks in any characteristic. Note that Dqc(X) is always
left complete; however, ModRΓ(X,O) (see Construction 2.2.22) need not be left complete. For a
concrete example, one may take X to be BGa over a perfect field of characteristic p > 0, see
[HNR19, Prop. 3.1] and [Mon22b, Rmk. 3.0.7]. This shows that Proposition 2.2.28 does not in
general extend to an equivalence ModRΓ(X,O) ' Dqc(X) of ∞-categories.

Remark 2.2.31. Our formulation of Definition 2.2.1 only applies to pointed connected stacks: even
though the conditions (1) and (2) in Definition 2.2.1 hold for any separated scheme X, the definition
does not apply (unless X ' Spec k), and Proposition 2.2.28 need not hold. For a concrete example,
one can take X = P1

k. It would be interesting to isolate a more general class of stacks (containing
e.g., affine schemes and pointed connected weakly affine stacks) for which Proposition 2.2.28 holds.

Example 2.2.32. Since K(Gm, n) is weakly affine for n ≥ 2, by using Proposition 2.2.28,
one can conclude that Dqc(K(Gm, n)) ' D(k) for n ≥ 2. This follows from the fact that
RΓ(K(Gm, n),O) ' k for n ≥ 1.

Example 2.2.33. Let k be a perfect field of characteristic p > 0. Let W [F ] denote the group
scheme over k that is obtained by considering kernel of the Frobenius operator F on the ring scheme
W of p-typical Witt vectors. In this case, Proposition 2.2.28 extends to give an isomorphism

ModRΓ(BW [F ],O) ' Dqc(BW [F ]).
The latter claim follows from [Mon22b, Lem. 3.0.3]; note that (by [Dri24b, Lem. 3.2.6] or [Mon22a,
Prop. 2.4.10]) W [F ] ' G]

a in loc. cit. In this case, one further has an isomorphism Dqc(BW [F ]) '
Dqc(Ĝa), which can be seen by a suitable version of Cartier duality (cf. Construction 6.1.1). See
[BL22, §3.5] for a variant of the latter isomorphism and its application in p-adic Hodge theory.

Example 2.2.34. We will use Proposition 2.2.28 to extend the isomorphism Dqc(BW [F ]) '
Dqc(Ĝa) to the case of the higher stacks K(W [F ], n) for n > 1. Instead of using Cartier du-
ality as in the case of n = 1, we will appeal to Koszul duality for n > 1 (see [Lur18, § 14.1,
Prop. 14.1.3.2]). To this end, by Proposition 2.2.28, Dqc(K(W [F ], n)) is equivalent to the left com-
pletion of ModRΓ(K(W [F ],n),O). One computes directly that the Koszul dual of RΓ(K(W [F ], n),O)
is Sym k[n− 1], where Sym k[n− 1] is the free animated ring on a generator in degree (n− 1). By
Koszul duality, we obtain an equivalence Dqc(K(W [F ], n)) ' ModSym k[n−1]. For n = 2, the latter
fact was proven before in [MRT22, § 4.2] using different arguments.

2.3. Cohomological Eilenberg–Moore spectral sequence for higher stacks. Now we will
establish some results on cohomology and base change in the context of higher stacks. More
precisely, given a pullback square of higher stacks
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Y ′ X ′

Y X

f ′

g′ g

f

over a field k, we will investigate when the natural map
RΓ(Y,O)⊗RΓ(X,O) RΓ(X ′,O)→ RΓ(Y ′,O) (2.3.1)

is an isomorphism of E∞-algebras. Whenever (2.3.1) is an isomorphism, we obtain an Eilenberg–
Moore type spectral sequence Ep,q2 = TorH

∗(X,O)
p (H∗(Y,O), H∗(X ′,O))q =⇒ H∗(Y ′,O); see, e.g.,

[Lur17, Prop. 7.2.1.19].
Note that (2.3.1) is only likely to be an isomorphism when one carefully imposes certain

conditions on the maps and the stacks involved in the above pullback square. For example, the
desired isomorphism is already false when X = Spec k is a point, X ′ = A1

k and Y is a scheme given
by an infinite disjoint union of Spec k. Even if X ′ and Y are both points, but X = BGm, the
map (2.3.1) cannot be an isomorphism since RΓ(BGm,O) ' k. In fact, the following example
shows that (2.3.1) fails to be an isomorphism even when all the stacks involved are smooth proper
schemes over k.

Example 2.3.1. Let π : X → P1 be an elliptic K3 surface over an algebraically closed field k, i.e.,
π is a flat surjection from a K3 surface X and there exists a closed point t : Spec k → P1 such that
the fibre Xt over t is a smooth integral curve of genus 1. In this case, the map (2.3.1) becomes
RΓ(X,O)→ RΓ(Xt,O), which cannot be an isomorphism because H2(X,O) 6= 0.

In Proposition 2.3.2 below, we give a general criterion for when the map (2.3.1) is an isomorphism
in the world of pointed connected stacks. In the context of pointed connected affine stacks, we
reformulate this criterion in Corollary 2.3.4. Note that in this context, our assumptions are slightly
more general than those of [BZFN10, Prop. 3.10] and [Lur18, Prop. 9.1.5.7] on certain related
Beck–Chevalley transformations being isomorphisms (see also [HLP19, Prop. A.1.5]).

Proposition 2.3.2. Let X be a pointed connected weakly affine stack over k. Let X ′, Y be pointed
connected (higher) stacks. Consider a pullback diagram (of pointed stacks) of the form

Y ′ X ′

Y X

f ′

g′ g

f

such that f∗g∗O ' g′∗f ′∗O in Dqc(Y ) and either one of the following two properties holds:
(1) f∗ preserves filtered colimits when viewed as a functor f∗ : QCoh(Y )→ Dqc(X)≤0.
(2) For each i ≥ 0, H i(g∗O) ∈ QCoh(X) corresponds to a finite-dimensional representation

of π1(X) under the equivalence of Proposition 2.2.19.
Then the natural map

RΓ(Y,O)⊗RΓ(X,O) RΓ(X ′,O)→ RΓ(Y ′,O)
is an isomorphism.

Proof. Let us set K := g∗O ∈ Dqc(X)≤0. We will start by proving that K satisfies the projection
formula

f∗O ⊗K ' f∗f∗K. (2.3.2)
More generally, let M ∈ Dqc(X) and consider the natural map

θM : f∗O ⊗M → f∗f
∗M.

When M = O, the map θM is clearly an isomorphism. We claim that ϕM is an isomorphism
when M = H i(g∗O). Note that H i(g∗O) corresponds to a representation of the unipotent affine
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group scheme π1(X). Since every such representation is a filtered colimit of finite-dimensional
representations (see [Wat79, § 3.3]), under the hypothesis of either (1) or (2) in the proposition,
it would be enough to prove that θM is an isomorphism when M ∈ QCoh(X) corresponds to a
finite-dimensional representation of π1(X). However, since X is weakly affine, by definition, π1(X)
is unipotent. Therefore, M admits a finite filtration where the graded pieces are isomorphic to the
structure sheaf O (cf. [DG70, Prop. IV.2.2.5]). Thus the claim follows.

Now we proceed onto showing that (2.3.2) is an isomorphism. Let n ≥ 1 be an integer. Let
Kn := τ≥−nK. Since Kn can be expressed as a finite limit of certain shifts of H i(g∗O), the
previous paragraph implies that θM is an isomorphism for M = Kn. Further, there is a natural
map Kn → K and let Kn denote the cofibre so that there is a cofibre sequence Kn → K → Kn.
This induces a cofibre sequence

cofib θKn
→ cofib θK → cofib θKn

for each n ≥ 1. Since θKn
is already noted to be an isomorphism, one has cofib θKn

' 0. This
implies that there is an isomorphism

cofib θK ' cofib θKn ,

for each n ≥ 1.
Note that by construction Kn ∈ Dqc(X)≤−(n+1). Therefore, f∗f∗Kn ∈ Dqc(X)≤−(n+1). By

pulling back along the effective epimorphism u : Spec k → X (see Proposition 2.2.14), one verifies
that f∗O ⊗ Kn ∈ Dqc(X)≤−(n+1). This implies that cofib θK ' cofib θKn ∈ Dqc(X)≤−n. Since
the t-structure of Dqc(X) is right complete and n ≥ 1 was arbitrary, it follows that cofib θK ' 0.
Therefore, we have an isomorphism θK : f∗O ⊗K ' f∗f∗K, as desired in (2.3.2).

By Corollary 2.2.29, it follows that RΓ(X, f∗O ⊗K) ' RΓ(Y,O)⊗RΓ(X,O) RΓ(X ′,O). There-
fore, we have RΓ(Y,O)⊗RΓ(X,O) RΓ(X ′,O) ' RΓ(X, f∗f∗g∗O) ' RΓ(X, f∗g′∗O), where the last
isomorphism follows from the hypothesis f∗g∗O ' g′∗f ′∗O. This yields the desired assertion. �

Remark 2.3.3. In the setup of Proposition 2.3.2, if X and Y are both assumed to be pointed
connected weakly affine stacks, then hypothesis (1) is automatically satisfied. This follows from
Proposition 2.2.28. Therefore, in this case, if we have f∗g∗O ' g′∗f

′∗O, Proposition 2.3.2 shows
that the natural map RΓ(Y,O)⊗RΓ(X,O)RΓ(X ′,O)→ RΓ(Y ′,O) is automatically an isomorphism.

Corollary 2.3.4. Let g : X ′ → X be a map of pointed connected affine stacks over k. Let Y be a
pointed connected stack. Consider a pullback diagram (of pointed stacks) of the form

Y ′ X ′

Y X

f ′

g′ g

f

such that either one of the following two properties holds:
(1) f∗ preserves filtered colimits when viewed as a functor f∗ : QCoh(Y )→ Dqc(X)≤0.
(2) For each i ≥ 0, H i(g∗O) ∈ QCoh(X) corresponds to a finite-dimensional representation

of π1(X) under the equivalence Proposition 2.2.19.
Then the natural map

RΓ(Y,O)⊗RΓ(X,O) RΓ(X ′,O)→ RΓ(Y ′,O)
is an isomorphism.

Proof. By Proposition 2.3.2 and Remark 2.3.3, we only need to prove that f∗g∗O ' g′∗f
′∗O in

Dqc(Y ). To this end, it would be enough to show that the O-module pushforward of the structure
sheaf along the map g : X ′ → X is automatically quasi-coherent. In order to see this, since X
is pointed and connected, we may compute the O-module pushforward of the structure sheaf
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of X ′ by restricting to the Čech nerve of the fpqc epimorphism u : Spec k → X. Let us denote
Z := X ′ ×X Spec k. Then the O-module pushforward can be represented by the cosimplicial
O-module

RΓ(Z,O) //// RΓ(ΩX ×k Z,O) // //// RΓ(ΩX ×k ΩX ×k Z,O) · · ·

over the simplicial higher stack
· · ·ΩX ×k ΩX // //// ΩX //// Spec k

which realizes X. Since affine stacks are closed under limits, the stacks ΩXn and ΩXn ×k Z are all
affine stacks for n ≥ 0. Further, if X1 and X2 are any two affine stacks over a field k, it follows
that RΓ(X1 ×k X2,O) ' RΓ(X,O)⊗k RΓ(X,O). These observations, along with the description
of the derived category of quasi-coherent sheaves on ΩX from Proposition 2.2.28 and faithfully
flat descent imply that the O-module pushforward is already quasi-coherent. This finishes the
proof. �

Corollary 2.3.5. Let g : X ′ → X be a map of pointed connected affine stacks over k. Let Y be a
pointed connected weakly affine stack. Consider a pullback diagram (of pointed stacks) of the form

Y ′ X ′

Y X.

f ′

g′ g

f

Then the natural map
RΓ(Y,O)⊗RΓ(X,O) RΓ(X ′,O)→ RΓ(Y ′,O)

is an isomorphism.

Proof. Follows from Remark 2.3.3 and Corollary 2.3.4. �

Corollary 2.3.6. Let X be a pointed connected affine stack over k. Let ΩX := Spec k ×X Spec k
denote the loop stack of X. Then the natural map k ⊗RΓ(X,O) k → RΓ(ΩX,O) is an isomorphism
of E∞-algebras.

Note that the k ⊗RΓ(X,O) k in Corollary 2.3.6 refers to the pushout of E∞-algebras (as opposed
to pushout in DAlgccn

k ), so the statement does not simply follow from the fact that the functor
Spec takes colimits in DAlgccn

k to limits. We will need the following variant in Section 3.4.

Proposition 2.3.7. Let X be a pointed connected affine stack over k such that π1(X) is trivial
and Hi(X,O) is finite-dimensional for all i. Let Y be a pointed connected stack. Then any pullback
diagram (of pointed stacks)

Y ′ ∗

Y X

f ′

g′ g

f

induces an isomorphism
k ⊗RΓ(X,O) RΓ(Y,O) ∼−→ RΓ(Y ′,O)

of E∞-algebras.

Proof. As in the proof of Corollary 2.3.4, we have f∗g∗O ' g′∗f ′∗O in Dqc(Y ) because X is an affine
stack. By Proposition 2.3.2, it would be enough to check that for each i ≥ 0, H i(g∗O) corresponds
to a finite-dimensional representation of π1(X). Since π1(X) is trivial, H i(g∗O) ' O⊕Si for
some indexing set Si. It would be enough to show that Si is a finite set for each i ≥ 0. For
the sake of contradiction, let us choose m ≥ 0 such that m is minimal with respect to the
property that Sm is infinite. The maps ∗ g−→ X

h−→ ∗ gives rise to an E2-spectral sequence
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Ep,q2 = Hp(X,H qg∗O) ⇒ Hp+q(∗,O). Note that Ep,q2 = Ep,qr = 0 for all r ≥ 2 if either p < 0
or q < 0. By the minimality of m and the fact that Hi(X,O) is finite-dimensional for all i,
it follows that Ep,q2 is finite-dimensional as a k-vector space for all q < m. Therefore, Ep,qr is
finite-dimensional for all q < m and r ≥ 2. However, note that E0,m

2 is infinite-dimensional by our
choice of m. Combining the last two observations implies that E0,m

r is infinite-dimensional for all
r ≥ 2. Since E0,m

r ' E0,m
m+2 for r ≥ m+ 2, it follows that E0,m

∞ is infinite-dimensional as well. The
latter observation implies that Hm(∗,O) is infinite-dimensional, which gives a contradiction. �
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3. Unipotent homotopy types of schemes

In this section, we introduce the unipotent homotopy type of a scheme, which is the main object
of interest in our paper.
Definition 3.0.1. Let X be a higher stack over SpecA. Then there exists a higher stack denoted
as U(X) which is equipped with a map X → U(X) that is universal with respect to maps from X
to an affine stack. We will call U(X) the unipotent homotopy type of X. Such a universal map
exists because the inclusion of the ∞-category of affine stacks inside the ∞-category of higher
stacks admits a left adjoint (see Remark 2.1.16).
Remark 3.0.2. If X is pointed, then U(X) is also naturally pointed by the functoriality of the
above construction. By Remark 2.1.16, it follows that U(X) ' SpecRΓ(X,O), where RΓ(X,O) is
naturally viewed as an object of DAlgccn

A .
Remark 3.0.3. In [Toë06, § 2.3], U(X) is denoted by (X ⊗A)uni. Let us explain our motivation
behind calling U(X) the unipotent homotopy type of X. Our naming is prompted by the new
realization that the nature of information captured by U(X) reflects homotopical information about
X. In Section 3.1 below, we make this claim precise by recovering the unipotent fundamental group
scheme introduced by Nori from U(X).
Remark 3.0.4. Let X be an object of the ∞-category S. Then X naturally defines an object
in PShv(A) by considering the constant functor X : AlgA → S. After sheafification, we obtain a
higher stack that we will denote by X. We will simply use U(X) to denote the unipotent homotopy
type of X. We set C∗(X,A) := RΓ(X,O) ∈ DAlgccn

A and call it the singular cochains of X (with
values in A).
3.1. Recovering the unipotent Nori fundamental group scheme. Let X be a scheme of
finite type over a field k and x ∈ X(k). Assume that H0(X,O) ' k. We will show that the
unipotent homotopy type U(X) of X can be used to recover Nori’s unipotent fundamental group
scheme from [Nor82]. As a concrete consequence, we will see (Corollary 3.2.14) that one can write
down a formula that describes Nori’s unipotent fundamental group scheme. We begin by recalling
Nori’s definition of the fundamental group scheme which makes use of the Tannakian formalism.
Definition 3.1.1 ([Nor82, § IV.1]). The unipotent Nori fundamental group scheme πU,N

1 (X,x) of
a pointed scheme (X,x) is the (unipotent) affine group scheme over k associated under Tannaka
duality with the Tannakian category consisting of the tensor category of unipotent vector bundles
on X and the fibre functor coming from pullback along x.

Using the above construction of πU,N
1 (X,x) and [Nor82, § 1, Prop. 2.9], one obtains a tautological

pointed πU,N
1 (X,x)-torsor denoted as (P, p) → (X,x) which can be classified by the following

universal property.
Lemma 3.1.2 ([Nor82, Prop. IV.1]). For any unipotent affine group scheme G over k and any
pointed G-torsor (Q, q)→ (X,x), there exists a unique homomorphism ρ : πU,N

1 (X,x)→ G of affine
group schemes over k and a unique morphism of pointed X-schemes f : (P, p)→ (Q, q) such that
the diagram

P × πU,N
1 (X,x) P

Q×G Q

(f,ρ) f (3.1.1)

commutes, where the horizontal arrows are given by the natural action maps.
We will rephrase this statement in the language of stacks that is more suitable to our applications

(see Lemma 3.1.6). To that end, we begin by reinterpreting some of the objects in the statement of
Lemma 3.1.2.



UNIPOTENT HOMOTOPY THEORY OF SCHEMES 25

Lemma 3.1.3. Let G be an affine group scheme over k. Let BG be the associated classifying stack,
pointed by the natural map τ : Spec k → BG. Then the groupoid of G-torsors (Q, q)→ (X,x) is
equivalent to the groupoid of morphisms of pointed stacks (X,x)→ (BG, τ).

Proof. Indeed, a pointed morphism f : (X,x) → (BG, τ) defines a G-torsor Q → X obtained by
pulling back the G-torsor τ : Spec k → BG along f . Let Qx := Q×X,x Spec k → Spec k denote the
pullback of Q along x : Spec k → X. Now, the fact that f is a pointed map (in the (2, 1)-categorical
sense) is equivalent to the data of an isomorphism of G-torsors α : Qx

∼−→ G over Spec k. But such
an isomorphism corresponds to the data of a rational point q ∈ Q(k) (the preimage of the identity
element e ∈ G(k) under α). This gives the desired statement. �

Remark 3.1.4. We recall that if G and H are affine group schemes, then the set of morphisms
of group schemes G→ H is equivalent to morphisms of pointed stacks BG→ BH. Let us recall
how to obtain an H-torsor from a given G-torsor P → S and a morphism of group schemes
ρ : G → H. One can equip P × H with the (left) G-action g · (p, h) := (p · g−1, ρ(g) · h). Then
P ×G H := (P ×H)/G→ S with the natural right H-action on the second factor is a H-torsor: in
case P = S ×G with multiplication action by G on the right, this follows from the fact that the
morphism

G×H (ρ,id)−−−→ H ×H mult−−−→ H

descends to an isomorphism α : G×G H ∼−→ H; the general case follows by working locally on the
base.

Remark 3.1.5. Lemma 3.1.3 shows that the tautological pointed πU,N
1 (X,x)-torsor (P, p)→ (X,x)

from Definition 3.1.1 corresponds to a pointed morphism N : (X,x)→ BπU,N
1 (X,x). In the lemma

below, we record a universal property of N : (X,x)→ BπU,N
1 (X,x) formulated in the category of

pointed stacks.

Lemma 3.1.6. For any unipotent affine group scheme G over k and any pointed map (X,x)→ BG,
there exists a unique morphism of pointed stacks r : BπU,N

1 (X,x)→ BG and a uniquely commutative
diagram

(X,x)

BπU,N
1 (X,x) BG

N

r

(3.1.2)

of pointed stacks.

Proof. This is essentially a restatement of Lemma 3.1.2. A pointed map (X,x) → BG (by
Lemma 3.1.3) is equivalent to a pointed G-torsor (Q, q) → (X,x). By the universal property in
Lemma 3.1.2, we equivalently obtain a map ρ : πU,N

1 (X,x) → G and f : (P, p) → (Q, q) which
fits into the diagram (3.1.1). By Remark 3.1.4, the map ρ : πU,N

1 (X,x) → G is equivalent to a
map of pointed stacks r : BπU,N

1 (X,x) → BG, providing the unique morphism of pointed stack
desired in Lemma 3.1.6. Following the contracted product construction of Lemma 3.1.4 and using
Lemma 3.1.3, the commutativity of (3.1.2) (in the (2, 1)-categorical sense) is equivalent to the data
of an isomorphism of G-torsors ϕ : P ×πU,N

1 (X,x) G
∼−→ Q that maps the class of the point (p, e) to q.

However, using the map f : (P, p)→ (Q, q), one obtains a map

P ×G (f,id)−−−→ Q×G act−−→ Q,

which sends (p, e) to q, is compatible with the action of G on the right, and by the commutativity
of the diagram (3.1.1), descends to a morphism (and hence an isomorphism) of right G-torsors
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ϕ : P ×πU,N
1 (X,x) G

∼−→ Q that maps the class of the point (p, e) to q. To see the uniqueness of ϕ,
note that conversely, an isomorphism of right G-torsors P ×πU

1 (X,x) G
∼−→ Q preserving base points

as before defines a map
f : P (id,e)−−−→ P ×G→ P ×π

U
1 (X,x) G ' Q

which makes the natural diagram such as (3.1.1) commutative and maps p to q. Thus the universal
property of Lemma 3.1.2 implies the uniqueness of ϕ. This finishes the proof. �

Proposition 3.1.7. Let (X,x) be a pointed cohomologically connected scheme of finite type over
k. Then there is a natural isomorphism of sheaves of groups π1(U(X), ∗) ∼−→ πU,N

1 (X).

Proof. Since H0(X,O) ' k, the unipotent homotopy type U(X) is a pointed connected stack
(Remark 2.1.18). Therefore, by Theorem 2.1.17, the sheaf π1(U(X), ∗) is representable by a
unipotent affine group scheme. Note that by considering 1-truncation, we have a natural morphism
(X,x)→ U(X)→ τ≤1U(X) ' Bπ1(U(X), ∗) of pointed stacks. Now, let G be a unipotent affine
group scheme and f : X → BG be a pointed map. By Theorem 2.1.17, BG is an affine stack. By
the universal property of the unipotent homotopy type (see Definition 3.0.1), we have a unique
factorization of f through a morphism of pointed stacks f ′ : U(X)→ BG. Further, the stack BG
is 1-truncated, so f ′ further factors uniquely through U(X)→ τ≤1U(X) ' Bπ1(U(X), ∗) to give a
(unique) map r : Bπ1(U(X), ∗)→ BG of pointed stacks such that we have a uniquely commutative
diagram

(X,x)

Bπ1(U(X), ∗) BGr

of pointed stacks. Therefore, by the universal property from Lemma 3.1.6, we are done. �

3.2. The higher unipotent homotopy group schemes. In Proposition 3.1.7, we recovered the
unipotent Nori fundamental group scheme as π1 of the unipotent homotopy type of the scheme
X. In particular, this description of the unipotent Nori fundamental group scheme bypasses the
Tannakian formalism that was used by Nori. In this subsection, our goal is to introduce and record
some basic properties of the higher unipotent homotopy group schemes πi(U(X)). In particular, we
will see that the higher unipotent homotopy group schemes as introduced in Definition 3.2.2 satisfy
a product formula (Proposition 3.2.5), birational invariance (Proposition 3.2.7) and an analogue of
the Hurewicz theorem (Corollary 3.2.12).

Notation 3.2.1. We will call a higher stack X over k cohomologically connected if H0(X,O) ' k.
Note that if X is a geometrically reduced and geometrically connected proper scheme over k, then
it is cohomologically connected (see, e.g., [SP22, Tag 0FD2]).

Definition 3.2.2 (Unipotent homotopy group schemes). Let X be a pointed, cohomologically
connected scheme over Spec k. In this setup, the sheaves πi(U(X), ∗) are representable by affine
unipotent group schemes over k by Theorem 2.1.17 and Remark 2.1.18. We define the i-th unipotent
homotopy group schemes of X to be

πU
i (X) := πi(U(X), ∗).

The above definition can be formulated in the generality of higher stacks:

Definition 3.2.3. Let X be a pointed, cohomologically connected higher stack over Spec k. We
define the i-th unipotent homotopy group schemes of X to be

πU
i (X) := πi(U(X), ∗).

https://stacks.math.columbia.edu/tag/0FD2
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Remark 3.2.4. By Proposition 3.1.7, for a pointed cohomologically connected scheme X over a field,
πU

1 (X) agrees with the unipotent Nori fundamental group scheme πU,N
1 (X) from Definition 3.1.1.

However, note that the unipotent homotopy type U(X) can be defined for any higher stack over
an arbitrary base. One may therefore also contemplate the homotopy sheaves πi(U(X), ∗) for any
pointed higher stack X, even though they might not be representable in general (see Example 5.4.1).

Now we prove some basic properties of the unipotent homotopy group schemes defined above.
Some of these results extend the results known for the unipotent Nori fundamental group scheme.
However, the techniques we use to prove them are quite different.

Proposition 3.2.5 (Product formula). Let X and Y be two pointed and cohomologically connected
quasicompact and quasiseparated schemes over k. Then πU

i (X × Y ) ' πU
i (X)× πU

i (Y ).

Proof. This is a consequence of the Künneth formula in cohomology, which implies that RΓ(X,O)⊗k
RΓ(Y,O) ' RΓ(X × Y,O) in DAlgccn

k . Indeed, the previous isomorphism yields an isomorphism
U(X × Y ) ' U(X)×U(Y ) of pointed stacks. Therefore, the product formula now follows from
the facts that taking homotopy groups commutes with products of spaces and that sheafification
commutes with finite limits. �

Remark 3.2.6. We point out that as a consequence of our definition of the unipotent homotopy
groups, we obtain a simpler proof of the product formula even in the case of i = 1 which appears in
[Nor82, Lem. IV.8].

Proposition 3.2.7 (Birational invariance). Let f : X → Y be a birational morphism of smooth
proper pointed schemes over k. Then f induces isomorphisms πU

i (X) ' πU
i (Y ) of group schemes

over k.

Proof. It suffices to prove that Rif∗OX = 0 for i > 0 and OY ' R0f∗OX . Therefore, the proposition
follows from [CR11, Thm. 2]. �

Proposition 3.2.8. Let X be a pointed cohomologically connected higher stack over k such that
H1(X,O) = 0. Then πU

1 (X) is the trivial group scheme over k. Conversely, if πU
1 (X) is trivial,

then H1(X,O) = 0.

Proof. By Remark 2.1.18, the 1-truncation of U(X) is equivalent to BπU
1 (X). Therefore,

H1(X,O) ' H1(U(X),O) ' H1(BπU
1 (X),Ga) ' Hom(πU

1 (X),Ga),
where the middle isomorphism follows from Proposition 2.1.19 and the last one from fpqc descent
along Spec k → BπU

1 (X). Since πU
1 (X) is unipotent, H1(X,O) = 0 implies that πU

1 (X) must be
the trivial group scheme. The converse also follows from the above isomorphisms. �

Remark 3.2.9. In the case of schemes, the isomorphism H1(X,O) ' Hom(πU
1 (X),Ga) already

appears in [Nor82, Prop. 2] as a result of Tannakian principles; this is enough to prove Proposi-
tion 3.2.8. We formulated our proof in the language of stacks to motivate a more general assertion
appearing in Proposition 3.2.11 below, in which we reinterpret this isomorphism from the perspective
of the Hurewicz theorem in algebraic topology. We will begin with the following lemma.

Lemma 3.2.10. Let G be a commutative affine group scheme over k and m ≥ 1 be an in-
teger. Then Hm(K(G,m),O) ' Hom(G,Ga) and there is a natural injection Ext1(G,Ga) →
Hm+1(K(G,m),O) which is an isomorphism if m ≥ 2. Also, Hi(K(G,m),O) = 0 for 0 < i < m.

Proof. This can be seen by a spectral sequence argument similar to [Mon21, Rmk. 3.17]. Alterna-
tively, we note that Hm+1(K(G,m),O) = π0Map(K(G,m),K(Ga,m+ 1)). The latter may also
be computed as homotopy classes of maps K(G,m) → K(Ga,m + 1) of pointed higher stacks
(e.g., using Lemma 7.2.6 and the fact that Hn(Spec k,Ga) = 0 for all n > 0). By delooping
repeatedly, one can also compute that as homotopy classes of maps G → BGa of Em-group
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stacks2 which gives the claim that Hm+1(K(G,m),O) = Ext1(G,Ga) for m ≥ 2. The claims that
Hm(K(G,m),O) ' Hom(G,Ga) and Hi(K(G,m),O) = 0 for 0 < i < m follow similarly. �

Proposition 3.2.11 (Hurewicz theorem for affine stacks). Let X be a pointed connected affine
stack over k. Let n ≥ 0 be a nonnegative integer. Then the following two statements are equivalent:

(1) Hi(X,O) is trivial for i ≤ n.3
(2) πi(X) is trivial for i ≤ n.

Moreover, in such a situation, we have Hn+1(X,O) ' Hom(πn+1(X),Ga) and there is a natural
injection Ext1(πn+1(X),Ga) ↪→ Hn+2(X,O).

Proof. First, we note that since X is by assumption pointed and connected, by descent along
Spec k → X, it follows that H0(X,O) ' k. Thus, the two statements are equivalent when n = 0.
Next, we will check their equivalence when n ≥ 1.

To begin, let us assume that πi(X) is trivial for 0 ≤ i ≤ n. Using the assumption, it follows that
the n-truncation τ≤nX from Proposition 2.1.19 must be naturally isomorphic to the point. Since
Hi(τ≤nX,O) ' Hi(X,O) for i ≤ n, we obtain the desired conclusion.

Now conversely, we assume that Hi(X,O) = 0 for 1 ≤ i ≤ n. Let us consider the Postnikov
tower (τ≤nX) as in Proposition 2.1.19. It would be enough to prove that τ≤nX is naturally
isomorphic to the point. We will prove via induction on i that ∗ ' τ≤iX for 0 ≤ i ≤ n.
Since X is connected, the claim ∗ ' τ≤0X holds. Assuming that the claim is true for τ≤i−1X,
it follows that τ≤iX ' K(πi(τ≤iX), i) ' K(πi(X), i). By Proposition 2.1.19, the natural map
Hi(τ≤iX,O)→ Hi(X,O) is an isomorphism. Using the computation from Lemma 3.2.10, we obtain
a natural isomorphism Hom(πi(X),Ga) ∼−→ Hi(X,O). If i ≤ n, the assumption Hi(X,O) = 0 then
gives Hom(πi(X),Ga) = 0. Since πi(X) is an affine unipotent group scheme, this implies that
πi(X) is the trivial group scheme. Therefore, we see that τ≤iX is indeed naturally isomorphic to
the point for i ≤ n. In particular, τ≤nX is naturally isomorphic to the point. This finishes the
proof of the claim.

Now we prove the last part of the proposition. Let n ≥ 0 be as given. Under the above
equivalent assumptions, τ≤nX is naturally isomorphic to the point. Therefore, it follows that
τ≤n+1X ' K(πn+1(X), n+ 1). By Proposition 2.1.19, the map Hn+1(τ≤n+1X,O)→ Hn+1(X,O)
is an isomorphism and the map Hn+2(τ≤n+1X,O) → Hn+2(X,O) is an injection. Applying
Lemma 3.2.10 now finishes the proof of Proposition 3.2.11. �

Corollary 3.2.12 (Hurewicz theorem for unipotent homotopy group schemes). Let X be a pointed,
cohomologically connected higher stack over k. Let n ≥ 0 be a nonnegative integer. Then the
following two statements are equivalent:

(1) Hi(X,O) is trivial for i ≤ n.
(2) πU

i (X) is the trivial group scheme for i ≤ n.
Moreover, in such a situation, we have Hn+1(X,O) ' Hom(πU

n+1(X),Ga) and there is an injection
Ext1(πU

n+1(X),Ga) ↪→ Hn+2(X,O).

Proof. Follows from applying Proposition 3.2.11 to U(X). �

Lemma 3.2.13. Let X be a pointed connected affine stack over k such that H0(X,O) ' k. Then
the affine scheme Spec π0(k ⊗RΓ(X,O) k) has a natural group scheme structure under which it is
isomorphic to π1(X).

2i.e., an Em-group like object in the ∞-category of stacks, see for e.g., [Lur17, Thm. 5.2.6.10].
3 For n = 0, we use the convention that H0(X,O) being trivial means that H0(X,O) ' k.
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Proof. By Remark 2.1.15 and Corollary 2.3.6, the loop stack ΩX is an affine stack and RΓ(ΩX,O) '
k⊗RΓ(X,O)k, respectively. The universal property of mapping into affine schemes shows that giving a
map from ΩX → SpecS is equivalent to giving a map Spec H0(ΩX,O) = Spec π0(k⊗RΓ(X,O) k)→
SpecS.

On the other hand, since the affine scheme SpecS is 0-truncated as a stack, giving a map
from ΩX → SpecS is also equivalent to giving a map π0(ΩX) → SpecS. Now we note that
π0(ΩX) = π1(X). Since we know that π1(X) is representable by a unipotent affine group scheme
and SpecS was an arbitrary affine scheme, it follows that π1(X) ' Spec π0(k ⊗RΓ(X,O) k) as affine
schemes. This equips Spec π0(k⊗RΓ(X,O) k) with the structure of an affine group scheme as desired
and proves the claim. �

Combining Lemma 3.2.13 above with Proposition 3.1.7, we obtain the following explicit algebraic
description of πU

1 (X).

Corollary 3.2.14. Let X be a pointed cohomologically connected scheme (of finite type) over a field
k. Then we have an isomorphism of group schemes πU

1 (X) ' πU,N
1 (X) ' Specπ0(k ⊗RΓ(X,O) k).

We end this subsection with some examples.

Example 3.2.15. Let Pn
k be the projective n-space over a field k. Then πU

i (Pn
k ) is the trivial for

i ≥ 0. If X is a hypersurface in Pn
k , then it follows from Corollary 3.2.12 that πU

i (X) is trivial for
i < n− 1.

Remark 3.2.16. In [Nor82, p. 93], Nori proves that any complete normal rational variety X over
a field k has a trivial fundamental group scheme. This implies that the unipotent fundamental
group scheme of such a variety is also trivial. Indeed, if k has positive characteristic this follows
from [Nor82, Prop. IV.3]. If k has characteristic zero, by applying the Leray spectral sequence
to a resolution of singularities, it follows that H1(X,O) = 0. Thus Proposition 3.2.8 implies that
πU

1 (X) is trivial. The following example records the fact that this need not be true for the higher
unipotent homotopy group schemes πU

i (X) for i > 1.

Example 3.2.17. Let k = Fp and C ⊂ P2
k be a smooth cubic curve. Let f : X → P2

k be a blowup
in 10 points of C and D ⊂ X be the strict transform of C. In this case, we have (D.D) = −1;
therefore, the contraction π : X → Y of D is a birational morphism onto a normal projective surface
Y by [Art62, Thm. 2.9].

By the theorem on formal functions, we have Rif∗OX = 0 for all i > 0 and thus RΓ(X,OX) '
RΓ(P2

k,OP2
k
) = k. On the other hand, the Leray spectral sequence furnishes an exact sequence

0→ H1(Y, π∗OX)→ H1(X,OX)→ H0(Y,R1π∗OX)→ H2(Y, π∗OX)→ H2(X,OX).

Since π∗OX ' OY by Stein factorization (see e.g., [SP22, Tag 0AY8]), H1(Y,OY ) ' H1(Y, π∗OX) '
0. Moreover, R1π∗OX is the skyscraper sheaf at the point π(D) with fibre H1(D,OD). Indeed, it
is supported on π(D), and by the theorem on formal functions,

(R1π∗OX)∧π(D) ' lim←−
n

H1(D,OX ⊗OY
OY /m

n
π(D)) ' lim←−

n

H1(D,OnD).

Now, Serre duality and the identity degD OD(nD) = (nD.D) = −n yield H1(D,OD(−nD)) =
H0(D,OD(nD)) = 0 for all n ∈ Z>0, so induction on n with the short exact sequence

0→ OD(−nD)→ O(n+1)D → OnD → 0

proves that H1(D,OnD) ' H1(D,OD). We conclude that

H2(Y,OY ) ' H2(Y, π∗OX) ' H0(Y,R1π∗OX) ' H1(D,OD) ' k.

https://stacks.math.columbia.edu/tag/0AY8
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Hence, Corollary 3.2.12 shows that πU
1 (Y ) ' ∗, but πU

2 (Y ) 6' ∗. This example also shows that
unipotent homotopy group schemes are not birational invariants for singular varieties (cf. Proposi-
tion 3.2.7).
3.3. Pro-algebraic completion of group valued sheaves. When studying potentially non-
affine higher stacks, one often encounters non-representable homotopy sheaves. In this section, we
study a certain kind of pro-algebraic completion of (pre)sheaves of groups. Using this, we define in
Definition 3.3.10 the tensor product of commutative group schemes. We also introduce a variant of
the wedge product in Definition 3.3.15, called the weak wedge square, which plays an important role
in Section 7.2 in understanding certain unipotent homotopy group schemes of Calabi–Yau varieties
in positive characteristic.

Note that for any group scheme G over a field, we have a maximal unipotent quotient Guni such
that the map G → Guni is universal among maps from G to unipotent group schemes (see e.g.,
[Toë06, Lem. 1.5.4]). We will now generalize this construction to arbitrary presheaves of groups
G. In what follows, we always work over a base field k. By the Yoneda lemma, we have a natural
functor from the category of affine group schemes over k to the category of presheaves of groups on
Affk which is an inclusion of categories. Since the category of affine group schemes has all limits
and they are preserved by this natural functor, it must have a left adjoint which we denote by
H → Halg. Note that Halg may be obtained as the inverse limit over diagrams H → G, where
G is a finite type affine group scheme and the map is a morphism of presheaves of groups. In
general, the map H → Halg is not an fpqc surjection, nor does it induce an isomorphism on global
sections. These phenomena can already be observed when H is the constant sheaf of groups Z; see
Example 3.3.5.

Example 3.3.1. If H is the constant presheaf associated with a finite group G, then Halg is the
induced affine group scheme structure on

∐
G Spec k.

Given a presheaf of groups H, one can similarly construct a map H → Huni which is initial among
maps to unipotent group schemes. It follows from the universal properties that Huni ' (Halg)uni.
The next lemma gives an alternative way to describe Huni, which also allows us to compute its ring
of global sections.
Lemma 3.3.2. Let H be any (pre)sheaf of groups. Then π1(U(BH)) ' Huni.
Proof. By analyzing universal properties of mapping to a 1-truncated affine stack, we obtain an
equivalence between pointed maps from BH → BG and pointed maps τ≤1(U(BH))→ BG for a
unipotent group scheme G. This gives a bijection between maps of sheaves of groups H → G and
maps of sheaves of groups π1(U(BH))→ G, yielding the required statement. In the proof, we used
that π0(U(BH)) ' ∗, which follows from the fact that H0(BH,O) ' k since ∗ → BH is an fpqc
epimorphism. �

Corollary 3.3.3. Let H be any (pre)sheaf of groups. Then
Huni ' Specπ0(k ⊗RΓ(BH,O) k).

Proof. Follows from Lemma 3.3.2 and Lemma 3.2.13. �

Lemma 3.3.4. Let G be any (pre)sheaf of abelian groups. Then πn(U(K(G,n))) ' (Guni)ab for
n ≥ 2.
Proof. Since Hi(K(G,n),O) = 0 for i < n, Proposition 3.2.11 implies that τ≤nU(K(G,n)) '
K(πn(U(K(G,n))), n). The claim now follows as in the proof of Lemma 3.3.2 from delooping and
the universal property of (Guni)ab. �

Example 3.3.5. If k has characteristic p > 0, then Zuni is the profinite affine group scheme Zp.
On the other hand, if k has characteristic zero, then Zuni is Ga,k.



UNIPOTENT HOMOTOPY THEORY OF SCHEMES 31

Example 3.3.5 shows that the map H → Huni is not an fpqc surjection in general. However, if
H → Halg is an fpqc surjection, then so is H → Huni since Halg → (Halg)uni = Huni is a quotient
map of group schemes. Below, we give a criterion for H → Halg being an fpqc surjection that is
often easy to verify.

Proposition 3.3.6. Let H1 → H2 → H3 → 0 be an exact sequence of abelian fpqc sheaves. Then
the following two sequences are exact.

(1) (Halg
1 )ab → (Halg

2 )ab → (Halg
3 )ab → 0

(2) (Huni
1 )ab → (Huni

2 )ab → (Huni
3 )ab → 0

Proof. Follows from the universal properties. �

Corollary 3.3.7. Let H be an fpqc sheaf of abelian groups. Assume there exists a commutative
affine group scheme G and a surjection of fpqc sheaves G→ H. Then H → (Halg)ab is a surjection
of fpqc sheaves. Consequently, H → (Huni)ab is an fpqc surjection as well.

Proof. Proposition 3.3.6 shows that (Galg)ab → (Halg)ab is surjective. Since G is a commutative
affine group scheme, the natural map G → (Galg)ab is an isomorphism. Thus, the composition
G→ H → (Halg)ab is surjective. This implies that H → (Halg)ab is surjective. The surjectivity of
H → (Huni)ab follows. �

Suppose that there is a surjection of sheaves G→ G0 where G is a commutative affine group
scheme. One can then ask if G→ Galg

0 is surjective and further if we can describe the kernel K of
G→ Galg

0 explicitly. The following construction gives an answer to this question in the case when
the kernel of the map G→ G0 can be generated by a map from an affine scheme T to G.

Construction 3.3.8. Let T be an affine scheme and G be a commutative affine group scheme
over k. Let t be a k-rational point of T . Let f : (T, t) → (G, 1G) be a map of pointed schemes
over k whose image is stable under the inverse morphism of G. Then there exists an initial map
u : G→ H of affine group schemes with the property that u◦ f = 0: indeed, if we let [Im(f)] denote
the sub(pre)sheaf of groups of G generated by the image of the map f , then H = (G/[Im(f)])alg.

Let us now describe an explicit construction of H. Let G/[Im(f)]→ S be a map of fpqc sheaves
of groups where S is an affine group scheme. The data of such a map is equivalent to giving a map
of affine group schemes G→ S whose kernel contains the scheme theoretic image of the maps

Tn → Gn → G

for all n ≥ 1, where the last maps Gn → G are induced by the multiplication on G. The scheme
theoretic image of the map Tn → G determines an ideal sheaf In of the affine scheme G. By our
assumptions, it follows that In is a decreasing sequence of ideal sheaves. Let I :=

⋂
n In. Then

I defines a closed subscheme K of G, and in fact, K is a subgroup scheme of G. Note that K
is still contained in the kernel of the map G→ S since the kernel is a closed subgroup scheme of
G. Therefore, we obtain a natural map G/K → S of affine group schemes. Using the universal
properties, H = (G/[Im(f)])alg = G/K. This gives an explicit description of the kernel K and
shows the surjectivity of the map G→ (G/[Im(f)])alg. Note that since G is commutative, it follows
that in this situation, (((G/[Im(f)])alg)ab) = (G/[Im(f)])alg.

Remark 3.3.9. The above construction can be used to understand Halg explicitly when H is
obtained as a quotient of a bilinear map G1 ×G2 → G of affine commutative group schemes. To
give a more flexible treatment (see Remark 3.3.18), we introduce the following constructions that
we will need later. Note that for a non-commutative affine group scheme G, Construction 3.3.8 still
applies to the commutator map f : (G×G, 1G × 1G)→ (G, 1G); this shows for example that the
natural map G→ Gab is surjective, where Gab ' (G/[Im(f)])alg is the abelianization.
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Definition 3.3.10 (Tensor product of group schemes). Let G and H be two commutative affine
group schemes over k. Let G and H be the sheaves of abelian groups represented by G and H
and G⊗Z H be their (ordinary) tensor product. We define G⊗H to be the affine group scheme
((G⊗Z H)alg)ab. It is clear that G⊗H satisfies the universal property of the tensor product in the
category of commutative affine group schemes.

Definition 3.3.11 (Wedge product of group schemes). Let G be a commutative affine group
scheme over k. Let G be the sheaf of abelian groups represented by G. We define ∧nG to be the
affine group scheme ((∧nG)alg)ab.

Definition 3.3.12 (Weak wedge square of groups). Let P be an abelian group. There is a natural
endomorphism ϕ : P ⊗Z P → P ⊗Z P on the (ordinary) tensor product determined by

p⊗ p′ 7→ p⊗ p′ + p′ ⊗ p.
We define P fZ P := Coker(ϕ) and call it the weak wedge square of P . There is a natural surjective
map P fZ P → P ∧ P .

Example 3.3.13. Note that ZfZ Z ' Z/2Z.

Remark 3.3.14. If V is a vector space over a field k of characteristic p > 2, one can define V f V
as the cokernel of the map V ⊗k V → V ⊗k V determined by v ⊗ v′ 7→ v ⊗ v′ + v′ ⊗ v. In this case,
V fV ' V ∧V . More generally, if P is an abelian group, then (P fZP )⊗Z Z[ 1

2 ]→ (P ∧ZP )⊗Z Z[ 1
2 ]

is an isomorphism.

Definition 3.3.15 (Weak wedge square of group schemes). Let G be a commutative affine group
scheme over k. Let G be the sheaf of abelian groups represented by G. We define G f G to be
((GfG)alg)ab.

Remark 3.3.16. Let G be a commutative affine group scheme. Note that there is a natural
bilinear map G×G→ G⊗G of commutative affine group schemes.

Remark 3.3.17. Let G be a commutative group scheme. Let G be the sheaf of abelian groups
represented by G. The endomorphism of G⊗Z G that sends g ⊗ g′ 7→ g ⊗ g′ + g′ ⊗ g induces an
endomorphism ϕ : G⊗G→ G⊗G. By Proposition 3.3.6, it follows that Coker(ϕ) ' GfG.

Remark 3.3.18. Let f : G1 × G2 → G be a bilinear map of commutative group schemes. Let
G1, G2 and G be the sheaves represented by G1, G2 and G, respectively. We obtain a map of
abelian sheaves f : G1 ⊗Z G2 → G. In the notation of Construction 3.3.8, the sheaf G/[Im(f)] is
isomorphic to Coker(f). By Proposition 3.3.6 and Construction 3.3.8, it follows that

(G/[Im(f)])alg ' ((G/[Im(f)])alg)ab ' ((Coker(f))alg)ab ' Coker(G1 ⊗G2 → G).

The above constructions give rise to a rich source of computations that is interesting to pursue
in its own right. However, we do not discuss them here in detail since we only need some of these
computations for our desired applications (see Section 7.2); instead, we mention only some of these
examples.

Example 3.3.19. Even if G and H are unipotent commutative group schemes, their tensor product
G⊗H is typically not unipotent. For example, let G = H = αp over a perfect field of characteristic
p > 0. Since αp is self-dual under Cartier duality, there is a nontrivial bilinear pairing αp×αp → Gm

which yields a nontrivial map αp ⊗ αp → Gm. This implies that αp ⊗ αp cannot be unipotent.

Example 3.3.20. Let us again work over a perfect field of characteristic p > 0. We will explain how
to compute the unipotent completion (αp ⊗ αp)uni of αp ⊗ αp. Let W [F ] denote the group scheme
underlying the kernel of Frobenius on the group scheme of p-typical Witt vectors W ; it is also dual
to the formal Lie group Ĝa (cf. [Haz12, 37.3.4]). Note that W [F ] naturally has the structure of
a non-unital ring scheme. There is also a map [ · ] : αp → W [F ] given by the multiplicative lift.
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Sending (x, y) to [x] · [y] gives a map u : αp × αp →W [F ]. We claim that u is bilinear. Note that
n := [x+ y]− [x]− [y], although nonzero, lies in the kernel of the group homomorphism W [F ]→ αp.
Therefore, as observed in the proof of [LM21, Lemma B.2], one has n ·m = 0 for any (scheme
theoretic point) m of W [F ]. In particular, it follows that ([x+ y]− [x]− [y])[z] = 0, which shows
that u is bilinear. This constructs a map u : (αp ⊗ αp)uni →W [F ] of group schemes. Now, we note
that dim Hom(W [F ],Ga) = 1 and the induced map Hom(W [F ],Ga)→ Hom(αp ⊗ αp,Ga) is an
isomorphism. Since W [F ] is unipotent, it follows that u is surjective. Since Ext1(W [F ],Ga) = 0
(Proposition 6.1.13), by a long exact sequence chase, it also follows that u is injective. Thus
(αp ⊗ αp)uni 'W [F ].

Example 3.3.21. Let k be a perfect field of characteristic p > 0. When p 6= 2, one has (αpfαp)uni =
0 (cf. Proposition 7.2.26). On the other hand, when p = 2, we have (α2 f α2)uni ' (α2 ∧ α2)uni '
W [F ]. This follows for example by noting that the isomorphism (α2 ⊗ α2)uni →W [F ] constructed
above naturally factors through the surjection (α2 ⊗ α2)uni → (α2 ∧ α2)uni.

3.4. The Freudenthal suspension theorem in unipotent homotopy theory. In this section,
we prove a version of the Freudenthal suspension theorem in the context of unipotent homotopy
theory. Our result gives a broad generalization of the classical Freudenthal suspension theorem
[Fre38] for spaces. This version of the Freudenthal suspension theorem can be used to study
unipotent homotopy groups of suspensions of arbitrary higher stacks and not just affinizations of
spaces. In particular, our version of the Freudenthal suspension theorem plays an important role
in computing certain homotopy group schemes of Calabi–Yau varieties similar to the role played
by the classical Freudenthal suspension theorem in computing homotopy groups of spheres. The
“surjection of group schemes” part of the Freudenthal suspension theorem in unipotent homotopy
theory (see Corollary 3.4.11) presents additional subtleties and a large portion of the work in
Section 2 and Section 3 is used to settle this part. As preparations towards proving the theorem,
we will first note the following constructions and then delve into a series of lemmas.

Construction 3.4.1. We recall that if Y ∈ S is a space equipped with a base point, one classically
has the (functorial) bilinear maps

Wk,l : πk(Y )× πl(Y )→ πk+l−1(Y )
that are called Whitehead products [Whi41]. They satisfy the graded symmetry condition
Wk,l(u, v) = (−1)k·lWk,l(v, u) for k, l ≥ 2. These maps also satisfy a graded Jacobi identity
that we do not recall here. Now let X be a pointed higher stack. The functoriality of the Whitehead
brackets implies that we have (functorial) bilinear maps

Wk,l : πk(X)× πl(X)→ πk+l−1(X).
We will again call these maps Whitehead products. They also satisfy similar graded symmetry
conditions and a graded Jacobi identity.

Construction 3.4.2 (Whitehead product on unipotent homotopy groups). If X is a pointed higher
stack, applying Construction 3.4.1 to the unipotent homotopy type of X, we obtain Whitehead
products

Wk,l : πU
k (X)× πU

l (X)→ πU
k+l−1(X)

on unipotent homotopy group schemes. These maps are again bilinear and satisfy graded symmetry
conditions and a graded Jacobi identity.

Lemma 3.4.3. Let X and Y be two pointed higher stacks. Assume that X is m-connected and Y
is n-connected. Then their smash product X ∧ Y is (m+ n+ 1)-connected. Moreover,4

πm+n+2(X ∧ Y ) ' πm+1(X)⊗Z πn+1(Y ).
4one takes abelianization of πn+1(X) (resp. πm+1(X)) when n = 0 (resp. m = 0).
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Proof. The result follows from the same statement at the level of spaces (which for example can be
seen by using the classical Hurewicz theorem and computing homology) and applying sheafification.
Indeed, let X be the fibre of the map X → τpre

≤mX computed in the ∞-category of presheaves of
spaces. Let Y be constructed similarly. Then X and Y are an m-connected and n-connected presheaf,
respectively. It follows that X ∧Y is (m+n+1)-connected and πm+n+2(X ∧Y ) ' πm(X)⊗Z πn(Y )
in the category of presheaves. Applying sheafification and noting that the sheafification of X and
Y recovers X and Y , respectively, now yields the desired result. �

Lemma 3.4.4. Let n ≥ 0 be a fixed integer. Let X be a pointed n-connected higher stack. Then
there are natural maps

πi(X)→ πi+1(ΣX)
which are isomorphisms for i ≤ 2n and a surjection for i = 2n+ 1.

Proof. The natural maps above are induced via the map X → ΩΣX arising from adjunction. The
desired result then follows from the classical Freudenthal suspension theorem for spaces. Indeed,
let X be the fibre of the map X → τpre

≤nX computed in the ∞-category of presheaves of spaces.
Then X is an n-connected presheaf. By the classical Freudenthal suspension theorem for spaces, it
follows that the natural maps πi(X)→ πi+1(ΣX) of presheaves are isomorphisms for i ≤ 2n and a
surjection for i = 2n+ 1. Applying sheafification and noting that sheafification of X recovers X
now yields the desired result. �

Remark 3.4.5. Note that Lemma 3.4.4 does not imply the Freudenthal suspension theorem in
unipotent homotopy theory (Corollary 3.4.11): even if X is an affine stack, ΣX can be far from
being an affine stack, e.g., it can have nonrepresentable homotopy sheaves (see Example 3.4.13).

Lemma 3.4.6. Let X be a pointed connected affine stack over k such that π1(X) is trivial and
Hi(X,O) is finite-dimensional for all i. Let Y be a pointed connected stack. Then any pullback
diagram

Y ′ ∗

Y X

f ′

g′ g

f

induces a pullback diagram

U(Y ′) ∗

U(Y ) U(X).

f ′

g′ g

f

Proof. This is a consequence of Proposition 2.3.7. Indeed, note that there are natural maps

k ⊗RΓ(X,O) RΓ(Y,O)→ k
∐

RΓ(X,O)

RΓ(Y,O)→ RΓ(Y ′,O), (3.4.1)

where the middle term denotes the pushout in DAlgccn
k . By Proposition 2.3.7, the composite map is

an isomorphism. Replacing Y by U(Y ) (which is again naturally a pointed connected higher stack)
and Y by Y ′′ := U(Y )×X {∗}, another application of Proposition 2.3.7 shows that the composition
k ⊗RΓ(X,O) RΓ(U(Y ),O)→ k

∐
RΓ(X,O)RΓ(U(Y ),O)→ RΓ(Y ′′,O) is an isomorphism. However,

since U(Y ) is an affine stack, it follows that the latter map k
∐
RΓ(X,O)RΓ(U(Y ),O)→ RΓ(Y ′′,O)

is an isomorphism. Thus, the former map

k ⊗RΓ(X,O) RΓ(U(Y ),O)→ k
∐

RΓ(X,O)

RΓ(U(Y ),O)
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is an isomorphism as well. Using the natural isomorphism RΓ(U(Y ),O) ' RΓ(Y,O) and the maps
in (3.4.1), we now see that the map k

∐
RΓ(X,O)

RΓ(Y,O)→ RΓ(Y ′,O) in (3.4.1) is an isomorphism.

This proves the desired statement. �

Lemma 3.4.7. Let X be a pointed connected affine stack over a field k such that π1(X) is
trivial and Hi(X,O) is a finite-dimensional k-vector space for all i ≥ 0. Then Hi(τ≤nX,O) is
finite-dimensional for all n and all i.

Proof. The claim is immediate for n ≤ 1 by our assumptions on X. Our goal is to inductively
prove the following statement.

• For all u ≥ 2, Hom(πu(X),Ga) is finite-dimensional and for all i ≥ 0, Hi(τ≤u−1X,O) is
finite-dimensional.

Note that Proposition 2.1.19 and Lemma 3.2.10 yield an isomorphism Hom(π2(X),Ga) ' H2(X,O).
This implies base case u = 2 of our desired assertion. For the inductive step, let us assume that the
assertion is proven for u = n. We first establish that Hi(τ≤nX,O) is finite-dimensional for all i.
The pullback diagram

K(πn(X), n) ∗

τ≤nX τ≤n−1X

gives a spectral sequence

Ei,j2 = Hi(τ≤n−1X,H
j(K(πn(X), n),O)) =⇒ Hi+j(τ≤nX,O). (3.4.2)

Here, H j(K(πn(X), n),O) is a quasi-coherent sheaf on τ≤n−1X whose pullback to the point is the
vector space Hj(K(πn(X), n),O). Now we invoke the following lemma.

Lemma 3.4.8. Let G be a commutative unipotent group scheme over k such that Hom(G,Ga) is
finite-dimensional. Then Hj(K(G,n),O) is finite-dimensional for all j.

Proof. We proceed by induction on n. When n = 1, the finiteness statement is proven later in
Proposition 6.1.15; it is a consequence of the fact that the dual of the Hopf algebra O(G) (in the
sense of Construction 6.1.1) is a commutative noetherian local ring and the Betti numbers of any
commutative noetherian local ring are finite.

For the inductive step, let us assume that the statement is proven for a fixed n. Denote by Gi
the i-fold self-product of G. Since K(Gi, n) is an affine stack for all i ≥ 0, the Künneth formula
shows that Hj(K(Gi, n),O) is finite-dimensional. By fpqc descent along ∗ → K(G,n + 1), we
obtain a spectral sequence

Ei,j1 = Hj(K(Gi, n),O) =⇒ Hi+j(K(G,n+ 1),O).

Since all terms in the E1-page are finite-dimensional by the induction hypothesis, the spectral
sequence gives the desired statement for n+ 1. �

Since τ≤1X ' ∗ by assumption, it follows from Proposition 2.2.19 that H j(K(πn(X), n),O) '
Hj(K(πn(X), n),O)⊗k O as quasi-coherent sheaves on τ≤n−1X. On the other hand, Lemma 3.4.8
above shows that Hj(K(πn(X), n),O) is a finite-dimensional k-vector space. Therefore, all the
terms in the E2-page of the spectral sequence (3.4.2) are finite-dimensional by the induction
hypothesis. This shows that Hi(τ≤nX,O) is finite-dimensional as desired.

Now we move on to proving that Hom(πn+1(X),Ga) is finite-dimensional. The pullback diagram
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K(πn+1(X), n+ 1) ∗

τ≤n+1X τ≤nX

gives as before a spectral sequence

Ei,j2 = Hi(τ≤nX,H j(K(πn+1(X), n+ 1),O)) =⇒ Hi+j(τ≤n+1X,O).

It is enough to prove that Hn+1(K(πn+1(X), n+1),O) is finite-dimensional: by Lemma 3.2.10, this
implies that Hom(πn+1(X),Ga) is finite-dimensional. Assume, for the sake of contradiction, that
Hn+1(K(πn+1(X), n+1),O) is infinite-dimensional. Since π1(X) is trivial, that implies that E0,n+1

2
is infinite-dimensional. By Lemma 3.2.10, H j(K(πn+1(X), n+ 1),O)) = 0 for 0 < j ≤ n, which
gives Ei,jr = 0 for 0 < j ≤ n. Also, Ei,jr = 0 for i < 0 or j < 0. This implies that E0,n+1

r = E0,n+1
2

for 2 ≤ r ≤ n+ 2. On the (n+ 2)-nd page of the spectral sequence we have a potentially nonzero
differential

E0,n+1
n+2 → En+2,0

n+2 .

Note that En+2,0
2 = Hn+2(τ≤nX,O) is finite-dimensional, since we have already shown that

Hi(τ≤nX,O) is finite-dimensional for all i. Therefore, En+2,0
n+2 is finite-dimensional. Since we

assumed that E0,n+1
2 is infinite-dimensional, this shows that E0,n+1

n+3 is also infinite-dimensional.
Moreover, E0,n+1

n+3 = E0,n+1
∞ and so the latter term is infinite-dimensional as well. By Proposi-

tion 2.1.19, Hn+1(τ≤n+1X,O) ' Hn+1(X,O), which is finite-dimensional by assumption. Since
E0,n+1
∞ is now a subquotient of the finite-dimensional vector space Hn+1(τ≤n+1X,O), we reach a

contradiction that finishes the proof. �

Proposition 3.4.9. Let X be a pointed connected stack over a field k and n ≥ 1 be a fixed integer
such that the following conditions hold:

(1) π1(X) is trivial and Hi(X,O) is finite-dimensional for all i;
(2) τ≤nX is an affine stack.

Then πn+1(U(X)) ' ((πn+1(X))uni)ab.

Proof. From the universal property of mapping into pointed connected r-truncated affine stacks for
r ≥ 0, we obtain

τ≤rU(X) ' τ≤rU(τ≤rX).
By Lemma 3.4.7, Hi(τ≤nU(X),O) is finite-dimensional for all i. This implies that the vector space
Hi(τ≤nU(τ≤nX),O) is finite-dimensional for all i. However, τ≤nX is already an affine stack by
assumption. Thus, we obtain that Hi(τ≤nX,O) is finite-dimensional for all i. By Lemma 3.4.6,
the pullback diagram

K(πn+1(X), n+ 1) ∗

τ≤n+1X τ≤nX

induces the following pullback diagram:

U(K(πn+1(X), n+ 1)) ∗

U(τ≤n+1X) U(τ≤nX).
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Since U(τ≤nX) ' τ≤nX, we obtain
πn+1(U(K(πn+1(X), n+ 1))) ' πn+1(U(τ≤n+1X)) ' πn+1(U(X)).

Now, invoking Lemma 3.3.4 finishes the proof. �

Proposition 3.4.10 (Freudenthal suspension theorem for affine stacks). Let X be a pointed
connected affine stack over k and n ≥ 0 be a fixed integer such that the following conditions hold:

(1) Hi(X,O) is finite-dimensional for all i ≥ 0.
(2) X is n-connected, i.e., πi(X) is trivial for i ≤ n.

Let us consider the affine stack U(ΣX). Then there are natural maps of group schemes
πi(X)→ πi+1(U(ΣX))

which are isomorphisms for i ≤ 2n and a surjection for i = 2n+ 1.

Proof. First, we note that by adjunction there are natural maps X → ΩΣX → ΩU(ΣX) which
induces the desired maps on homotopy group schemes.

For any pointed connected stack Y and any integer r ≥ 1, by the universal property of mapping
into pointed connected r-truncated affine stacks, we have

τ≤rU(Y ) ' τ≤rU(τ≤rY ). (3.4.3)
By Lemma 3.4.4, the natural maps πi(X) → πi+1(ΣX) are isomorphisms for i ≤ 2n. Thus, the
sheaves of homotopy groups of the stack τ≤2n+1(ΣX) are all representable by unipotent affine group
schemes, since the same holds for X. Therefore, τ≤2n+1ΣX is an affine stack (see Theorem 2.1.17).
By (3.4.3), it follows that τ≤2n+1(U(ΣX)) ' τ≤2n+1(ΣX), which yields the first part in the claim
of the proposition, i.e., πi(X)→ πi+1(U(ΣX)) is an isomorphism for i ≤ 2n.

Now we proceed to prove that π2n+1(X)→ π2n+2(U(ΣX)) is a surjection. By Lemma 3.4.4, we
have a surjection π2n+1(X)→ π2n+2(ΣX) of fpqc sheaves. In fact, by Whitehead’s EHP sequence
[Bar60, Prop. 2.9] (cf. [Whi53]), it extends to an exact sequence of fpqc sheaves

π2n+2(X ∧X)→ π2n+1(X)→ π2n+2(ΣX)→ 0. (3.4.4)
Since X is n-connected, Lemma 3.4.3 shows that the first map in (3.4.4) induces a bilinear map
which identifies with the Whitehead product Wn,n : πn+1(X)× πn+1(X)→ π2n+1(X) on homotopy
groups. When n = 0, one can directly see that it identifies with the commutator map. Further, when
n = 0, it follows from Lemma 3.3.4 that τ≤2(U(ΣX)) ' K(((π2(ΣX)uni)ab), 2). Recall that since X
is an affine stack, π1(X) is a unipotent affine group scheme. Using the description of the map W0,0
and the exact sequence (3.4.4), one sees that the natural map π1(X)→ π2(U(ΣX)) ' π1(X)ab is
surjective (see Remark 3.3.9); this yields the surjectivity claim in the case n = 0. Note that in the
n = 0 case, we do not need the finiteness assumption on Hi(X,O). In the following, we assume
n ≥ 1.

Let us set X ′ := ΣX. Then X ′ is a pointed connected stack. Since X is connected, X ′ is 1-
connected and therefore H0(X,O) = k and H1(X,O) = 0. By adjunction and Lemma 7.2.6, we have
Hi(X ′,O) ' Hi−1(X,O) for i ≥ 2. Further, as noted before, τ≤2n+1X

′ is an affine stack and π1(X ′)
is trivial. By Proposition 3.4.9, we obtain that π2n+2(U(X ′)) ' ((π2n+2(X ′))uni)ab. We know
from (3.4.4) that π2n+2(X ′) receives a natural surjection from π2n+1(X), which is a commutative
unipotent affine group scheme since X is an affine stack and n ≥ 1. Therefore, by Corollary 3.3.7,
the natural map π2n+1(X)→ ((π2n+2(X ′))uni)ab ' π2n+2(U(X ′)) ' π2n+2(U(ΣX)) is a surjection,
which finishes the proof. �

Corollary 3.4.11 (Freudenthal suspension theorem in unipotent homotopy theory). Let X be a
pointed connected affine stack over k and n ≥ 0 be a fixed integer such that the following conditions
hold:



38 SHUBHODIP MONDAL AND EMANUEL REINECKE

(1) Hi(X,O) is finite-dimensional for all i ≥ 0.
(2) πU

i (X) is trivial for i ≤ n.
Then there are natural maps of group schemes

πU
i (X)→ πU

i+1(ΣX)
which are isomorphisms for i ≤ 2n and a surjection for i = 2n+ 1.

Proof. Follows by applying Proposition 3.4.10 to the unipotent homotopy type U(X) of X. �

Remark 3.4.12. In the notation of Construction 3.3.8 and the proof of Proposition 3.4.10, it also
follows that

(π2n+1(X))/[Im(Wn,n)])alg ' π2n+2(U(ΣX)),
since the left-hand side is already commutative and unipotent for n ≥ 1. Thus, the bilinear map
Wn,n gives an explicit way to understand π2n+2(U(ΣX)).

Example 3.4.13. We point out that even if X is a pointed connected affine stack, it is not true in
general that ΣX is again an affine stack. Indeed, when X = BG for some commutative unipotent
group scheme G, one can compute that π3(ΣBG) is not representable in general: The Hopf fibre
sequence

BG→ Σ(BG ∧BG)→ ΣBG
proves that π3(ΣBG) ' π3(Σ(BG∧BG)). Since BG∧BG is 1-connected, it follows that π3(Σ(BG∧
BG)) ' π2(BG ∧BG). Lemma 3.4.3 then yields π2(BG ∧BG) = G⊗Z G.

We end this subsection with the following calculation that will be useful in Proposition 7.2.15.

Example 3.4.14 (Explicit computation of the Whitehead product). Let G be an abelian group.
By using the Hopf fibre seqeuence BG → Σ(BG ∧ BG) → ΣBG, one again computes that
π2(ΣBG) ' G and π3(ΣBG) ' G⊗G. Our goal is to explicitly compute the Whitehead product
W2,2 : G × G → G ⊗ G. By bilinearity, this corresponds to a map (which we again denote as)
W2,2 : G ⊗ G → G ⊗ G. In order to calculate this, we will freely make use of the results from
[Whi50]; in particular, the machinery of the “universal quadratic functor” introduced by Whitehead
[Whi50, Ch. 2]. For an abelian group A, let Q2(A) denote Whitehead’s universal quadratic functor,
which is the free abelian group on the generators γ(a) subject to the following relations:

(1) γ(−a) = γ(a) for all a ∈ A.
(2) γ(a+ b+ c)− γ(a+ b)− γ(b+ c)− γ(a+ c) + γ(a) + γ(b) + γ(c) = 0 for all a, b, c ∈ A.

We let β(a, b) := γ(a + b) − γ(a) − γ(b) ∈ Q2(A). There is a natural map A ⊗ A → Q2(A)
which is determined by sending a ⊗ b to β(a, b). If X is an r-truncated space and r ≥ 1, then
Whitehead constructs a map Q2(π2(X))→ π3(X) (cf. [MW10, Sec. 2.3]) such that the composite
map π2(X)⊗ π2(X)→ Q2(π2(X))→ π3(X) identifies with the Whitehead product. Applying this
to the case of X = ΣBG, the map q : Q2(G) → G ⊗ G in this case is given by γ(g) 7→ g ⊗ g (cf.
[BL87, Prop. 4.10]). The composite map W2,2 : G⊗G→ G⊗G is given by g ⊗ h 7→ q(β(g, h)) =
q(γ(g + h)− γ(g)− γ(h)) = (g + h)⊗ (g + h)− g ⊗ g − h⊗ h = g ⊗ h+ h⊗ g.
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4. Étale homotopy groups via unipotent homotopy theory

In this section, we prove a profiniteness result (see Proposition 4.3.1) for the unipotent homotopy
group schemes that were introduced in Section 3.2. In Section 4.4, we show that the unipotent
homotopy group schemes refine the étale homotopy groups due to Artin–Mazur [AM69] in the
p-adic context. Section 4.1 and Section 4.2 are devoted to developing some notions and techniques
that are necessary for proving these results.

4.1. Some Frobenius semilinear algebra. We begin by discussing some Frobenius semilinear
algebra that will become important later.

Lemma 4.1.1. Let k be a perfect field of characteristic p > 0 and let ϕ be the Frobenius on k. Let
V be a finite-dimensional k-vector space and F be a Frobenius semilinear endomorphism of V . Then
there is a decomposition V = Vs ⊕ Vn into F -invariant subspaces such that Fs := F

∣∣
Vs

is bijective
and Fn := F

∣∣
Vn

is nilpotent. When k is algebraically closed, the natural map V Fs=id
s ⊗Fp

k → Vs is
an Fs-equivariant isomorphism, where the endomorphism Fs on the domain is given by id⊗ ϕ.

Since the statement is classical (see, e.g., [Ser58, p. 38]), we only give a brief sketch of an
argument here for the convenience of the reader.

Proof. Since k is perfect, ImFN is a k-subspace of V for all N ∈ Z≥0. Moreover, as V is finite-
dimensional, there exists an integer N > 0 such that ImFN+1 = ImFN . Then Vs := ImFN and
Vn := KerFN give the desired decomposition.

For the second part, without loss of generality, we assume that F is bijective and thus Vs = V
and Fs = F . We can find a fixed vector ṽ 6= 0 of F as follows: Start with any v ∈ V . Since
V is finite-dimensional, we can choose a minimal n such that there exists a linear relation of
the form Fn+1(v) =

∑n
i=0 λiF

i(v) for some λi ∈ k. Let αn 6= 0 be a root of the separable
polynomial P (z) = z −

∑n
i=0 λ

pn−i

i zp
n−i+1 and define αi−1 recursively as the unique p-th root

of αi − αpnλi for 1 ≤ i ≤ n. Then ṽ :=
∑n
i=0 αiF

i(v) 6= 0 by the minimality of n and F (ṽ) =
λ0α

p
n +

∑n
i=1(λiαpn + αpi−1)F i(v) = ṽ. Using ṽ, the statement follows by taking quotients and

induction on the dimension of V . �

The first part of Lemma 4.1.1 has the following consequence.

Corollary 4.1.2. Let k be a perfect field of characteristic p > 0. Let V be a finite-dimensional
k-vector space and F a Frobenius semilinear endomorphism of V . Equip V [ := lim←−F V and Vperf :=
lim−→F

V with their natural k-vector space structures coming from the isomorphisms lim←−F k ' k

and k ' lim−→F
k, respectively. Then the composition of the natural maps V [ → V → Vperf is an

isomorphism of k-vector spaces.

Proof. It suffices to show that V [ → V → Vperf is bijective. By Lemma 4.1.1, there exists a natural
decomposition V = Vs ⊕ Vn such that F is bijective on Vs and nilpotent on Vn. Our claim follows
from the observation that lim←−F Vn ' 0 as well as lim−→F

Vn ' 0. �

Corollary 4.1.3. Let k be an algebraically closed field and V be a finite-dimensional vector space
over k equipped with a Frobenius semilinear operator F . Then the natural map V F=id⊗Fpk → lim−→F

V

is an isomorphism compatible with the Frobenius semilinear operators.

Proof. This follows from combining Lemma 4.1.1 and Corollary 4.1.2. �

Let DAlgccn
k denote the ∞-category from Definition 2.1.8. There is a natural functor DAlgccn

k →
D(k)≤0. Any object R ∈ DAlgccn

k admits a semilinear Frobenius endomorphism F . We let RF=id

denote the Frobenius fixed points of R, i.e., the equalizer of F : R→ R and id: R→ R, which is
naturally an object of DAlgccn

Fp
.
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Lemma 4.1.4. Let k be a perfect field of characteristic p > 0. Let R ∈ DAlgccn
k such that Hi(R)

is a finite-dimensional k-vector space for all i ≥ 0. Then the composition of the natural maps
α : R[ := lim←−

F

R→ R→ Rperf := lim−→
F

R

is an isomorphism.

Proof. It suffices to prove that Hi(α) is an isomorphism for all i ≥ 0. Let us fix an i. The
Frobenius F induces a Frobenius semilinear endomorphism of Hi(R), which we denote again by F .
First, we will show that the natural maps Hi(R[)→ lim←−F H

i(R) and lim−→F
Hi(R)→ Hi(Rperf) are

isomorphisms.
To prove the above assertion, we recall that the natural functor DAlgccn

k → D(k) preserves limits
and filtered colimits. Since Hi−1(R) is finite-dimensional, we have R1 lim←−F H

i−1(R) = 0; thus, the
Milnor sequence

0→ R1 lim←−
F

Hi−1(R)→ Hi(lim←−
F

R)→ lim←−
F

Hi(R)→ 0

shows that the natural map Hi(R[) = Hi(lim←−F R) → lim←−F H
i(R) is an isomorphism. On the

other hand, taking cohomology commutes with filtered colimits, so lim−→F
Hi(R)→ Hi(Rperf) is an

isomorphism as well, yielding the desired assertion. Now Corollary 4.1.2 implies directly that Hi(α)
is an isomorphism. This finishes the proof. �

Definition 4.1.5. Let k be a perfect field of characteristic p > 0. We let kσ[F ] denote the Frobenius
twisted polynomial ring over k in the variable F , i.e., we have the relation F · c = cp · F .

Definition 4.1.6. We call a left kσ[F ]-module M torsion if every m ∈ M is contained in a
kσ[F ]-submodule Vm such that Vm is finite-dimensional as a k-vector space.

Remark 4.1.7. Note that if M is a torsion kσ[F ]-module, then every element m ∈M is indeed
killed by an element of kσ[F ]. Thus, Definition 4.1.6 is consistent with the usual definition of torsion
modules. Every finitely generated kσ[F ]-submodule of a torsion module is a finite-dimensional
k-vector space on which F acts as a semilinear operator.

Lemma 4.1.8. Let k be an algebraically closed field of characteristic p > 0. Let M be a torsion
kσ[F ]-module. Then the natural map MF=id⊗Fp k → lim−→F

M is an isomorphism of kσ[F ]-modules,
where the left-hand side is equipped with the kσ[F ]-module structure coming from the Frobenius map
on k.

Proof. We note that any finitely generated kσ[F ]-submodule of M is finite-dimensional as a k-vector
space. Since M is a filtered colimit of its finitely generated submodules and taking F -invariants
commutes with filtered colimits, we are done by Corollary 4.1.3. �

For any object R ∈ DAlgccn
k , the Frobenius endomorphism F of R gives Hi(R) for each i ≥ 0

naturally the structure of a kσ[F ]-module. Further, since k is perfect, Rperf = lim−→F
R can naturally

be viewed as an object of DAlgccn
k .

Proposition 4.1.9. Let k be an algebraically closed field of characteristic p > 0. Let R ∈ DAlgccn
k be

such that Hi(R) is a torsion kσ[F ]-module for each i ≥ 0. Then the natural map RF=id⊗Fp
k → Rperf

in DAlgccn
k is an isomorphism.

Proof. It is enough to prove that the maps Hi(RF=id)⊗Fp k → Hi(Rperf) ' lim−→F
Hi(R) induced

by the natural map RF=id⊗Fp k → Rperf in DAlgccn
k are isomorphisms for i ≥ 0. We note that since

Hi(R) is torsion and filtered colimits are exact, the maps F − id : Hi(R)→ Hi(R) are surjective
[SP22, Tag 0A3L]. It follows that for all i ≥ 0, we have Hi(RF=id ⊗Fp

k) ' Hi(R)F=id ⊗Fp
k.

Therefore, since Hi(R) is torsion, we are done by Lemma 4.1.8. �

https://stacks.math.columbia.edu/tag/0A3L
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4.2. Foundations on profinite group schemes. In this section, we discuss the theory of profi-
nite group schemes. In Proposition 4.2.31, we establish a necessary and sufficient criterion for
profiniteness of a unipotent group scheme G in terms of the kσ[F ]-module Homk(G,Ga). In
Definition 4.2.36, we introduce the notion of F -representations, which, roughly speaking, are repre-
sentations of a group scheme G (over a field of positive characteristic) on vector spaces equipped
with a Frobenius semilinear operator that are required to satisfy the appropriate compatibility
conditions. We give some examples to show that the notion of F -representations is a very naturally
occurring notion in positive characteristic algebraic geometry since the vector spaces arising as
cohomology groups are often equipped with a Frobenius semilinear operator (see Example 4.2.43).
In Proposition 4.2.45, we prove a certain “permanence of finiteness” property of F -representations
of profinite group schemes. These notions and results are used in Proposition 4.3.1, where we prove
the profiniteness of unipotent homotopy group schemes in positive characteristic.

Throughout this subsection, we work over a field k of characteristic p > 0. All group schemes
are assumed to be affine (but not commutative) unless otherwise mentioned.
Definition 4.2.1. A group scheme G is called profinite if G is the inverse limit of some inverse
system of finite group schemes.
Remark 4.2.2. Let H be a finite group scheme and let {Gi}i∈I be an inverse system of finite
group schemes. Since H is affine and finitely presented, Hom(lim←−i∈I Gi, H) ' lim−→i∈I Hom(Gi, H).
Therefore, the category of pro-objects of the category of finite group schemes embeds fully faithfully
into the category of all affine group schemes. However, this property is quite special to affine
algebraic geometry; for example, the category of profinite sets (i.e., the category of pro-objects of
finite sets) does not embed fully faithfully into the category of all sets. This dichotomy occurs
because while finite group schemes are cocompact objects in the category of affine group schemes,
finite sets are not cocompact objects in the category of sets.
Definition 4.2.3. An affine group scheme G over k is called pro-étale if G is pro-étale as a scheme
over Spec k.
Remark 4.2.4. Alternatively, one could also define a pro-étale group scheme over a field to be
the inverse limit of an inverse system of finite étale group schemes. By [SP22, Tag 092Q], this gives
a notion equivalent to the definition above. In particular, it follows that every pro-étale group
scheme over a field is profinite.
Remark 4.2.5 (Profinite group cohomology as cohomology of group schemes). Let T be a finite
set. Let S(T ) := Spec(

∐
T k). This construction extends to give a fully faithful, product preserving

functor S from the category of profinite sets to the category of affine schemes over k. More precisely,
a profinite set T is mapped to S(T ) := SpecC(T, k), where C(T, k) is the ring of locally constant
functions from T to the field k. It follows that if G is a profinite group, then S(G) is an affine
pro-étale group scheme. Further, letting Ci(G, k) denote the ring of locally constant functions from
Gi to k, we have an isomorphism Ci(G, k) ' O(S(G))⊗i, where O(S(G)) denotes global sections
on the group scheme S(G). Therefore, one notes that the complex computing RΓ(B(S(G)),O)
obtained via faithfully flat descent along ∗ → S(G) is identical to the complex computing continuous
group cohomology. Thus one obtains a natural isomorphism Hi

cont(G, k) ' Hi(B(S(G)),O).
Example 4.2.6 (Free pro-p-group scheme). If G is the free pro-p-finite group on g generators,
then S(G) will be called the free pro-p group scheme over k on g generators. One can similarly
define the free commutative pro-p-group scheme on g generators as well, which is simply given by
the group scheme Z⊕gp .

Construction 4.2.7 (Maximal profinite quotient). For every group scheme G, the category CG of
arrows of group schemes G→ H with the property that H is a finite group scheme and the map is
a surjection is cofiltered. Since the trivial group scheme is a finite group scheme, CG is nonempty.

https://stacks.math.columbia.edu/tag/092Q
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In order to show that CG is cofiltered, let us first start with two surjective maps of group schemes
f1 : G → H1 and f2 : G → H2 whose targets are finite group schemes. In the category of group
schemes, we can form kernels as well as quotients by closed normal subgroup schemes. We note that
K := Ker(f1) ∩Ker(f2) is a closed normal subgroup scheme of G. We have a surjection G→ G/K
with factors the maps f1 and f2. We claim that G/K is a finite group scheme. To see this, we note
that Ker(f1)/K is a closed subgroup scheme of H2 and is therefore a finite group scheme. On the
other hand, we have an extension of group schemes

0→ Ker(f1)/K → G/K → H1 → 0.
This shows that G/K is a finite group scheme since it is an extension of finite group schemes.
Lastly, we need to check that if G→ H1 and G→ H2 are two objects of CG, and u, v : H2 → H1 are
two maps, then there is an object G→ H3 and maps w : H3 → H2 such that uw = vw. However,
one observes that in CG, there is at most one arrow between any two objects; thus this condition is
automatically satisfied. This shows that CG is cofiltered.

There is a natural functor from CG to the category of affine group schemes that sends (G→ H)
to H. The limit over this diagram indexed by CG in the category of affine group schemes will be
called the maximal profinite quotient of G and denoted by Gpft. We have a natural surjection
G→ Gpft.

Proposition 4.2.8. Let G be an affine commutative group scheme. Then any map from G to a
profinite group scheme factors uniquely through G→ Gpft.

Proof. To prove the assertion, it is enough to show that for a finite group scheme H, any map
G→ H factors as G→ Gpft → H for a uniquely determined map Gpft → H. Since the image of
the map G→ H is a finite group scheme that G surjects onto, by construction, there is a natural
map Gpft → H such that there is a factorization G → Gpft → H. The uniqueness of the map
Gpft → H follows immediately from the surjectivity of G→ Gpft. �

Remark 4.2.9. If G is a pro-étale group scheme, then it follows that the absolute Frobenius on G
is a bijection. If G is profinite, one can show that the converse is also true. Indeed, let G ' lim←−Gi,where each Gi is a finite group scheme and let us assume that the absolute Frobenius is a bijection
on G. One can further assume that all the transition maps Gi → Gj are surjective. This implies
that the absolute Frobenius must induce an injection on the global sections of the Gi; consequently,
the Gi are reduced and thus must be étale. This shows that G is pro-étale.

Construction 4.2.10 (Maximal pro-étale quotient). For every group scheme G, we can define the
category EG of arrows of group schemes G→ H with the property that H is an (affine) étale group
scheme. Since the category of affine commutative étale group schemes forms an abelian subcategory
of the category of affine commutative group schemes, one can argue as in Construction 4.2.7 to
check that EG is cofiltered. There is a natural functor from EG to the category of affine commutative
group schemes that sends (G → H) to H. The limit over this diagram indexed by EG in the
category of affine group schemes will be called the maximal pro-étale quotient of G and denoted by
Gproét. We have a natural surjection G→ Gproét.

Proposition 4.2.11. Let G be an affine commutative group scheme. Then any map from G to an
affine étale group scheme factors uniquely through G→ Gproét.

Proof. Follows in a way similar to the proof of Proposition 4.2.8. �

Construction 4.2.12 (Perfection of group schemes). Let k be a field of chracteristic p fixed as
before. Let G be an affine group scheme over k. Then G is equipped with the absolute Frobenius
map F : G→ G (which is not k-linear). Let us define

Gperf
kperf

:= lim←−
F

G.
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We note that Gperf
kperf

is naturally a group scheme over Spec kperf. When k is perfect, Gperf
kperf

can be
naturally viewed as an affine group scheme over Spec k, which we will simply denote by Gperf and
call the perfection of the group scheme G.

Alternatively, one can define ϕ∗G to be a group scheme over k where the structure map to Spec k
is given by composing G→ Spec k with the absolute Frobenius ϕ : Spec k → Spec k. Then ϕ∗G is
naturally equipped with the structure of a group scheme. Further, one has a k-linear Frobenius
map ϕ∗G → G, which is a morphism of group schemes. Iterating this Frobenius map gives an
inverse system of group schemes over k, whose inverse limit is naturally isomorphic to Gperf. There
is a natural map Gperf → G of affine group schemes over k.
Remark 4.2.13. Note that the perfection of a group scheme need not be profinite in general. For
example, Gperf

a is not profinite.
Remark 4.2.14. If G is profinite, it follows that Gperf is profinite as well. By Remark 4.2.9, Gperf

is actually a pro-étale group scheme in this case.
Remark 4.2.15. Note that for any algebra S of characteristic p > 0, we can consider the tilt of S
denoted as S[ := lim←−F S, where F : S → S is the Frobenius map. If S is a k-algebra over a perfect
field k, then S[ is naturally a k-algebra as well. Further, lim−→F

S is also naturally a k-algebra and
there is a k-algebra map S[ → lim−→F

S. Let us now additionally assume that S is a finite-dimensional
k-algebra. Then the map S[ = lim←−F S → lim−→F

S is an isomorphism by Corollary 4.1.2. Note that
such an assertion is clearly false without the assumption that S is finite-dimensional over k as can
be seen by taking S = k[x].
Remark 4.2.16. For an affine group scheme G over a perfect field k, we have constructed a natural
map of affine group schemes Gperf → G. Let O(G) denote the global sections of G. When G is
finite, by Remark 4.2.15, Spec O(G)[ has a group scheme structure over k, which we will denote by
G[. There is a natural map G→ G[ of group schemes. Further, by Remark 4.2.15, the composition
Gperf → G→ G[ is an isomorphism. This implies that there is a split surjection G→ Gperf.
Proposition 4.2.17. Let G be a profinite group scheme over a perfect field k. Then Gperf is
isomorphic to the maximal pro-étale quotient of G.
Proof. Let us first suppose that G is a finite group scheme and show the claim. If H is any étale
group scheme over k, then O(H) must be a perfect ring. Thus, any map G→ H of group schemes
must factor uniquely as G→ G[ → H. By Remark 4.2.16, this implies that the map G→ Gperf

constructed before identifies with the maximal (pro-)étale quotient of G.
Now we return to the general case where we may assume that G = lim←−i∈I Gi for an inverse

system {Gi}i∈I of finite group schemes. Let us suppose that H is a finite étale group scheme. Then,
by Remark 4.2.2, we have Hom(lim←−i∈I Gi, H) ' lim−→i∈I Hom(Gi, H) ' lim−→i∈I Hom(Gperf

i , H) '
Hom(lim←−i∈I G

perf
i , H). This constructs a natural bijection of sets Hom(G,H) ' Hom(Gperf, H).

Since Gperf is pro-étale (Remark 4.2.14), we obtain a natural map G→ Gperf which identifies as
the maximal pro-étale quotient of G. �

Corollary 4.2.18. If G is a profinite group scheme over a perfect field k, then the map G→ Gproét

is a split surjection.
Proof. Follows from Proposition 4.2.17 and its proof. Indeed, the map to the maximal pro-étale
quotient identifies with G→ Gperf and a section is provided by the natural map Gperf → G. �

Note that Remark 4.2.2 shows that a group scheme being profinite is a property and not any
extra data. For the rest of this section, we investigate conditions on a group scheme that characterise
profiniteness.
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Proposition 4.2.19. A group scheme G is profinite (resp. pro-étale) if and only if every finite
type quotient of it is a finite (resp. finite étale) group scheme.

Proof. If all the finite type quotients of G are finite (resp. finite étale), then it follows that G is
profinite (resp. pro-étale). The converse is a consequence of the following algebraic observation: a
finitely generated subalgebra of an ind-finite (resp. ind-étale) algebra is finite (resp. finite étale). �

Corollary 4.2.20. If G is a group scheme over a field k, then G is profinite (resp. pro-étale) if
and only if the base change of G to a field extension of k is profinite (resp. pro-étale).

Proof. Follows from Proposition 4.2.19. �

While working over perfect fields of characteristic p > 0, it is desirable to obtain more functorial
characterizations of profiniteness involving the Frobenius operator. To this end, we first prove a
permanence property under the perfection operation. This also gives a converse to Remark 4.2.14.

Proposition 4.2.21. A group scheme G over a perfect field k is profinite if and only if Gperf is
profinite.

Proof. If G is profinite, then Gperf is clearly also profinite. Conversely, for the sake of contradiction,
let us assume that Gperf is profinite while G is not. In this case, there must exist a surjection
G → G′ where G′ is of finite type yet not finite. Then Gperf → G′perf is also a surjection. Since
Gperf is profinite, by an application of Proposition 4.2.19, G′perf is also profinite. This implies that
G′perf is zero-dimensional as an affine scheme. Since G′perf → G′ induces a homeomorphism on the
underlying (Zariski) topological spaces, we get that G′ is also zero-dimensional. Since G′ is of finite
type over a field, this implies that G′ must be finite, which gives the contradiction and proves the
converse. �

Combining the above proposition with Remark 4.2.9, we obtain the following characterization of
profiniteness that Bhargav Bhatt pointed out to us.

Corollary 4.2.22. A group scheme G over a perfect field k is profinite if and only if Gperf is
pro-étale.

Proposition 4.2.23. Any closed subgroup, quotient or extension of profinite (resp. pro-étale)
group schemes over a field k is profinite (resp. pro-étale).

Proof. We can assume by Corollary 4.2.20 that the base field k is algebraically closed. If k
has characteristic p > 0, we can apply the perfection functor from Construction 4.2.12 and
Corollary 4.2.22 to reduce to only checking the assertion in the case of pro-étale group schemes.
If k is of characteristic zero, then the profinite group schemes are the same as pro-étale group
schemes. The assertion in the case of pro-étale group schemes over an algebraically closed field can
be checked directly and all of them follow from [SP22, Tag 0CKQ]. �

Remark 4.2.24. Note that a group scheme G being pro-étale is a condition on the scheme
underlying G: it means that the diagonal map G×kG→ G is faithfully flat. Thus, Corollary 4.2.22
gives a characterization of profinite group schemes that can be expressed without talking about
inverse systems as in Definition 4.2.1 or all finite type quotients as in Proposition 4.2.19.

In practice, Corollary 4.2.22 can be difficult to check. When the group scheme G is unipotent,
we give another characterization in Proposition 4.2.31, which is purely in terms of the Frobenius
operators and linear algebra. This characterization will be used in our paper. First, let us note
some lemmas.

Lemma 4.2.25. Let G be a finite type unipotent group scheme over an algebraically closed field k
such that dimG > 0. Then there is a surjection G→ Ga.

https://stacks.math.columbia.edu/tag/0CKQ
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Proof. If k has characteristic 0, then the statement follows by considering a normal series of G
whose successive quotients are all Ga. From now on, we assume that k has characteristic p > 0. By
considering the image of a large enough power of the Frobenius map, we can furthermore assume
that G is smooth.

Let us pick a maximal normal series G = G0 ⊃ G1 ⊃ . . . ⊃ Gi ⊃ Gi+1 ⊃ . . . = {∗}, and an
integer i minimal with respect to the property that Gi/Gi+1 is Ga. By construction, Gn/Gn+1 is a
finite algebraic subgroup of Ga for n < i. Therefore, the quotient G/Gi+1 is 1-dimensional and Ga

is a closed normal subgroup of G/Gi+1. Thus, we can reduce to the case where G is 1-dimensional
and Ga is a closed normal subgroup of G. Since the quotient H := G/Ga is a unipotent group
scheme and Aut Ga = Gm, we see that Ga is central in G. We note that H is a finite discrete
group scheme since we are over an algebraically closed field. Further, since Ga is central in G, the
commutator map G×G→ G factors through H ×H → G. By a result of Baer [Bae52] (see [Bor91,
§ 2, Appx.]), there is a large enough r such that image of the map (H ×H)×r → G×r → G is the
commutator subgroup [G,G] of G. Here, the last map is the r-fold multiplication map of G. Since
H is a finite group scheme, it follows that [G,G] is zero-dimensional. Thus, the abelianization
Gab of G is also 1-dimensional. Therefore, we may assume that G is commutative. Now, we can
also use the Verschiebung operator V defined on G. Since G is unipotent, V n = 0 for a suitably
large n. Thus, since G is 1-dimensional, one obtains by devissage that G/V G is also 1-dimensional.
Therefore, we can now reduce to the case where G is commutative, 1-dimensional, contains Ga

and is killed by V . Since G is 1-dimensional, commutative and killed by V , by the classification of
commutative unipotent group schemes that are annihilated by the Verschiebung operator (see, e.g.,
[DG70, IV, § 3 Thm. 6.6]), Hom(G,Ga) is infinite-dimensional as a k-vector space. Since G/Ga is
a finite group scheme, it follows that there must exist a map G→ Ga such that the composition
Ga → G → Ga is nonzero. However, any nonzero endomorphism of Ga is a surjection, which
finishes the proof. �

Lemma 4.2.26. Let G be a finite type unipotent group scheme over a field k of characteristic
p > 0. Then Hom(G,Ga) is a finite-dimensional k-vector space if and only if G is a finite group
scheme.

Proof. Without loss of generality, we may assume that the base field k is algebraically closed. If G
is finite, then Hom(G,Ga) is clearly finite-dimensional. The converse follows from Lemma 4.2.25
and the observation that Hom(Ga,Ga) is infinite-dimensional (spanned by powers of the Frobenius
map). �

Lemma 4.2.27. If H is a finite type unipotent group scheme over k such that Hab is finite, then
H must be finite.

Proof. Once again, we may assume that the base field k is algebraically closed. For the sake of
contradiction, let us assume that dimH > 0, yet Hab is finite-dimensional. By Lemma 4.2.25, Hab

must surject onto Ga, which gives a contradiction. �

Example 4.2.28. We point out that the unipotent assumption in Lemma 4.2.27 is important. The
lemma is false for all semisimple algebraic groups of positive dimension since their abelianization is
trivial. For a concrete example, one may take SLn.

Remark 4.2.29. We recall that a unipotent group scheme is called split if it admits a subnormal
series whose graded pieces are isomorphic to Ga. Note that if G is a commutative unipotent group
scheme of dimension n, then Lemma 4.2.25 inductively implies that there is a surjection from G to
an n-dimensional, split unipotent group scheme.

Lemma 4.2.30. Let G be a unipotent group scheme over k of characteristic p > 0. Then G is
profinite if and only if the abelianization Gab of G is profinite.
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Proof. If G is profinite, then Gab is also profinite, since Gab is a quotient of G. For the converse,
we use Proposition 4.2.19. Let H be a finite type quotient of G. Then Hab is a finite type quotient
of Gab. Since Gab is profinite, it follows that Hab is finite. By Lemma 4.2.27, this means that H is
finite and we are done. �

As a final preparation, we recall some notations. Let kσ[F ] denote the Frobenius twisted
polynomial ring over k in the variable F ; i.e., we have the relation F · c = cp · F . There is a
natural isomorphism Homk(Ga,Ga) ' kσ[F ]. It induces a natural kσ[F ]-module structure on
Homk(G,Ga). Moreover, the functor that sends a group scheme G to Homk(G,Ga) gives an
anti-equivalence between the category of commutative unipotent group schemes of finite type that
are annihilated by the Verschiebung and the category of finitely generated left kσ[F ]-modules
[DG70, IV, § 3, Cor. 6.7].

We recall (see Definition 4.1.6) that a left kσ[F ]-module M is called torsion if every m ∈M is
contained in a kσ[F ]-submodule Vm such that Vm is finite-dimensional as a k-vector space.

Proposition 4.2.31. Let G be a unipotent group scheme (not assumed to be commutative or of
finite type) over a field k of characteristic p > 0. Then G is profinite if and only if Hom(G,Ga) is
a torsion kσ[F ]-module.

Proof. Note that if G is profinite, then Hom(G,Ga) is indeed torsion as a kσ[F ]-module.
For the converse, by Lemma 4.2.30, we can assume that G is commutative. Let H be a finite type

quotient of G. We will show that H is finite, which will imply the proposition by Proposition 4.2.19.
Since H is commutative, it is equipped with the Verschiebung operator V . Note that Ga is killed
by V . Therefore, Hom(H,Ga) ' Hom(H/V H,Ga). This implies that Hom(H,Ga) is a finitely
generated kσ[F ]-module. Since Hom(H,Ga) is also a submodule of the torsion kσ[F ]-module
Hom(G,Ga), it follows that Hom(H,Ga) is a finite-dimensional k-vector space. Now Lemma 4.2.26
implies that H must be finite, so we are done. �

For the remainder of this section, we record some basic properties of kσ[F ]-modules that will
be useful to us later on. Note that a kσ[F ]-module is simply a k-vector space V equipped with a
Frobenius semilinear endomorphism F . We will consider V -representations of a group scheme G
that respects the operator F .

Lemma 4.2.32. Let k be a perfect field of characteristic p > 0.
(1) If M is a finitely generated, torsion free kσ[F ]-module, then M is free.
(2) If M is a finitely generated kσ[F ]-module, then M is a direct sum of a torsion module and

a free module.

Proof. The proof follows in a way similar to the case of k[X]-modules; cf. [Jac43, § 3.8]. �

Lemma 4.2.33. Let k be a perfect field and V be a k-vector space equipped with a Frobenius
semilinear operator F . Then V is torsion as a kσ[F ]-module if and only if lim−→F

V is torsion as a
kσ[F ]-module.

Proof. If V is torsion as a kσ[F ]-module, then the same is true for lim−→F
V . For the converse, we

show that if V has an element that is not torsion, then lim−→F
V is not a torsion kσ[F ]-module.

By Lemma 4.2.32, we can assume that V = kσ[F ] with its natural structure as a kσ[F ]-module.
However, then lim−→F

kσ[F ] ' kσ[F, F−1] is not a torsion module, finishing the proof. �

Remark 4.2.34 (Tensor product of Frobenius semilinear operators). If V1 and V2 are two k-vector
spaces equipped with Frobenius semilinear operators F1 and F2, then V1⊗k V2 is naturally equipped
with a Frobenius semilinear operator that sends v1 ⊗ v2 to F1(v1)⊗ F2(v2). We will denote this
operator on V1⊗kV2 by F1⊗F2. When k is perfect, we have lim−→F1⊗F2

V1⊗kV2 ' lim−→F1
V1⊗k lim−→F2

V2.
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Remark 4.2.35. If V1 and V2 are torsion kσ[F ]-modules, then V1 ⊗k V2 is also a torsion kσ[F ]-
module, where the kσ[F ]-module structure on the latter is given by the description in Remark 4.2.34.
Definition 4.2.36 (F -representation). Let k be a perfect field and V be a k-vector space equipped
with a Frobenius semilinear endomorphism F . Let G be a group scheme over k and let r : G→ GLV
be a representation. Then r determines a map ρ : V → O(G) ⊗k V , where O(G) is the Hopf
algebra of global sections of G. We say that r defines an F -representation if the following diagram
commutes:

V O(G)⊗k V

V O(G)⊗k V

F

ρ

Frob⊗F
ρ

(4.2.1)

Here, Frob denotes the Frobenius map on O(G). In such a situation, we will use (r,G, V, F ) to
denote the associated F -representation.
Remark 4.2.37. Let us explain the notion of an F -representation from a more geometric perspec-
tive. First, we note that if σ denotes the Frobenius on k, then the data of a Frobenius semilinear
operator is naturally equivalent to the data of a map σ∗V → V . The data of a representation
V of the group scheme G over k can be viewed as the data of a quasi-coherent sheaf V on BG
equipped with an isomorphism u∗V ' V , where u : Spec k → BG is the natural map. Further,
if the underlying k-vector space V is equipped with a Frobenius semilinear operator F , then the
representation V of G from above is an F -representation if there is a map T : Frob∗V → V such
that when T is pulled back along the natural map u : Spec k → BG, it naturally recovers the
operator F on V under the isomorphism u∗V ' V . Note that if there exists a map T as above, it is
uniquely determined; therefore, the map T really captures the property that the map σ∗V → V is
equivariant with respect to the group scheme G and the Frobenius on G, which we have concretely
spelt out in (4.2.1).
Remark 4.2.38. Let V denote the quasi-coherent sheaf on BG associated with an F -representation
V of G as described in Remark 4.2.37. Then the cohomology groups Hi(BG,V ) for i ≥ 0 are
naturally equipped with the structure of kσ[F ]-modules.
Remark 4.2.39. If (r1, G, V1, F1) is an F1-representation and (r2, G, V2, F2) is an F2-representation,
then the direct sum V1⊕V2 equipped with the semilinear operator F1⊕F2 is an F1⊕F2-representation
of G. Also, V1 ⊗k V2 equipped with the semilinear operator F1 ⊗ F2 is naturally an F1 ⊗ F2-
representation of G.
Construction 4.2.40 (Perfection of F -representations). Let G be a group scheme over a perfect
field k. Let V be a k-vector space equipped with a Frobenius semilinear operator F . Further,
let us assume that V is equipped with the structure of an F -representation of G, denoted as
r : G → GLV . In this case, we can consider the perfection Gperf of G (see Construction 4.2.12),
whose underlying ring of functions is given by taking the colimit over the Frobenius on O(G).
Let us denote Vperf := lim−→F

V , equipped with the structure of a k-vector space (coming via the
isomorphism k ' kperf, since k is perfect). Further, Vperf is canonically equipped with a Frobenius
semilinear operator that we denote as Fperf. By using the commutative diagram in (4.2.1), one sees
that Vperf is naturally an Fperf-representation of Gperf, which we denote by rperf : Gperf → GLVperf ;
we will say that (rperf, G

perf, Vperf, Fperf) is the perfection of (r,G, V, F ).
Before we proceed further, we record some examples showing that F -representations are ubiqui-

tous in positive characteristic representation theory and algebraic geometry.
Example 4.2.41 (Trivial representation). The trivial 1-dimensional representation V of a group
scheme G over a perfect field k is naturally equipped with the structure of an F -representation,
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where the Frobenius semilinear operator on the vector space V = k is given by the absolute
Frobenius σ : k → k.

Example 4.2.42 (Regular representation). If G is a group scheme over a perfect field k, then
the ring of regular functions O(G) has a natural semilinear operator F given by the absolute
Frobenius on O(G). This equips the regular representation O(G) of G with the structure of an
F -representation.

Example 4.2.43 (Group action on geometric objects). Let G be an affine group scheme over a
perfect field k and let X be any qcqs scheme over k equipped with an action G×X → X of G. For
a fixed i ≥ 0, the cohomology group Hi(X,O) is naturally equipped with a Frobenius semilinear
operator which we denote by F . Further, Hi(X,O) is naturally equipped with the structure of an
F -representation of G. This example remains valid even when X is replaced by any higher stack Y
that satisfies RΓ(G× Y,O) ' RΓ(Y,O)⊗k O(G). Examples of these types will play an important
role in this paper.

Proposition 4.2.44. Let G be a profinite group scheme over a perfect field k. Let V be the quasi-
coherent sheaf on BG attached to an F -representation (ρ,G, V, F ). If V is a torsion kσ[F ]-module,
then Hi(BG,V ) is a torsion kσ[F ]-module for all i ≥ 0.

Proof. Since G is profinite, it follows that O(G) is a torsion kσ[F ]-module where the action of
F is induced by the absolute Frobenius on O(G). Since V is also a torsion kσ[F ]-module, using
Remark 4.2.35 and faithfully flat descent along Spec k → BG, we see that Hi(BG,V ) is computed
as cohomology of a complex of torsion kσ[F ]-modules. This gives the claim. �

Proposition 4.2.45. Let G be a profinite unipotent group scheme over a perfect field k. Let V be
a kσ[F ]-module with the structure of an F -representation of G. If V G is a torsion kσ[F ]-module,
then V must be a torsion kσ[F ]-module.

Proof. By Lemma 4.2.33, in order to prove the statement we can pass to the perfection of the
F -representation in the sense of Construction 4.2.40. Therefore, we can without loss of generality
assume that G is a perfect group scheme.

For the sake of contradiction, assume that V is not kσ[F ]-torsion. Let Vtor ⊂ V be the kσ[F ]-
submodule of torsion elements of V . By construction, V/Vtor is a nonzero torsion free kσ[F ]-module.
We claim that Vtor is a F -subrepresentation of G.

Let ρ : V → O(G)⊗k V be the natural map associated with the F -representation. Showing that
Vtor is an F -subrepresentation amounts to showing that ρ(Vtor) ⊆ O(G)⊗k Vtor. To that end, let
v ∈ Vtor and ρ(v) =

∑
i∈I gi ⊗ vi, where gi ∈ O(G), vi ∈ V and I is a finite set. Without loss of

generality, one can assume that the gi’s are linearly independent. Since V is an F -representation,
the map ρ is a map of kσ[F ]-modules, where the kσ[F ]-module structure on the target is given by
tensor product (see Remark 4.2.34 and Definition 4.2.36, (4.2.1)). In particular, it preserves torsion
elements. That is, the set

{∑
i∈I Frobn(gi)⊗ Fn(vi)

∣∣ n ∈ N
}

spans a finite-dimensional subspace
of O(G)⊗kV , which we will denote by P . We claim that the span of the set {Fn(vi) | i ∈ I, n ∈ N},
which we denote as T , must be a finite-dimensional subspace of V . This would imply that vi ∈ Vtor,
so that Vtor is indeed an F -subrepresentation of G.

Indeed, to see the above claim, let us use W to denote the span of {Frobn(gi) | n ∈ N, i ∈ I}.
Then there is a natural injection of vector spaces P →W⊗kT . Let us assume on the contrary that T
is infinite-dimensional. Then there exists an l ∈ I such that the set {Fn(vl) | n ∈ N} is linearly inde-
pendent. Let Tl,n be the span of Fn(vl) for a fixed n. Therefore, there exists a direct sum decomposi-
tion T ' (

⊕
n∈N Tl,n)⊕T ′. This induces a projection map P →

⊕
n∈N(W⊗kTl,n). Since P is finite-

dimensional, there is a fixed n0 ∈ N such that the induced projection maps πl,n : P →W⊗kTl,n 'W
are zero maps for all n ≥ n0. Let ul,n : T → Tl,n ' k be the projection map induced by the direct sum
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decomposition of T above. Then πl,n
(∑

i∈I Frobn(gi)⊗ Fn(vi)
)

=
∑
i∈I ul,n(Fn(vi)) ·Frobn(gi) ∈

W . However, if n ≥ n0, we must have
∑
i∈I ul,n(Fn(vi)) · Frobn(gi) = 0. Since the gi’s are linearly

independent and the group scheme G is perfect, this implies that ul,n(Fn(vi)) = 0 for all i ∈ I.
However, by construction, ul,n(Fn(vl)) = 1, which gives the desired contradiction and proves the
claim.

As discussed in Remark 4.2.37, the F -representations V and Vtor of G correspond to quasi-
coherent sheaves V and Vtor on BG. We have a short exact sequence of quasi-coherent sheaves

0→ Vtor → V → V /Vtor → 0.

Since pullback along the natural cover u : Spec k → BG is exact, we have u∗(V /Vtor) ' V/Vtor.
On cohomology, this induces an exact sequence of k-vector spaces

0→ H0(BG,Vtor)→ H0(BG,V )→ H0(BG,V /Vtor)→ H1(BG,Vtor).

Further, each of the maps is a map of kσ[F ]-modules. By Proposition 4.2.44, H0(BG,Vtor) and
H1(BG,Vtor) are torsion kσ[F ]-modules. Note that since G is unipotent, H0(BG,V /Vtor) 6= 0.
Now, H0(BG,V /Vtor) is a nonzero kσ[F ]-submodule of V/Vtor and therefore must be torsion free
(Lemma 4.2.32). However, that implies that V G ' H0(BG,V ) cannot be torsion, which contradicts
our hypothesis. Thus, we are done. �

Example 4.2.46. Note that Proposition 4.2.45 fails if the group scheme G is not assumed to
be profinite. One can see this by taking G = Ga and V to be the regular representation of Ga

equipped with the structure of an F -representation. In this case, V G is 1-dimensional and yet V is
not torsion as a kσ[F ]-module.

4.3. Profiniteness of unipotent homotopy group schemes. In this section, we use our previ-
ous work to give a proof of the following result:

Proposition 4.3.1 (Profiniteness theorem). Let (X,x) be a proper, cohomologically connected
scheme over a field k of characteristic p > 0 equipped with a k-rational point x ∈ X(k). Then the
unipotent homotopy group schemes πU

i (X) are profinite for all i.

When i = 1, Proposition 4.3.1 recovers a result of Nori [Nor82, Prop. IV.3]. Nori deduced the
profiniteness of πU

1 (X) by using the isomorphism H1(X,O) ' Hom(πU
1 (X),Ga) and the fact that

H1(X,O) is finite-dimensional since X is proper. However, a similar isomorphism does not hold for
i > 1; this presents difficulties in proving the profiniteness of πU

i (X) for i > 1 in a similar manner.
We will overcome some of these difficulties via an elaborate spectral sequence argument coming
from the Postnikov tower and using the theory of quasi-coherent sheaves on affine stacks developed
in our paper.

Another key step in the proof of the profiniteness of πU
i (X) for i ≥ 0 is the realization that in

positive characteristic, for a unipotent group scheme G, while Hom(G,Ga) being a finite-dimensional
k-vector space is enough to deduce profiniteness of G (as proven and used by Nori), it is not a
necessary requirement. In Proposition 4.2.31, we deduced a necessary and sufficient criterion
for profiniteness in terms of torsion kσ[F ]-modules. This suggests one to aim for a more flexible
statement using torsion kσ[F ]-modules rather than finite-dimensional k-vector spaces. Further,
in order to approach Proposition 4.3.1 by using the Postnikov tower as described in the previous
paragraph, one would run into controlling certain representations of πU

1 (X). This is where the
notion of F -representations play a crucial role—the πU

1 (X)-representations one needs to control are
all naturally F -representations and can be controlled systematically by using Proposition 4.2.45.
However, we will also need a generalization of the notion of F -representations in the context of
“n-gerbes.” To that end, we make the following definitions.
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Definition 4.3.2 (Frobenius modules on n-gerbes). Let Y be a pointed, connected, n-truncated
stack over a perfect field k. Let FrobY denote the absolute Frobenius on Y . Let V be a quasi-
coherent sheaf on Y equipped with the data of a morphism T : Frob∗Y V → V . These data will be
called a Frobenius module on Y .

Remark 4.3.3. Note that as explained in Remark 4.2.37, a Frobenius module on Y as above may
be thought of as an “F -representation” of the group stack ΩY .

Definition 4.3.4. Let Y be a pointed, connected, n-truncated stack over a perfect field k and let
T : Frob∗Y V → V be a Frobenius module on Y . We will call this Frobenius module torsion if it is a
torsion kσ[F ]-module after pulling back along the morphism u : Spec k → Y .

Example 4.3.5. If Y is as above, then the structure sheaf O on Y , naturally viewed as a Frobenius
module, is an example of a torsion Frobenius module.

Our first lemma is a generalization of Proposition 4.2.44, which will be used in the proof of
Proposition 4.3.1.

Lemma 4.3.6. Let X be a pointed, connected n-truncated affine stack over a perfect field k such
that πi(X) is representable by a profinite group scheme for all i. Let V be a torsion Frobenius
module on Y . Then Hi(X,V ) is a torsion kσ[F ]-module for each i ≥ 0.

Proof. We argue by induction on n; the case n = 1 follows from Proposition 4.2.44. Let us assume
that n ≥ 2 and the result is proven for all (n− 1)-truncated stacks. The pullback diagram

K(πn(X), n) ∗

τ≤nX τ≤n−1X

q

p

gives an E2-spectral sequence Ei,j2 = Hi(τ≤n−1X,H j(K(πn(X), n), q∗V )) =⇒ Hi+j(τ≤nX,V )
that naturally lives in the abelian category of kσ[F ]-modules (by functoriality). Note that
H j(K(πn(X), n), q∗V )) is naturally a Frobenius module on τ≤n−1X whose pullback to the point
is the kσ[F ]-module Hj(K(πn(X), n), q∗V ). Further, q∗V is a torsion Frobenius module on
K(πn(X), n). Therefore, by induction and the spectral sequence, it would be enough to prove
that Hj(K(πn(X), n),V ′) is a torsion kσ[F ]-module for any torsion Frobenius module V ′ on
K(πn(X), n). However, that follows by applying faithfully flat descent along Spec k → K(πn(X), n)
and induction on n; cf. Lemma 3.4.8. �

Proposition 4.3.7. Let k be a field of characteristic p > 0. Let X be a pointed, cohomologically
connected higher stack over k such that Hi(X,O) is a torsion kσ[F ]-module for all i ≥ 0. Then
πU
i (X) is profinite for all i.

Proof. One can assume that X is a pointed connected affine stack. Further, by Corollary 4.2.20,
we may assume that the field k is algebraically closed. By Proposition 4.2.31, we need to prove
that Hom(πi(X),Ga) is a torsion kσ[F ]-module. Note that π0(X) = {∗}. When i = 1, we have
H1(X,O) ' Hom(π1(X),Ga). Therefore, πi(X) is indeed profinite for i = 1. We will use strong
induction to prove the assertion that for all u ≥ 1, Hom(πu(X),Ga) is a torsion kσ[F ]-module. To
this end, let us fix n ≥ 1 and assume that the former assertion has been proven for all u ≤ n. We
will check the assertion for u = n+ 1. We first observe that Hi(τ≤nX,O) is a torsion kσ[F ]-module
for all i. Indeed, since πu(X) is unipotent for all u ≥ 1, by Proposition 4.2.31, it follows that for
u ≤ n, the group scheme πu(X) ' πu(τ≤nX) is profinite. Therefore, by Lemma 4.3.6 we obtain
that Hi(τ≤nX,O) is a torsion kσ[F ]-module for all i.

We proceed to show that Hom(πn+1(X),Ga) is a torsion kσ[F ]-module. The diagram
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K(πn+1(X), n+ 1) ∗

τ≤n+1X τ≤nX

q

p

gives an E2-spectral sequence in the abelian category of kσ[F ]-modules (by functoriality of the
Leray spectral sequence)

Ei,j2 = Hi(τ≤nX,H j(K(πn+1(X), n+ 1),O)) =⇒ Hi+j(τ≤n+1X,O).
Here, H j(K(πn+1(X), n + 1),O) is naturally a Frobenius module on τ≤nX whose pullback to
the point is the kσ[F ]-module Hj(K(πn+1(X), n+ 1),O). By Proposition 2.2.19, it follows that
H j(K(πn+1(X), n+1),O) corresponds to an F -representation of the unipotent group scheme π1(X)
whose underlying kσ[F ]-module is Hj(K(πn+1(X), n+ 1),O); the latter F -representation can also
be described as arising from the natural action of π1(X) on K(πn+1(X), n+ 1) via Example 4.2.43.

It would be enough to prove that Hn+1(K(πn+1(X), n+ 1),O) is a torsion kσ[F ]-module, since
by Lemma 3.2.10, that would imply that Hom(πn+1(X),Ga) is a torsion kσ[F ]-module as well. We
assume on the contrary that Hn+1(K(πn+1(X), n+ 1),O) is not torsion. By Remark 2.2.20 and
Proposition 4.2.45 regarding F -representations, that implies that E0,n+1

2 is not torsion. Note that
by Lemma 3.2.10, H j(K(πn+1(X), n+ 1),O)) = 0 for 0 < j ≤ n, which implies that Ei,jr = 0 for
0 < j ≤ n. Also, Ei,jr = 0 for i < 0 or j < 0. This implies that E0,n+1

r = E0,n+1
2 for 2 ≤ r ≤ n+ 2.

On the (n+ 2)-nd page of the spectral sequence, we have a potentially nonzero differential
E0,n+1
n+2 → En+2,0

n+2 .

Note that En+2,0
2 = Hn+2(τ≤nX,O) is a torsion kσ[F ]-module, since Hi(τ≤nX,O) is a torsion

kσ[F ]-module for all i. Therefore, En+2,0
n+2 is torsion as well. This implies that if one assumes that

E0,n+1
2 = E0,n+1

n+2 is not a torsion kσ[F ]-module, then E0,n+1
n+3 would not be a torsion kσ[F ]-module

either. We note that E0,n+1
n+3 = E0,n+1

∞ and so the latter term would also not be a torsion kσ[F ]-
module. By Proposition 2.1.19, it follows that Hn+1(τ≤n+1X,O) ' Hn+1(X,O) and is therefore
torsion by assumption. Since E0,n+1

∞ is a subquotient of the torsion kσ[F ]-module Hn+1(τ≤n+1X,O),
we reach a contradiction which finishes the proof. �

Proof of Proposition 4.3.1. Follows from Proposition 4.3.7. �

4.4. Recovering the p-adic étale homotopy groups. In this section, we finally address the
question of recovering the p-adic étale homotopy groups defined by Artin–Mazur [AM69] from
the unipotent homotopy group schemes introduced in our paper by proving the unipotent-étale
comparison theorem (see Proposition 4.4.7). In order to do so, we give a different way to define
the p-adic étale homotopy groups in Definition 4.4.2 and compare them with the definition due to
Artin–Mazur involving pro-objects.

To this end, let us fix a proper, cohomologically connected, pointed scheme (X,x) over an
algebraically closed field k of characteristic p > 0. Let ϕ denote the Frobenius automorphism of k.
In this setup, we can consider the étale cohomology RΓét(X,Fp)

x∗−→ RΓét(Spec k,Fp) ' Fp which
can be viewed as an object of the ∞-category (DAlgccn

Fp
)/Fp

. We will omit the base point from the
notation if this does not cause confusion.

Proposition 4.4.1. In the above setup, the group schemes πU
i (Spec RΓét(X,Fp)⊗Fp k) are pro-

étale.

Proof. By Proposition 4.3.7, the group schemes πU
i (Spec RΓét(X,Fp) ⊗Fp k) are profinite. By

Corollary 4.2.22, it is therefore enough to prove that the absolute Frobenius on them is an
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isomorphism. This absolute Frobenius is induced from the morphism RΓét(X,Fp) ⊗Fp
ϕ∗k →

RΓét(X,Fp) ⊗Fp
k which is further induced by the absolute Frobenius on X. However, by

[SP22, Tag 03SN]), the Frobenius morphism RΓét(X,Fp) ⊗Fp
ϕ∗k → RΓét(X,Fp) ⊗Fp

k is an
isomorphism. �

In light of Proposition 4.4.1 and the natural isomorphism RΓét(X,Fp)⊗Fp
k
∼−→ RΓét(X, k), we

can make the following definition:

Definition 4.4.2 (p-adic étale homotopy group schemes). Let (X,x) be a proper, cohomologically
connected, pointed scheme over k. We define the i-th p-adic étale homotopy group scheme of X to
be the group scheme

πét
i (X)p := πi(Spec RΓét(X, k)).

The theory of étale homotopy groups was originally introduced by Artin–Mazur in [AM69]. Since
Definition 4.4.2 defines p-adic étale homotopy group (schemes) in a different way, we now discuss
the compatibility with the classical notion.

Recall that for a locally noetherian scheme X over k, Artin–Mazur construct a pro-object in
the homotopy category of S. In fact, using Friedlander’s construction [Fri82], this pro-object can
be refined to a pro-object in the ∞-category S. We denote this pro-object by Ét(X) ∈ Pro(S)
and call it the étale homotopy type of X. The singular cochain functor (see Remark 3.0.4)
C∗( · ,Fp) : S → (DAlgccn

Fp
)op naturally extends to a functor C∗( · ,Fp) : Pro(S) → (DAlgccn

Fp
)op;

concretely, for a pro-object (Yi)i∈I , it is given by C∗
(
(Yi),Fp) = lim−→i∈I C

∗(Yi,Fp). For the étale
homotopy type, we have a natural isomorphism C∗(Ét(X),Fp) ' RΓét(X,Fp).

Next, we consider the pro-p-finite completion Ét(X)∧p of Ét(X), which can be defined as follows.
Let Sp-fc denote the category of p-finite spaces (see, e.g., [Lur11b, Def. 2.4.1]). The natural
inclusion functor Sp-fc ↪→ S induces a functor Pro(Sp-fc) → Pro(S) which admits a left adjoint
( · )∧p : Pro(S) → Pro(Sp-fc), called pro-p-finite completion. We call the pro-p-finite completion
Ét(X)∧p of Ét(X) the p-adic étale homotopy type. The pro-p-finite group πét,AM

i (X)p := πi(Ét(X)∧p )
will be called the i-th Artin–Mazur p-adic étale homotopy group of X.

We recall that the category of profinite groups embeds fully faithfully into the category of affine
group schemes over k (cf. Remark 4.2.5). Therefore, one may attach an affine group scheme to the
profinite group πét,AM

i (X)p. Finally, we are ready to compare πét
i (X)p and πét,AM

i (X)p.

Proposition 4.4.3. Let X be a proper, cohomologically connected, pointed scheme over an al-
gebraically closed field k of characteristic p > 0. Then the p-adic étale homotopy group scheme
πét
i (X)p from Definition 4.4.2 is the affine group scheme corresponding to the pro-p-finite group
πét,AM
i (X)p.

Proof. The proof follows by an application of p-adic homotopy theory. By the exactness of filtered
colimits, we have

Hi(Ét(X),Fp) ' π0MapPro(S)(Ét(X),K(Z/pZ, i)).
Since the Eilenberg–MacLane space K(Z/pZ, i) is p-finite, the universal property of pro-p-finite
completion yields a natural isomorphism

C∗(Ét(X)∧p ,Fp) ' C∗(Ét(X),Fp) ' RΓét(X,Fp).
Therefore, it follows that

C∗(Ét(X)∧p , k) ' C∗(Ét(X)∧p ,Fp)⊗Fp
k ' RΓét(X, k).

Since Ét(X)∧p is pro-p-finite, the claim now follows from [Toë06, Thm. 2.5.3] and the Milnor
sequences from [MR25, Prop. 3.22]. �

https://stacks.math.columbia.edu/tag/03SN
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Remark 4.4.4 (p-adic homotopy theory). Let k be an algebraically closed field of characteristic
p > 0. Then as a consequence of p-adic homotopy theory (cf. [Kri93, Man01, Lur11b]), the functor

Pro(Sp-fc)→ (DAlgccn
k )op, Y 7→ C∗(Y,Fp)⊗Fp

k

is fully faithful. Indeed, the fact that the functor Sp-fc → (DAlgccn
k )op is fully faithful follows

from [Toë06, Thm. 2.5.1]. To show the full faithfulness of Pro(Sp-fc) → (DAlgccn
k )op, it would

therefore be enough to show that for a p-finite space X, the object C∗(X, k) is a compact object
of DAlgccn

k . By the technique used in the proof of [Lur11b, Lemma 2.5.11], it is enough to
prove the claim when X = K(Z/pZ, n). In this case, one can use the Artin–Schreier sequence
0 → Z/pZ → Ga

x 7→xp−x−−−−−−→ Ga → 0, which induces a fibre sequence of affine stacks and thus
an isomorphism C∗(K(Z/pZ, n), k) ' k

∐
RΓ(K(Ga,n),O)RΓ(K(Ga, n),O) in DAlgccn

k . However,
RΓ(K(Ga, n)) ' Symk k[−n], which is a compact object. This implies that C∗(K(Z/pZ, n), k) is
also a compact object, as desired.

Remark 4.4.5. Note that there is a natural functor from Pro(Sp-fc)→ S which sends an object Y
to MapPro(S)(∗, Y ). This functor is not fully faithful unless one restricts to certain simply connected
pro-p-finite spaces (see, e.g., [Lur11b, Thm. 3.3.3]). Roughly speaking, the latter functor sends a
pro-p-finite space (Yi)i∈I ∈ Pro(Sp-fc) to lim←−i∈I Yi ∈ S; however, it does not remember the extra
information that lim←−i∈I Yi was an inverse limit of p-finite spaces. In some sense, this is analogous to
forgetting the inverse limit topology on a profinite set and merely viewing it as a set. We point out
that the notion of “condensed anima” or “pyknotic spaces” resolves this issue: the natural functor
from Pro(Sp-fc) to condensed anima is fully faithful; see [BH19, Ex. 3.3.10]. One may therefore
think of Ét(X)∧p of a scheme X as a condensed anima in a lossless manner.

Now we will show that the unipotent homotopy group schemes recover the theory of p-adic étale
homotopy groups as introduced by Artin–Mazur (see the discussion after Definition 4.4.2). In light
of Proposition 4.4.3, it would be enough to recover πét

i (X)p from the unipotent homotopy group
schemes πU

i (X). To this end, we will begin by constructing natural maps πU
i (X)→ πét

i (X)p for
each i ≥ 0, which we will call étale comparison maps. In Proposition 4.4.7, we will show that one
can recover πét

i (X)p from πU
i (X) via these étale comparison maps in a precise manner.

Construction 4.4.6. The inclusion of étale sheaves Fp ↪→ O induces a map RΓét(X,Fp) →
RΓ(X,O) in DAlgccn

k . Therefore, by adjunction, we obtain a map
RΓét(X, k) ' RΓét(X,Fp)⊗Fp

k → RΓ(X,O)
in DAlgccn

k , or equivalently, a map Spec RΓ(X,O) → Spec RΓét(X, k) of affine stacks over k.
Therefore, we get natural étale comparison maps

πU
i (X) ' πi(Spec RΓ(X,O))→ πi(Spec RΓét(X, k)) ' πét

i (X)p
for all i.

Proposition 4.4.7 (Unipotent-étale comparison theorem). Let (X,x) be a proper, cohomologically
connected, pointed scheme over an algebraically closed field k of characteristic p > 0. Then the étale
comparison maps πU

i (X)→ πét
i (X)p from Construction 4.4.6 identify πét

i (X)p with the maximal
pro-étale quotient of πU

i (X) from Construction 4.2.10 for all i.

Proof. Note that the absolute Frobenius on X induces a Frobenius semilinear endomorphism F on
RΓ(X,O). Using the Artin–Schreier sequence

0→ Fp → OX
1−F−−−→ OX → 0,

we see that RΓét(X,Fp) ' RΓ(X,O)F=id. Since Hi(X,O) is a finite-dimensional k-vector space
for all i ≥ 0, Proposition 4.1.9 implies that the natural map

RΓét(X, k) ' RΓét(X,Fp)⊗Fp k → RΓ(X,O)perf (4.4.1)
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is an isomorphism. Let us define U(X)perf := lim←−F U(X), naturally viewed as a stack over k.
Since Spec is a right adjoint (see Remark 2.1.16), we have Spec RΓ(X,O)perf ' U(X)perf . Using
Construction 4.4.6, (4.4.1) implies that the composition

πi(U(X)perf)→ πU
i (X)→ πét

i (X)p (4.4.2)
is an isomorphism for all i ≥ 0. Since the absolute Frobenius induces an isomorphism on
πi(U(X)perf), the perfection functor from Construction 4.2.12 yields a factorization of the above
map

πi(U(X)perf)→ πU
i (X)

via the natural map πU
i (X)perf → πU

i (X) such that the composition of the maps
πi(U(X)perf)→ πU

i (X)perf → πU
i (X)→ πét

i (X)p (4.4.3)
is again an isomorphism.

Since πU
i (X) is profinite (Proposition 4.3.7), in order to prove that πét

i (X)p is the maximal
pro-étale quotient of πU

i (X), it would be enough to show that the composite map πU
i (X)perf →

πU
i (X)→ πét

i (X)p is an isomorphism (see Proposition 4.2.17). Therefore, it suffices to prove that
the map πi(U(X)perf) → πU

i (X)perf above is an isomorphism. Note that (4.4.3) already implies
that the latter map is injective. By the Milnor sequence from [MR25, Prop. 3.22], it follows that
the natural map πi(U(X)perf) ' πi(lim←−F U(X))→ πU

i (X)perf is also surjective. This finishes the
proof. �

Remark 4.4.8 (Weakly ordinary varieties). A proper variety X over a perfect field k of character-
istic p > 0 is called weakly ordinary if the (absolute) Frobenius endomorphism F on X induces a
k-semilinear isomorphism F ∗ : Hi(X,O) ' Hi(X,O) for all i ≥ 0. For weakly ordinary X, the natu-
ral map RΓ(X,O)→ RΓ(X,O)perf is an isomorphism. If k is algebraically closed, Proposition 4.1.9
then implies that the natural map RΓét(X, k)→ RΓ(X,O) must be an isomorphism. Therefore,
the étale comparison maps πU

i (X)→ πét
i (X)p from Proposition 4.4.7 are all isomorphisms when

X is assumed to be weakly ordinary. However, in general, these maps are very far from being
isomorphisms; for example, this is already the case when X is a supersingular elliptic curve.

Remark 4.4.9. An important example of weakly ordinary varieties (in the sense of Remark 4.4.8)
are ordinary varieties in the sense of Bloch–Kato [BK86, Def. 7.2, Prop. 7.3] and Illusie–Raynaud
[IR83, Def. 4.12, Thm. 4.13]. Moreover, the two notions of weakly ordinary and ordinary are
equivalent for abelian varieties and K3 surfaces (cf. [MR85, Prop. 9], [MS87, Lem. 1.1]). However, in
general, a weakly ordinary variety need not be ordinary; see, e.g., [JR03, Ex. 5.7]. Let X be a smooth
projective variety of dimension n for which ωX ' OX . If the pullback F ∗ : Hn(X,O)→ Hn(X,O)
by the absolute Frobenius is bijective, then X is Frobenius split ([MR85, Prop. 9]) and therefore X
is automatically weakly ordinary.
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5. K(πU, 1)-schemes: curves and abelian varieties

The unipotent homotopy type U(X) of a scheme X is by definition a higher stack. In this
section, we show that when X is a curve or an abelian variety over a field k, then U(X) is a 1-stack.
In fact, in this case U(X) ' BπU

1 (X). In Section 5.4, we show that the unipotent fundamental
group scheme admits a flat variation for families of curves and abelian schemes. The latter result
is used to geometrically reconstruct the “filtered circle” (see Example 5.4.5) from [MRT22] which
the authors introduced in order to explain the existence of the Hochschild–Kostant–Rosenberg
filtration on Hochschild homology. In Example 5.4.6, we introduce the universal fundamental group
scheme of genus g curves as a group scheme over the moduli of curves. In Section 5.3, we construct
examples to show that the unipotent fundamental group scheme is not a derived invariant for
abelian varieties of dimension ≥ 3.

5.1. Unipotent homotopy type of curves. In this subsection, we prove that if X is a proper
curve over a field k (always equipped with a k-rational point, and assumed to be cohomologically
connected but not assumed to be smooth), then U(X) ' BπU

1 (X). In particular, πU
i (X) is the

zero group scheme for i ≥ 2. In other words, one can say that the unipotent homotopy type of the
curve X is a K(πU, 1). For a curve X, the dimension of H1(X,O) as a k-vector space will be called
genus. We begin by recalling certain definitions that will be useful in formulating and proving the
results in this subsection.

Definition 5.1.1 ([Nor82, § IV]). We fix an integer g ≥ 1. Let k{{X;Y ;Z}} be the non-commutative
formal power series ring in X1, . . . , Xg, Y1, . . . , Yg, Z1, . . . , Zg, modulo the relations XiYj = YjXi,
XiZj = ZjXi, XiZj = ZjXi for all i and j. A non-commutative formal group law of dimension
g over k is a collection F (X;Y ) = (F1(X;Y ), . . . , Fg(X;Y )) with the Fi(X,Y ) ∈ k{{X;Y }} such
that

(1) Fi(X; 0) = Fi(0;X) = Xi for 1 ≤ i ≤ g;
(2) F (X;Y ) = F (Y ;X);
(3) F (F (X;Y );Z) = F (X;F (Y ;Z)) in the ring k{{X;Y ;Z}}.

The above definition can be interpreted more conceptually in terms of the following notion.

Definition 5.1.2 (Linearly compact topological Hopf algebra). Let k be a field and Vectfd
k denote

the category of finite-dimensional k-vector spaces. Since Vectk ' Ind(Vectfd
k ), the notion of duality

in Vectfd
k extends to an equivalence Pro(Vectfd

k )op ' Vectk. The tensor product in Vectk equips
the category Pro(Vectfd

k ) with a symmetric monoidal structure. We define the category of linearly
compact topological Hopf algebras over k to be the category of Hopf algebra objects with respect
to the symmetric monoidal structure on Pro(Vectfd

k ).

Remark 5.1.3. Note that Pro(Vectfd
k ) is equivalent to the category of linearly compact topological

vector spaces over k, and the symmetric monoidal structure can be identified with completed tensor
product of such spaces. Moreover, under this identification the duality functor Pro(Vectfd

k )op →
Vectk from Definition 5.1.2 is given by the continuous dual; see [Die73, Ch. I, § 2].

Remark 5.1.4 (Duality). By construction, the category of Hopf algebras over k is anti-equivalent
to the category of linearly compact topological Hopf algebras over k. In particular, under this
duality, the category of affine group schemes over k is equivalent to the category of cocommutative
linearly compact topological Hopf algebras over k. This duality will be made more explicit in
Construction 6.1.1 in the context of unipotent group schemes and will be used in Section 6.1.

Remark 5.1.5. Any finite-dimensional k-algebra (not necessarily commutative) is an algebra object
of Pro(Vectfd

k ). The non-commutative power series ring k{{X}} (or the commutative power series
ring kJXK) in the variables X1, . . . , Xg can be naturally viewed as algebra object of Pro(Vectfd

k ).
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Definition 5.1.6 (Non-commutative formal Lie groups). The category of non-commutative formal
Lie groups over k of dimension g is defined to be the opposite category of cocommutative, linearly
compact topological Hopf algebras over k whose underlying algebra object of Pro(Vectfd

k ) is
isomorphic to the non-commutative power series ring k{{X}} in the variables X1, . . . , Xg.

Remark 5.1.7. Note that a non-commutative formal group law in the sense of Definition 5.1.1
defines a non-commutative formal Lie group, with comultiplication given by F . Conversely, every
non-commutative formal Lie group arises in this way. Under the duality from Remark 5.1.4, the
category of non-commutative formal Lie groups is anti-equivalent to a full subcategory of affine
group schemes over k.

Proposition 5.1.8. Let X be a proper curve over a field k. Then the dual of the unipotent group
scheme πU

1 (X) is a non-commutative g-dimensional formal Lie group where g = H1(X,OX).

Proof. This follows from [Nor82, § IV, Prop. 4] since πU
1 (X) ' πU,N

1 (X). �

Proposition 5.1.9. Let X be a proper curve over a field k. Then U(X) ' BπU
1 (X).

Proof. By definition, we have a natural map U(X) → BπU
1 (X). Since this is a morphism of

affine stacks, to prove that they are equivalent it would be enough to show that the induced
map RΓ(BπU

1 (X),O)→ RΓ(U(X),O) is an isomorphism. By Proposition 2.1.19, this map is an
isomorphism on cohomology groupsHi( · ) for i ≤ 1. SinceX is a curve, Hi(X,O) ' Hi(U(X),O) =
0 for i ≥ 2. Therefore, it would be enough to show that RΓ(BπU

1 (X),O) = 0 for i ≥ 2.
To show that RΓ(BπU

1 (X),O) = 0 for i ≥ 2, we note that at the level of objects in the derived
category, we have RΓ(BπU

1 (X),O) ' RHomk{{X1,...,Xg}}(k, k) (see Proposition 6.1.6). Therefore,
we are done by the following lemma. �

Lemma 5.1.10. In the derived category, we have
RHomk{{X1,...,Xg}}(k, k) ' k ⊕ k[−1]⊕g.

Proof. We denote A := k{{X1, . . . , Xg}}. We consider the module A⊕g and let u1, . . . , ug denote
a basis of A⊕g over A. There is a map A⊕g → A which sends ui to xi. This fits into an exact
sequence 0→ A⊕g → A→ k → 0 which yields the claim. �

Note that in Remark 3.0.4, we defined the unipotent homotopy type U(X) for X ∈ S. As a
consequence of Proposition 5.1.9, we will show that the unipotent homotopy type of a weakly
ordinary curve of genus g is isomorphic to the unipotent homotopy type of wedge product of
g-circles

∨g
S1.

Lemma 5.1.11. Let X be a proper curve over an algebraically closed field k of characteristic p > 0.
Then there is a natural isomorphism RΓét(X, k) ' RΓ(Bπét

1 (X)p,O). Further, πét
1 (X)p is the free

pro-p-finite group scheme on dimH1
ét(X, k) generators (see Example 4.2.6).

Proof. As in the proof of Proposition 4.4.7, we have a natural isomorphismRΓét(X, k) ' RΓ(X,O)perf .
Since RΓét(X, k) is naturally augmented and H0

ét(X, k) ' k, it follows that SpecRΓét(X, k) is
a pointed connected stack. Moreover, by Proposition 5.1.9, it follows that SpecRΓét(X, k) '
BπU

1 (X)perf . By Proposition 4.2.17, πU
1 (X)perf is isomorphic to the maximal pro-étale quo-

tient of πU1 (X); this is further isomorphic to πét
1 (X)p by Proposition 4.4.7. This shows that

RΓét(X, k) ' RΓ(Bπét
1 (X)p,O) as desired. To show that πét

1 (X)p is the free pro-p group scheme
on dimH1

ét(X, k) generators, we note that H2(Bπét
1 (X)p,O) = H2

ét(X, k) = 0. Moreover, by
Proposition 4.4.3, πét

1 (X)p is the affine group scheme associated to a pro-p-finite group. The desired
claim now follows from Remark 4.2.5, [Ser63, § 4.1, Prop. 21] and [Ser63, § 4.2, Cor. 2]. �

Proposition 5.1.12. Let X be a proper, weakly ordinary curve of genus g over an algebraically
closed field k of characteristic p > 0. Then there is a natural isomorphism U(X) ' U(

∨g
S1).
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Proof. Since X is weakly ordinary, by Lemma 5.1.11 and Remark 4.4.8, πét
1 (X)p is a free pro-p-

group scheme in g generators and RΓ(X,O) ' RΓét(X, k) ' RΓ(Bπét
1 (X)p,O). Since

∨g
S1 is

an Eilenberg–MacLane space for the free group on g generators (which is a good group in the
sense of Serre [Ser63, § 2.6]), it follows that C∗(

∨g
S1, k) ' RΓ(Bπ1

ét(X)p,O). By combining these
isomorphisms, we obtain that U(X) ' U(

∨g
S1). �

Remark 5.1.13. Let X be a proper, weakly ordinary curve of genus g over an algebraically
closed field k of characteristic p > 0. Proposition 5.1.12 in particular implies that πU

1 (X) is the
free pro-p group scheme on g generators. Consequently, the non-commutative formal Lie group
attached to X (see Proposition 5.1.8) is given by F (X;Y ) = Xi + Yi +XiYi, which can be thought
of as the non-commutative analogue of Ĝg

m. Note that the analogue of the latter statement for
ordinary abelian varieties is well-known (see Proposition 5.2.5): if X is an ordinary abelian variety
of dimension g, then the formal completion of X∨ at zero is representable by Ĝg

m.

Example 5.1.14. We note that Proposition 5.1.12 gives a generalization of [Nor82, § IV, Ex. 1],
since the curves obtained by identifying certain disjoint sets of points of P1

k produces a curve that
is weakly ordinary. In particular, we get that an ordinary ellipitic curve or a nodal cubic curve has
the same unipotent homotopy type, which is that of the circle S1.

Example 5.1.15. From [Nor82, § IV, Ex. 2], it follows that for the cuspidal cubic curve X, the
associated formal group law is Ĝa. This also shows that πU

1 (X) 'W [F ], where W [F ] is the kernel
of Frobenius on the ring scheme of p-typical Witt vectors.

5.2. Unipotent homotopy type of abelian varieties. In this section, we prove that if X is
an abelian variety over a field k, then U(X) ' BπU

1 (X). In particular, πU
i (X) is the zero group

scheme for i ≥ 2. In other words, one can say that the unipotent homotopy type of the abelian
variety X is a K(πU, 1). It follows from the product formula (Proposition 3.2.5) that πU

1 (X) is a
commutative group scheme for an abelian variety X.

Definition 5.2.1. We fix an integer g ≥ 1. Let kJX;Y ;ZK be the commutative formal power
series ring in X1, . . . , Xg, Y1, . . . , Yg, Z1, . . . , Zg. A commutative formal group law of dimension g
over k is a collection F (X;Y ) = (F1(X;Y ), . . . , Fg(X;Y )) with the Fi(X,Y ) ∈ kJX,Y K such that

(1) Fi(X; 0) = Fi(0;X) = Xi for 1 ≤ i ≤ g;
(2) F (X;Y ) = F (Y ;X);
(3) F (F (X;Y );Z) = F (X;F (Y ;Z)) in the ring kJX;Y ;ZK.

Definition 5.2.2 (Commutative formal Lie groups). The category of commutative formal Lie
groups over k of dimension g is defined to be the opposite category of commutative, cocommutative,
linearly compact topological Hopf algebras over k whose underlying algebra object of Pro(Vectfd

k )
is isomorphic to the commutative power series ring kJXK in the variables X1, . . . , Xg.

Remark 5.2.3 (Commutative formal groups and duality). Following [Haz12, § 37.3.1], one may
define the category of commutative formal groups over a field k to be the opposite category
of commutative, cocommutative, linearly compact topological Hopf algebras over k. Note that
commutative formal groups can also be thought of as pro-representable functors from the category
of finite-dimensional k-algebras to the category of abelian groups. By Remark 5.1.4, the category of
commutative affine group schemes over k is anti-equivalent to the category of commutative formal
groups over k under duality (see also [Haz12, Thm. 37.3.12]).

Remark 5.2.4. Note that a commutative formal group law in the sense of Definition 5.2.1 defines
a commutative formal Lie group. Conversely, every commutative formal Lie group arises in this
way. Moreover, in dimension 1, the notions of commutative and non-commutative formal Lie group
coincide.
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Proposition 5.2.5. Let X be an abelian variety over a field k. Then the dual of the unipotent
group scheme πU

1 (X) is naturally isomorphic to the commutative formal Lie group obtained by
taking the formal completion of the dual abelian variety X∨ at zero.

Proof. As already noted, by Proposition 3.2.5, πU
1 (X) is commutative. The claim in the proposition

follows from [Nor82]. Indeed, according to [Nor82, § IV, Prop. 6], if k has positive characteristic,
then the dual of πU

1 (X) is given by the colimit over all local finite subgroup schemes of the dual
abelian variety X∨ in the category of formal groups. This colimit is isomorphic to the formal
completion of X∨ at zero and thus corresponds to a commutative formal Lie group of dimension g.
If k has characteristic zero, then (see [Nor82, § IV, Prop. 2]) we have πU

1 (X) ' Gg
a and the formal

completion of X∨ is Ĝg
a; thus the result follows directly. �

Proposition 5.2.6. Let X be an abelian variety a field k. Then U(X) ' BπU
1 (X).

Proof. We need to show that the natural truncation map X → BπU
1 (X) induces an isomorphism

RΓ(BπU
1 (X),O)→ RΓ(X,O). By Proposition 2.1.19, this map is an isomorphism on cohomology

groups Hi( · ) for i ≤ 1. Therefore, it would be enough to prove that H∗(BπU
1 (X),O) is an

exterior algebra generated by the elements of degree 1. To do so, we may view RΓ(BπU
1 (X),O)

as an associative algebra object in the sense of [Lur17]. Since by Proposition 5.2.5, the dual of
πU

1 is a commutative formal Lie group of dimension g = dimX, the associative algebra object
RΓ(BπU

1 (X),O) can be computed as RHomkJx1,...,xgK(k, k) (see, e.g., Proposition 6.1.7). The latter
can be computed via a standard Koszul complex which yields the claim. �

Lemma 5.2.7. Let X be an abelian variety over an algebraically closed field k of characteristic
p > 0. Then there are natural isomorphisms RΓét(X, k) ' RΓ(Bπét

1 (X)p,O). Further, πét
1 (X)p is

the free commutative pro-p group scheme on dimH1
ét(X, k) generators (see Example 4.2.6).

Proof. The isomorphism RΓét(X, k) ' RΓ(Bπét
1 (X)p,O) follows from Proposition 5.2.6 in a way

similar to the proof of Lemma 5.1.11. Since πU
1 (X) is dual to a formal Lie group (Proposition 5.2.5),

it follows (e.g., by Dieudonné theory) that πét
1 (X)p ' πU

1 (X)perf ' πU
1 (X)red is also dual to a

formal Lie group. Since πét
1 (X)p is the affine group scheme associated with a pro-p-finite group

(see Proposition 4.4.3), the latter assertion also follows. �

Proposition 5.2.8. Let X be a weakly ordinary abelian variety of dimension g over an algebraically
closed field k of characteristic p > 0. Then U(X) ' U((S1)×g).

Proof. This follows in a way similar to the proof of Proposition 5.1.12. �

5.3. Derived equivalent abelian varieties. Since the unipotent homotopy group scheme is an
invariant of schemes, it is a natural question to ask if they are in fact derived invariants. More
precisely, if X and Y are two smooth projective algebraic varieties defined over an algebraically
closed field k of characteristic p > 0 such that Dperf(X) and Dperf(Y ) are equivalent as k-linear
triangulated categories, one can ask if πU

i (X) and πU
i (Y ) are isomorphic. We will return to this

theme in Section 7.2 in greater detail, where this question will be studied for Calabi–Yau varieties.
The goal of this subsection is to record examples showing that the unipotent fundamental group
scheme is not a derived invariant in general. More precisely, we give examples of abelian threefolds
X such that πU

1 (X) and πU
1 (X∨) are not isomorphic as group schemes (see Remark 5.3.10). This

case is particularly interesting because many of the interesting numerical invariants are equal for X
and X∨. For example, in [AB22, Thm. 1.2], it is shown that certain numerical invariants are derived
invariants for all smooth projective varieties of dimension ≤ 3. Also, as explained in Remark 5.3.11,
one cannot find such examples of abelian varieties of dimension ≤ 2 (in odd characteristic).

Our construction will be described in Proposition 5.3.9. Let us mention the key ideas in our
construction. We begin by understanding the moduli of certain Dieudonné modules of dimension
3, extending the work of Oda and Oort [OO78, Prop. 4.1] to certain non-supersingular cases.
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Slightly more precisely, we construct a family of isomorphism classes of Dieudonné modules of
dimension 3, height 6 and with symmetric Newton polygons of slopes 1

3 and 2
3 that is parametrized

by Gm. Further, we construct this family to be stable under the duality of Dieudonné modules; the
operation of taking duals corresponds to the endomorphism z 7→ (−1)p−1

z of Gm. This is described in
Proposition 5.3.7. We then construct an abelian variety Xz whose Dieudonné module is isomorphic
to one in the family mentioned above for some z ∈ Gm(k) satisfying z2 6= (−1)p−1 and show that
it has the desired property that πU

1 (Xz) 6' πU
1 (X∨z ). In particular, this gives a general strategy

for producing many examples of abelian varieties which do not admit a principal polarization by
looking inside the moduli space Dieudonné modules.

We will begin by quickly recalling some necessary background on Dieudonné theory which we
will need later; see [Man63], [Dem72, § III.8], [Fon77, § 6], [OO78, § 1], [Oor00, § 1] for more details
on the classical Dieudonné theory (see [Mon21] for a recent stacky approach). For this subsection,
we assume that k is a perfect field of characteristic p > 0. Let W (k) denote the ring of p-typical
Witt vectors of k with the Witt vector Frobenius denoted as σ : W (k)→W (k).

Definition 5.3.1. The Dieudonné ring Dk is the quotient of the non-commutative polynomial ring
W (k){F, V } by the relations FV = V F = p and Fx = σ(x)F and V x = σ−1(x)V for all x ∈W (k).
For us, a Dieudonné module will be a left Dk-module whose underlying W (k)-module is free of
finite rank.

Remark 5.3.2. The underlying W (k)-module of Dk is a free module with a set of basis elements
given by

{
1, F, F 2, . . . , V, V 2, . . .

}
. Similarly, the ideal (F, V )Dk ⊂ Dk is a free W (k)-module with

basis given by
{
p, F, F 2, . . . , V, V 2, . . .

}
.

Theorem 5.3.3 (Dieudonné). There is a contravariant equivalence M between the category of
p-divisible groups over k and the category of Dieudonné modules which satisfies the following
properties:

(1) For any p-divisible group G over k, we have rankW (k) M(G) = height(G).
(2) For any p-divisible group G over k with dual G∨, the Dieudonné module M(G∨) is given

by the W (k)-module M(G)∨ := HomW (k)(M(G),W (k)) with actions F · θ := σ ◦ θ ◦ V and
V · θ := σ−1 ◦ θ ◦ F .

Remark 5.3.4. For a Dieudonné module M , one defines dimM := dimkM/FM .

Remark 5.3.5. For positive integers m,n such that (m,n) = 1, the quotient Dm,n := Dk/Dk(V n−
Fm) is a Dieudonné module of rank n + m and dimension n. Note that under the notion of
duality defined in Theorem 5.3.3.2, the dual of Dm,n is given by Dn,m. The special cases when
m = 1 and n = 2 and m = 2 and n = 1 will be important to us later on. Note that we have
D1,2 'W (k) · 1⊕W (k) · V ⊕W (k) · F . Similarly, D2,1 'W (k) · 1⊕W (k) · V ⊕W (k) · F . In D1,2,
the Dk-action satisfies V · V = F and F · F = pV . Similarly, for D2,1, we have V · V = pF and
F · F = V . Moreover, we have

(F, V )D1,2 'W (k) · p⊕W (k) · V ⊕W (k) · F ; (F, V )2D1,2 'W (k) · p⊕W (k) · pV ⊕W (k) · F.

Similarly,

(F, V )D2,1 'W (k) · p⊕W (k) · F ⊕W (k) · V ; (F, V )2D2,1 'W (k) · p⊕W (k) · pF ⊕W (k) · V.

There are isomorphisms of Dieudonné modules given by

(F, V )D1,2 ' D1,2, p 7→ F, F 7→ V, V 7→ 1; (F, V )D2,1 ' D2,1, p 7→ V, V 7→ F, F 7→ 1. (5.3.1)

Consider the composition

β : Dk × (F, V )Dk −→ (F, V )Dk → pW (k) 'W (k)



60 SHUBHODIP MONDAL AND EMANUEL REINECKE

in which the first morphism is the multiplication in R, the second morphism is the projection onto
the direct summand pW (k) in the decomposition arising from Remark 5.3.2 and the third morphism
is division by p. Since β(Dk(V 2−F ) · (F, V )Dk(V −F 2)) = β(Dk(V −F 2) · (F, V )Dk(V 2−F )) = 0,
β descends to natural pairings β̄1 : D1,2 × (F, V )D2,1 →W (k) and β̄2 : D2,1 × (F, V )D1,2 →W (k)
under which D1,2 and D2,1 are dual to each other (using (5.3.1)).

Up to isogeny, the category of Dieudonné modules over an algebraically closed field is semisimple
and the simple objects are those of Remark 5.3.5:

Theorem 5.3.6 (Dieudonné–Manin classification). Assume that k is algebraically closed. The
Dieudonné module of each p-divisible group G is isogenous to a direct sum ⊕ri=1Dmi,ni

for unique
pairs (m1, n1), . . . , (mr, nr) with (mi, ni) = 1. Moreover, there are no nonzero morphisms Dm,n →
Dm′,n′ if m 6= m′ or n 6= n′.

The next statement describes moduli of certain Dieudonné modules M of dimension 3, height 6
and whose slopes are given by 1

3 and 2
3 . Note that these Dieudonné modules are not supersingular.

For a similar study of moduli of supersingular abelian varieties of dimension 3, see [OO78, Prop. 4.1].
In this case, we can describe the duality functor from Theorem 5.3.3.2 explicitly and see that most
such Dieudonné modules are not self-dual. In Proposition 5.3.9, this will be used to construct dual
(and thus derived equivalent) abelian varieties with different unipotent homotopy group schemes.

Proposition 5.3.7. Let k be an algebraically closed field and N := D1,2 ⊕ D2,1. Note that by
Remark 5.3.5, W (k)⊕2 can be viewed as a W (k)-submodule of N . In this setup, we have the
following:

(1) N/(F, V )N ' k ⊕ k.
(2) Let (F, V )N ⊂M ⊂ N be inclusions of Dieudonné modules such that

dimkM/(F, V )N = dimkN/M = 1.
Then M = (F, V )N + W (k) · ([x1], [x2]) ⊂ N for some nonzero (x1, x2) ∈ k ⊕ k. Here,
[ · ] : k → W (k) is the multiplicative lift. Moreover, if x1, x2 6= 0, the corresponding M
satisfies (F, V )M = (F, V )N .

(3) Let (F, V )N ⊂ M ⊂ N and (F, V )N ⊂ M ′ ⊂ N be such that (F, V )M = (F, V )N and
(F, V )M ′ = (F, V )N . Then any isomorphism M

∼−→ M ′ induces a unique isomorphism
N
∼−→ N which fits into the following commutative diagram:

(F, V )N M N

(F, V )N M ′ N.

' ' '

(4) Reduction modulo (F, V )N induces a bijection
χ :
{

(F, V )N ⊂M ⊂ N | dimkM/(F, V )N = dimkN/M = 1, M 6' N
}
/'

∼−→ Gm(k)/F×p3 .

Here, we identify P(N/(F, V )N) ' P1
k via the isomorphism from (1), and F×p3 acts on

Gm(k) by scalar multiplication; moreover, Gm(k)/F×p3 ' Gm(k) via the (p3 − 1)-th power
map.

(5) The dual (in the sense of Theorem 5.3.3.2) of a chain of inclusions (F, V )N ⊂M ⊂ N is
a chain of inclusions (F, V )N ⊂M∨ ⊂ N , and the induced morphism on Gm(k) under χ
and the isomorphism Gm(k)/F×p3 ' Gm(k) is given by z 7→ (−1)p−1

z .

Proof. Since D1,2/(F, V )D1,2 ' k and D2,1/(F, V )D2,1 ' k, we obtain (1).
Let π : N → k ⊕ k denote the quotient map obtained by using (1). Note that there is an

inclusion W (k) ⊕W (k) ↪→ N such that the composition with π identifies with the map given
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by reduction modulo p. Given (F, V )N ⊂ M ⊂ N , let M := π(M). If dimkM/(F, V )N =
dimkN/M = 1, we can find 0 6= (x1, x2) ∈ k ⊕ k such that M = k · (x1, x2) ⊂ k ⊕ k. Moreover,
since W (k) · p⊕W (k) · p ⊂ (F, V )N (see Remark 5.3.5) and the multiplicative lift [ · ] : k →W (k)
defines a section of the reduction modulo p map W (k)→ k, we obtain

M = (F, V )N +W (k) · ([x1], [x2]) ⊂ N.
The computations in Remark 5.3.5 then show that as W (k)-submodules of N , we have

(F, V )M = (F, V )2N + (F, V )W (k) · ([x1], [x2])

= (F, V )2N +W (k) · ([xp1]F, [xp2]F ) +W (k) · ([x1/p
1 ]V, [x1/p

2 ]V )

⊇
(
W (k) · p⊕W (k) · [x1/p

1 ]V ⊕W (k) · F
)
⊕
(
W (k) · p⊕W (k) · [xp2]F ⊕W (k) · V

)
.

Thus, if x1, x2 6= 0, then the elements [x1/p
1 ], [xp2] ∈W (k) are units; therefore we have (F, V )M =

(F, V )N , yielding (2).
Before proceeding further, we will need one additional preparation. To this end, note that we

can combine the pairings β̄1 and β̄2 from Remark 5.3.5 to a perfect pairing
β̄ : N × (F, V )N →W (k)

which exhibits N and (F, V )N as duals in a natural way. Tensoring with K := W (k)[ 1
p ], we obtain

a perfect pairing on NK := N ⊗W (k) K = (F, V )N ⊗W (k) K denoted as

β̄K : NK ×NK → K.

Since the W (k)-linear dual Λ∨ of a W (k)-lattice Λ ⊂ NK can be identified with Λ∗ := {y ∈
NK | β̄K(Λ, y) ⊆W (k)}, the chain of lattice inclusions (F, V )N ⊂M ⊂ N dualizes to (F, V )N ⊂
M∨ ⊂ N under β̄K . Explicitly,

M∨ ' {y ∈ N | β̄K(W (k) · ([x1], [x2]), y) ⊆W (k)}
= (F, V )N + {(y1, y2) ∈W (k)⊕W (k) | [x1]y1 + [x2]y2 ∈ pW (k)}
= (F, V )N +W (k) · ([−x2], [x1]) ⊂ N.

(5.3.2)

This shows the first part of (5).

Next, let (F, V )N ⊂ M ⊂ N and (F, V )N ⊂ M ′ ⊂ N as in (3) and v : M ∼−→ M ′ be an
isomorphism of Dieudonné modules. By (2) and the Dk-linearity of v, we have an induced
isomorphism of submodules

(F, V )N = (F, V )M ∼−→ (F, V )M ′ = (F, V )N.
By the preceding paragraph, we can apply the same reasoning to the duals and then pass to duals
again to obtain an isomorphism N

∼−→ N which restricts to v (canonically identified with v∨∨).
This shows (3).

Now, we move on to (4). Let M be a Dieudonné module with (F, V )N ⊂ M ⊂ N such that
dimkM/(F, V )N = dimkN/M = 1 and M 6' N . By the proof of (2), M = π(M) ⊂ N/(F, V )N
is canonically identified with a line k · (x1, x2) ⊂ k ⊕ k and hence a point of P1(k). Since
dimkN/(F, V )N = 2, the condition that M 6' N is by (2) equivalent to x1, x2 6= 0, so the
point associated with M lies in P1(k) r {0,∞} = Gm(k). To see that χ is well-defined, we
need to show that this point is invariant under isomorphisms up to F×p3-action. To this end, let
v : M ∼−→M ′ be an isomorphism of Dieudonné modules as above. By (3), v naturally extends to
an isomorphism ṽ : N ∼−→ N . By the Dieudonné–Manin classification (Theorem 5.3.6), ṽ = ṽ1 ⊕ ṽ2
for some isomorphisms of Dieudonné modules ṽ1 : D1,2

∼−→ D1,2 and ṽ2 : D2,1
∼−→ D2,1. Since

D1,2 = Dk/Dk(V 2 − F ), any left Dk-module endomorphism of D1,2 is determined by an element
(a1 + b1V + c1F ) for some a1, b1, c1 ∈W (k) under the decomposition from Remark 5.3.5 which must
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satisfy (V 2 − F )(a1 + b1V + c1F ) = 0 in the ring D1,2. The latter is equivalent to the conditions
σ3(a1) = a1, σ3(b1) = b1 and σ3(c1) = c1. Similarly, any left Dk-module endomorphism of D2,1 is
determined by an element (a2 + b2F + c2V ) satisfying σ3(a2) = a2, σ3(b2) = b2 and σ3(c2) = c2.
Let a1 ∈ k and a2 ∈ k be the images of a1 and a2 modulo p, respectively. It follows that any
endomorphism of N induces an endomorphism k⊕ k → k⊕ k (by going modulo (F, V )N and using
(1)) that sends (x, y) to (a1x, a2y). Since σ3(a1) = a1, it follows that ap

3

1 = a1. Similarly, we have
ap

3

2 = a2. This checks that χ is well-defined.

Lastly, we need to define an inverse to χ. Given a line M ⊂ N/(F, V )N , identified with
k · (x1, x2) ⊂ k ⊕ k such that x1, x2 6= 0, set M := π−1(M) = (F, V )N + W (k) · ([x1], [x2]) ⊂ N ,
which is naturally a Dk-module. For λ1, λ2 ∈ F×p3 , multiplication by the lifts [λ1], [λ2] ∈ W (k)
on N = D1,2 ⊕ D2,1 defines an isomorphism of Dieudonné submodules M ∼−→ M ′. Thus, the
isomorphism class of M does not change under the F×p3 -action. This defines a well-defined inverse
map to χ and finishes the proof of (4). The explicit description in (5.3.2) now shows that under χ
and the isomorphism Gm(k)/F×p3 ' Gm(k), the duality functor identifies with the endomorphism

of Gm(k) given by z 7→ (−1)p3−1

z = (−1)p−1

z , finishing (5). �

The following statement will be used in Proposition 5.3.9. Recall that the slope of Dm,n is the
rational number n

m+n .
Proposition 5.3.8. Let G be a p-divisible group with symmetric Newton polygon; that is, the set
of slopes 0 ≤ λ1 ≤ · · · ≤ λr ≤ 1 of the Dmi,ni appearing in the Dieudonné–Manin classification of
M(G) satisfy λi = 1− λr−i+1. Then there exists an abelian variety X such that X[p∞] ' G.
Proof. By [Oor00, § 5] and Theorem 5.3.6, there exists an abelian variety Y and an isogeny
α : Y [p∞]→ G. Let K := Kerα. Then X := Y/K has the desired property. �

Proposition 5.3.9. There exists an abelian threefold X over an algebraically closed field k of
characteristic p > 0 such that πU

1 (X) and πU
1 (X∨) are non-isomorphic.

Proof. In Proposition 5.3.7, we constructed a set of isomorphism classes of Dieudonné modules
in bijection with Gm(k). Let f(z) ∈ k[z] denote the polynomial z2 + (−1)p. Let t ∈ k∗ be such
that f(t) 6= 0. Let M be the Dieudonné module whose isomorphism class corresponds to t under
Proposition 5.3.7. By Theorem 5.3.3, there exists a p-divisible group G such that M(G) 'M . By
construction, G has a symmetric Newton polygon. Therefore, by Proposition 5.3.8, there exists an
abelian variety X such that X[p∞] ' G. Since dimM = 3, we have dimX = 3. By choice of t and
Proposition 5.3.7.(5), it follows that G and G∨ are non-isomorphic. Since G∨ ' X∨[p∞], it follows
that X[p∞] and X∨[p∞] are not isomorphic. Since the slopes of G are 1

3 and 2
3 , it follows that G

and G∨ are connected. This implies that the formal Lie groups obtained by formally completing X
and X∨ are non-isomorphic. Therefore, we are done by Proposition 5.2.5. �

Remark 5.3.10 (Derived equivalent abelian threefolds). Since the Fourier–Mukai transform
associated with the Poincaré bundle defines a derived equivalence Dperf(X) ' Dperf(X∨), Proposi-
tion 5.3.9 shows that the unipotent fundamental group scheme for abelian threefolds (or equivalently,
the Dieudonné module H1(X,W )) is not a derived invariant.
Remark 5.3.11. Note that, at least in odd characteristic, the unipotent fundamental group scheme
is a derived invariant for abelian varieties of dimension ≤ 2. To see this, we recall a few facts. By
[Orl02, Thm. 2.19], two derived equivalent abelian varieties X and Y are related by an isomorphism
X ×X∨ ' Y × Y ∨. Further, any abelian variety is isogenous to its dual. Consequently, if X and Y
are derived equivalent elliptic curves, then they are are either both ordinary or both supersingular
and therefore the claim holds. Also, if X and Y are derived equivalent abelian surfaces, then the
slopes of their associated p-divisible groups are identical and there are three possibilities for the
slopes:
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(1) All the slopes are 0 and 1; in that case, X∨ and Y ∨ are ordinary and therefore the associated
formal Lie groups are isomorphic.

(2) The slopes are 0, 1
2 and 1; in that case (X∨)[p∞] ' Qp/Zp × µp∞ ×H[p∞] where H is a

1-dimensional formal Lie group of height 2, and similarly for Y . But over an algebraically
closed field, up to isomorphisms, there is only one formal Lie group of dimension 1 and
height 2. Therefore, the formal Lie groups of X∨ and Y ∨ are isomorphic.

(3) The only slope is 1
2 ; in that case X and Y are supersingular, derived equivalent abelian

surfaces over a field of odd characteristic and therefore, according to [LZ21, Thm. 4.6], are
isomorphic.

Example 5.3.12. A 5-dimensional example similar to Proposition 5.3.9 can be obtained in a
relatively easier way from the p-divisible groups appearing in [dJO00, § 5]. For any coprime
m,n ∈ Z>0, the authors define isogenous p-divisible groups Gm,n (whose contravariant Dieudonné
module is the Dn,m from Remark 5.3.5) and Hm,n of height m + n which satisfy G∨m,n ' Gn,m
and H∨m,n ' Hn,m [dJO00, §§ 5.2–5.3]. However, G2,3 and H2,3 are not isomorphic because their
types are the semi-modules {0} ∪ (2 + Z≥0) and 1 + Z≥0, which are not integral translates of one
another; cf. [dJO00, §§ 5.6–5.7]. Thus, G := G2,3 ⊕H3,2 is a connected p-divisible group of height
10 with G∨ ' G3,2 ⊕H2,3. By the Dieudonné–Manin classification, any isomorphism G

∼−→ G∨

would restrict to an isomorphism G2,3
∼−→ H2,3, which is impossible. Thus, we can proceed as in

Proposition 5.3.9 to construct an abelian variety X of dimX = 5 such that πU
1 (X) 6' πU

1 (X∨).

5.4. Families of K(πU, 1)-schemes. In [Nor82], Nori considered the question of whether there is
a flat variation of the unipotent fundamental group scheme for algebraic varieties defined in a family.
Note that unlike the case of affine stacks over a field [Toë06, Thm. 2.4.5], the following example
shows that the sheaf of homotopy groups of a general family of affine stacks is not representable.

Example 5.4.1 (Toën). Let Zp denote the ring of p-adic integers. Let K denote the complex of
Zp-modules given by Fp[1] ' (Zp

×p−−→ Zp), where the Zp on the right is in homological degree 1. It
follows that the functor that sends an affine scheme SpecA over Zp to A⊗Zp Fp[1] is naturally a
pointed connected affine stack, which we denote as X. In this situation, one sees that π1(X) is not
representable. Let us mention the work of Hirschowitz [Hir89] and Simpson [Sim96] which studies
certain non-representable sheaf of groups in a related context.

In what follows, we construct a flat variation of the unipotent fundamental group scheme for
families of curves and abelian varieties; see Proposition 5.4.3. The existence of such a construction
in the case of curves was stated in [Nor82] (without proof), and relying on it, a construction of a
non-commutative formal Lie group defined in a family was sketched. Our method of construction
uses the higher algebraic description of the unipotent fundamental group scheme obtained in
Lemma 3.2.13.

Proposition 5.4.2. Let f : X → SpecA be a family of curves5 of genus g or abelian varieties of
dimension g. Let σ : SpecA→ X be a section of f , which equips RΓ(X,O) with the structure of
an augmented E∞-algebra over A. Then the E∞-algebra A ⊗RΓ(X,O) A over A is a discrete flat
A-algebra.

Proof. The cohomological connectedness of the fibres gives H0(X,O) ' A (see, e.g., [SP22,
Tag 0E6B]). Further, note that the discreteness of A ⊗RΓ(X,O) A over a general base SpecA
automatically implies flatness, by base changing to SpecA/I for every ideal I ⊂ A and using [SP22,
Tag 00M5].

5i.e., f : X → SpecA is a flat proper finitely presented morphism of relative dimension 1 whose fibres are
cohomologically connected.

https://stacks.math.columbia.edu/tag/0E6B
https://stacks.math.columbia.edu/tag/00M5
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We proceed by considering the bar resolution, which gives us the following simplicial object in
D(A)

· · ·RΓ(X,O)⊗A RΓ(X,O) ////// RΓ(X,O) //// A (5.4.1)

whose colimit (in the ∞-category D(A)) is the tensor product A⊗RΓ(X,O) A. Note that the terms
of (5.4.1) are coconnective objects of D(A) and have compatible increasing exhaustive N-indexed
filtrations coming from the truncation functors. By taking colimits, we obtain an increasing
exhaustive N-indexed filtration on A ⊗RΓ(X,O) A. One sees that the n-th graded piece of this
filtration is given by Bn[−n], where B0 ' A and for n ≥ 1, Bn is the colimit of the following
simplicial object

Cn := · · ·Hn(RΓ(X,O)⊗3) ////
//// H

n(RΓ(X,O)⊗2) // //// Hn(X,O) //// 0 .

We note that V := H1(X,O) is a projective module over A of rank g (e.g., [SP22, Tag 0E1J] in the
case of curves and [BBM82, Lem. 2.5.3] in the case of abelian varieties) and the simplicial object
C1 is of the form

· · ·V ⊕3 ////
//// V
⊕2 ////// V //// 0 .

Considering V as an abelian group, we observe that the above simplicial object is isomorphic to
the classifying object BV . Now we divide the proof into two cases.
Case 1. If f : X → SpecA is a family of curves of genus g, then by using the fact that the cup
product structure on H∗(X,O) is trivial, we see that the simplicial object corresponding to V ⊗n[n]
under the Dold–Kan correspondence is homotopy equivalent to Cn. This implies that Bn ' V ⊗n[n]
for n ≥ 1. Therefore, Bn[−n] ' V ⊗n, which is, in particular, discrete. Thus, the graded pieces of
the filtration on A⊗RΓ(X,O) A are all discrete. Hence A⊗RΓ(X,O) A must also be discrete.
Case 2. Let us now suppose that f : X → SpecA is a family of abelian varieties of dimen-
sion g. Since H∗(X,O) ' ∧∗H1(X,O) (e.g., by [BBM82, Prop. 2.5.2.(ii)]), it also follows that
H∗(RΓ(X,O)⊗k) ' ∧∗H1(RΓ(X,O)⊗k). Thus, we see that Cn is computed by applying ∧n
termwise to the simplicial object C1. Since C1 ' BV , it follows that Bn ' ∧n(V [1]), where the ∧i
in the latter is taken in the derived sense. By the décalage formula (see [Ill71, Prop. I.4.3.2.1]),
we have ∧n(V [1]) ' (ΓnV )[n]. Thus, we see that Bn[−n] ' ΓnV , which is discrete. Similar to the
above case, now we can conclude that A⊗RΓ(X,O) A is discrete. This finishes the proof. �

Proposition 5.4.3. Let f : X → SpecA be a family of curves of genus g or abelian varieties
of dimension g equipped with a section σ : SpecA → X. Then there exists a flat affine group
scheme denoted as πU

1 (X/ SpecA) over SpecA such that for all s ∈ SpecA, we have πU
1 (Xs) '

πU
1 (X/ SpecA)s.

Proof. By Proposition 5.4.2, the E∞-ring A⊗RΓ(X,O) A is a discrete flat algebra over A. Note that
the functor correpresented by A ⊗RΓ(X,O) A in the category of E∞-algebras over A is naturally
valued in grouplike E1-spaces. Since A⊗RΓ(X,O) A is discrete, we see that A⊗RΓ(X,O) A naturally
has the structure of a Hopf algebra over A. We let πU

1 (X/ SpecA) := Spec(A⊗RΓ(X,O)A), equipped
with the natural structure of a flat group scheme over A. For every map s : Spec k → SpecA,
where k is a field, we see that πU

1 (X/ SpecA)s is naturally isomorphic to Spec(k ⊗RΓ(Xs,O) k),
when the latter is also equipped with its natural group scheme structure over k. Let Y := U(Xs).
Then Y is naturally a pointed connected stack over k, and by Corollary 2.3.6, it follows that
k ⊗RΓ(Xs,O) k ' RΓ(ΩY,O). However, by construction, Y is an affine stack. Therefore it follows
that ΩY ' Spec(k ⊗RΓ(Xs,O) k). Thus, we have isomorphisms of group schemes

πU
1 (Xs) ' π1(Y ) ' π0(ΩY ) ' Spec(k ⊗RΓ(Xs,O) k).

This finishes the proof. �

https://stacks.math.columbia.edu/tag/0E1J
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Remark 5.4.4. The construction of πU
1 (X/ SpecA) above is functorial and glues to yield a flat

group scheme πU
1 (X/S) for any flat family X → S of curves of genus g (equipped with a section)

or abelian schemes of dimension g. It is also true that U(X) ' BπU
1 (X/ SpecA); however, since

we are working over a general base, the conclusion does not follow from Remark 2.1.18. Instead,
the claim follows from the notion of “coconnectively faithfully flat” maps introduced in [MM25,
Prop. 2.10, Prop. 3.3]. In particular, it would imply that U(X) is a pointed connected 1-stack.

Example 5.4.5 (The filtered circle). Let X → A1 denote the standard flat family of curves that
degenerates nodal curves to a cusp (given by the equation y2z = x3 + txz2, where t denotes the
chosen coordinate of A1). Note that Pic0 of this family provides a degeneration of Gm to Ga.
In particular, it follows that in this case, πU

1 (X /A1) from Proposition 5.4.3 is the affine group
scheme dual to the formal group law X + Y + tXY over A1. This implies that πU

1 (X /A1)→ A1

is Gm-equivariant. Therefore, one obtains a group scheme πU
1 (X /A1)Fil over the stack [A1/Gm]

whose classifying stack recovers the key definition of the filtered circle from [MRT22], which the
authors introduced in order to explain the existence of the Hochschild–Kostant–Rosenberg filtration
on Hochschild homology. In other words, one sees that the unipotent homotopy type of the family
of curves X → A1, when viewed with the natural structure of a filtered group stack, recovers the
filtered circle. This gives a simple new realization of the filtered circle in the world of algebraic
geometry, even though it cannot be directly realized as a space. In [MRT22, § 3.3], the authors
identify the underlying stack of the filtered circle as affinization of the circle S1: in our construction,
this can be seen directly from Example 5.1.14.

Example 5.4.6 (Moduli of curves). Let Mg,1 be the moduli space of stable curves with one
marked point and let q1 : Cg,1 →Mg,1 be the universal curve over it. The marking gives rise to a
natural section σ : Mg,1 → Cg,1. For any affine SpecA →Mg,1, Proposition 5.4.3 gives a group
scheme πU

1
(
(Cg,1 × SpecA)/ SpecA

)
over SpecA. Since this association is functorial in A, we can

glue the various group schemes to obtain a unipotent fundamental group scheme πU
1 (Cg,1/Mg,1)

over Mg,1, whose fibre over a point s ∈ Mg,1(k) corresponding to a marked stable curve (C, c)
over k is πU

1 (Cg,1/Mg,1)s ' πU
1 (C). A natural filtration on πU

1 (Cg,1/Mg,1) is induced by the lower
central series

πU
1 (Cg,1/Mg,1) = πU

1 (Cg,1/Mg,1)[1] ≥ πU
1 (Cg,1/Mg,1)[2] ≥ · · · ≥ πU

1 (Cg,1/Mg,1)[n] ≥ · · · ,
where we recursively define πU

1 (Cg,1/Mg,1)[n+1] :=
[
πU

1 (Cg,1/Mg,1)[n], πU
1 (Cg,1/Mg,1)

]
. The asso-

ciated graded sheaf of rings gr∗ πU
1 (Cg,1/Mg,1) :=

⊕
n∈N grn πU

1 (Cg,1/Mg,1) with

grn πU
1 (Cg,1/Mg,1) := πU

1 (Cg,1/Mg,1)[n]/πU
1 (Cg,1/Mg,1)[n+1]

is again generated by gr1 πU
1 (Cg,1/Mg,1) ' R1q1∗O. It would be interesting to find a description of

gr∗ πU
1 (Cg,1/Mg,1) in terms of the geometry of Cg,1 →Mg,1.
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6. Formal Lie groups via unipotent homotopy theory

In this section, we begin by establishing several foundational results on unipotent group schemes
which extend certain results from [Ser63] for pro-p-finite groups (see Section 6.1). These results
are used in Section 6.2 to obtain a purely algebraic perspective on (potentially non-commutative)
formal Lie groups and construct new formal Lie groups by dualizing unipotent homotopy group
schemes of certain higher stacks (see Construction 6.2.6). In Section 6.3, we show that the formal
Lie groups we construct recover the ones constructed by Artin–Mazur [AM77] in many cases of
interest.

6.1. Some homological results on unipotent group schemes. Let G be a unipotent affine
group scheme over a field k. In this section, our first goal is to establish necessary and sufficient
criteria such that the dual of G defines a non-commutative formal Lie group according to Defi-
nition 5.1.1. In Proposition 6.1.9, we show that the dual of G is a non-commutative formal Lie
group of dimension g if and only if dimH1(BG,O) = g and dimH2(BG,O) = 0. Note that if k
has characteristic p > 0, and G is an affine group scheme corresponding to a pro-p-finite group,
then according to Proposition 6.1.9, the conditions dimH1(BG,O) = g and H2(BG,O) = 0 are
equivalent to G being the free pro-p group on g generators (Example 4.2.6); this recovers [Ser63,
§ 4.2, Cor. 2] (cf. [Ser63, § 4.1, Prop. 21]). Our strategy for proving Proposition 6.1.9 is to formally
treat X = BG as a curve of genus g and adapt Nori’s proof of the fact that dual of the unipotent
fundamental group scheme of a curve is a non-commutative formal Lie group (see [Nor82, § IV,
Prop. 4]).

In Proposition 6.1.13, we show that the dual of a commutative unipotent group scheme G is
representable by a commutative formal Lie group of dimension g if and only if dimH1(BG,O) = g
and Ext1(G,Ga) = 0; for another criterion, see Proposition 6.1.12. The proof, in this case, is very
different from the non-commutative case. We make use of the cotangent complex [Ill71, Ill72a], the
related notion of the co-Lie complex ([Ill72b]), as well as some inputs from commutative algebra
regarding Betti numbers for complete local rings ([Gul71], [Gul80]).

We will begin by describing the dual of an affine group scheme as a linearly compact topological
Hopf algebra (Definition 5.1.2) following [Nor82].

Construction 6.1.1 (Dualizing group schemes). Let G be an affine group scheme over a field
k. Let G = SpecR for a k-algebra R. Let µ : R→ R ⊗k R denote the comultiplication. We look
at the vector space dual A := R∗ which has a (not necessarily commutative) algebra structure
induced from the comultiplication on R. Let V be a finite-dimensional subspace of R such that
µ(V ) ⊆ V ⊗V . One defines V ⊥ := {a ∈ A | a(v) = 0 for all v ∈ V }. We note that there is a natural
map A = R∗ → V ∗ obtained by restricting a linear functional to the subspace V . This map is
surjective with kernel V ⊥. Thus A/V ⊥ is finite-dimensional. Since V is also µ-stable it follows
that A/V ⊥ is a finite-dimensional algebra. The collection of all such µ-stable finite-dimensional
subspaces V of R provides a system of neighbourhoods of zero in the algebra A and A is complete
with respect to the topology induced from this, i.e., A = lim←−V A/V

⊥. In particular, by taking
V = k, we obtain a two-sided ideal of A given by k⊥ which will be denoted as m. It follows that
A/m ' k. If G is further assumed to be unipotent, it follows that A/V ⊥ is an artinian local ring
with maximal ideal m. We set Jn :=

⋂
V mn + V ⊥. Since m = k⊥, it follows that J1 = m. We have

the following proposition.

Proposition 6.1.2. Let G = SpecR be a unipotent affine group scheme over k such that
dimH1(BG,O) = dim Hom(G,Ga) = g for some g. Then (in the above notations), we have

(1) Each Jn is an open two sided ideal of A = R∗ and A = lim←−nA/Jn.
(2) (J1/J2)∗ = H1(BG,O).
(3) dimA/Jn ≤ 1 + g + g2 + . . .+ gn−1.
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Proof. This follows from [Nor82, Lem. IV.3] (and its proof). �

A quasi-coherent sheaf on BG is the same as an R-comodule. Any quasi-coherent sheaf on BG is
a filtered colimit of vector bundles, which corresponds to a finite-dimensional representation of the
affine group scheme G. This implies that quasi-coherent sheaves on BG is the same as left modules
over A such that each element of the module is killed by some V ⊥ where V again varies over
finite-dimensional µ-stable subspaces of R. Denoting the category of such A-modules by A-nilMod,
we have an equivalence of categories C : QCoh(BG) ' A-nilMod. Note that for a vector bundle V
on BG, we have rank V = dimk C(V ). We will begin by recalling certain universal constructions
on vector bundles on BG.

Definition 6.1.3 (Universal vector extensions). Let V be a vector bundle on BG, where G is
unipotent and H1(BG,O) is assumed to be finite-dimensional. An exact sequence 0 → Om →
U(V )→ V → 0 is called a universal vector extension of V , if for every exact sequence 0→ On →
W ′ → V → 0 there is a unique map f which fits into a diagram

0 Om U(V ) V 0

0 On W ′ V 0

f

We note that under our assumptions, every vector bundle V on BG has a universal vector
extension. Indeed, since V ∗ corresponds to a representation of G, and G is unipotent, it follows
that V ∗ is an iterated extension of O as vector bundle on BG. Therefore, by induction, it follows
that H1(BG,V ∗) is finite-dimensional. Let us choose v1, . . . , vm as a basis of H1(BG,V ∗). Then
θ = (v1, . . . , vm) ∈ H1(BG,V ∗)⊕m = H1(BG,H om(V ,Om)) = Ext1(V ,Om) defines the required
extension 0 → Om → U(V ) → V → 0. More canonically, one can write this extension as
0→ H1(BG,V ∗)∗ ⊗ O → U(V )→ V → 0.

Remark 6.1.4. By a long exact sequence chase, it follows from the construction that the map
H1(BG,V ∗) → H1(X,U(V )∗) is the zero map. The assumptions that G is unipotent and that
H1(BG,O) is finite-dimensional both play an important role in the construction of universal vector
extensions for an arbitrary vector bundle on BG.

Similarly, for A-modules M , one can define a universal vector extension 0→ kn → U(M)→M →
0 to be an extension with analogues universal properties. Let V be a vector bundle on BG as above.
Let C(V ) be an object of A-nilMod via the equivalence of categories C : QCoh(BG) ' A-nilMod.
Then it follows from the categorical equivalence that U(C(V )) ' C(U(V )). Let us inductively
define a sequence of vector bundles on BG starting with V1 := O and Vn+1 := U(Vn). We note the
following proposition from Nori.

Proposition 6.1.5. Under the equivalence of categories C : QCoh(BG) ' A−nilMod, it follows
that C(Vn) = A/Jn, where Vn is as constructed above.

Proof. The n = 1 case is clear. For n ≥ 1, this amounts to saying that U(A/Jn) = A/Jn+1. The
proposition is proven in [Nor82, Lem. IV.7]. �

Before delving into determining cohomological criteria for the representability of duals of
unipotent group schemes by a formal Lie group, we record the following calculations.

Proposition 6.1.6. Let G be a group scheme over k whose dual is a non-commutative formal Lie
group of dimension g. Then in D(k), we have an isomorphism

RΓ(BG,O) ' RHomk{{X1,...,Xg}}(k, k).

Proof. Using the equivalence of categories states in Proposition 6.1.5 and Lemma 5.1.10, it would
be enough to prove that Hi(BG,O) = 0 for i > 1. Note that there is an explicit complex which
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computes RΓ(BG,O) obtained by applying fpqc descent along the map ∗ → BG. Further, that
complex depends only on the coalgebra structure of the Hopf algebra underlying the ring of global
sections on G. Therefore, it is enough to prove the cohomology vanishing assertion in the special
case when G is the dual of the non-commutative formal group law Fi(X,Y ) := Xi + Yi + XiYi.
In this case, G is the free pro-p group scheme on g generators. Thus the claim follows from the
classical computation of group cohomology of free groups and Remark 4.2.5. �

Proposition 6.1.7. Let G be a group scheme over k whose dual is a commutative formal Lie
group of dimension g. Then we have an isomorphism

RΓ(BG,O) ' RHomkJx1,...,xgK(k, k)
of associative algebra objects in D(k).

Proof. The equivalence of categories from Proposition 6.1.5 extends to a fully faithful functor
from the ∞-category of dualizable objects of Dqc(BG) to the derived ∞-category D(kJx1, . . . , xgK).
Under this categorical equivalence, the structure sheaf O is sent to the kJx1, . . . , xgK-module k.
This yields the desired result. �

Remark 6.1.8. Let G be a group scheme over k whose dual is a commutative formal Lie group
of dimension g. Then Ext1(G,Ga) = 0. In order to see this, note that by Lemma 3.2.10,
Ext1(G,Ga) ' H3(K(G, 2),O). By Proposition 6.1.7, H∗(BG,O) ' ∧∗H1(BG,O). Applying
descent along Spec k → K(G, 2), and directly carrying out the strategy of [Mon21, § 3.3], it
follows that the cohomology ring H∗(K(G, 2),O) is a symmetric algebra in degree 2. In particular,
H3(K(G, 2),O) = 0, which gives the desired claim. The same argument carries over to any affine
base; therefore, we also obtain E xt1(G,Ga) = 0.

Now we are ready to prove the following.

Proposition 6.1.9. Let G be a unipotent affine group scheme over k such that dimH1(BG,O) =
g. Then the dual of G is a non-commutative formal Lie group of dimension g if and only if
H2(BG,O) = 0.

Proof. The only if direction follows from Lemma 5.1.10 and Proposition 6.1.6.
We now prove the converse. Let B := k{{X1, . . . , Xg}}. Let m′ denote the two sided ideal

(X1, ..., Xg) of B. We choose x1, . . . , xg ∈ J1 such that they are a basis of J1/J2 (see Construc-
tion 6.1.1). Sending Xi to xi defines a surjection B � A, where A is defined as the dual of the Hopf
algebra underlying G as in Construction 6.1.1. We will be done if we prove that B/m′n → A/Jn is an
isomorphism for all n ≥ 1. Since these maps are already surjective and dimB/m′n = 1+g+ . . . gn−1,
it would be enough to show that under our assumptions, dimA/Jn = 1 + g + . . .+ gn−1.

Now we will make use of our preparation involving universal vector extensions. Defining Vn as
in the set up of Proposition 6.1.5, we note that (as a consequence of Proposition 6.1.5), we have
that rank Vn = dimA/Jn. We note the following lemma.

Lemma 6.1.10. In this set up, H2(BG,V ∗n ) = 0 for all n ≥ 1.

Proof. This follows by induction on n by using the assumption H2(BG,O) = 0 and the exact
sequence 0→ Om → Vn+1 → Vn → 0. �

We note that in the exact sequence 0 → Om → Vn+1 → Vn → 0, we must have m =
dimH1(BG,V ∗n ) by construction. Therefore, in order to prove that rank Vn = 1+g+ . . .+gn−1, by
using induction on n, it would be enough to prove that dimH1(BG,V ∗n ) = gn for all n ≥ 1. To show
this, we look at the dual exact sequence 0→ V ∗n → V ∗n+1 → Om → 0. As noted in Remark 6.1.4,
the map H1(BG,V ∗n ) → H1(BG,V ∗n+1) is zero. Therefore, by using the long exact sequence
in cohomology and the above lemma, we get that dimH1(BG,V ∗n+1) = dimH1(BG,Om) = m ·
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dimH1(BG,O) = mg = g dimH1(BG,V ∗n ). This inductively shows that indeed H1(BG,V ∗n ) = gn,
which finishes the proof. �

Note that in Proposition 6.1.9, G is not assumed to be commutative. In fact, if G were assumed
to be commutative, then under the assumptions, the dual of G will still be forced to be a non-
commutative formal Lie group of dimension g, which implies that g = 1. We also note that if G is
commutative, then BG has the structure of an abelian group stack. In such a case, the fact that g
is forced to be 1 is formally analogous to the fact that if a smooth curve X of genus g ≥ 1 has the
structure of an abelian variety, then g = 1. Indeed, X being an abelian variety formally forces the
canonical line bundle to be trivial, which implies g = dimH1(X,O) = dimH0(X,O) = 1

However, in the case where G is a commutative group scheme, one can look at Ext1(G,Ga)
instead of H2(BG,O). In this case, Ext1(G,Ga) embeds inside H2(BG,O). One can further
formulate and prove the following proposition.
Proposition 6.1.11. Let G be a unipotent commutative affine group scheme over a field k. We
assume that dimH1(BG,O) = 1 and Ext1(G,Ga) = 0. Then the dual of G is a commutative
formal Lie group of dimension 1.

Proof. Since dimH1(BG,O) = 1, we can construct (as in the proof of Proposition 6.1.9) a natural
continuous surjection α : kJxK � A, where A is the dual of the Hopf algebra underlying G (see
Construction 6.1.1). In the case where α is an injective map of rings, we will show that α in fact
happens to be an isomorphism of topological rings, which would prove that the dual of G is a
formal Lie group. Indeed, if α is injective, it would be a ring theoretic isomorphism. To prove that
it is an isomorphism of topological rings, it would be enough to prove that kJxK/xn → A/Jn is
an isomorphism for all n ≥ 1. We already know that it is a surjection and hence dimA/Jn ≤ n.
Thus, it would be enough to show that dimA/Jn = n. Since α is an isomorphism of rings,
A is a discrete valuation ring with maximal ideal m = k⊥. By construction it follows that
mn ⊆ Jn = mn +E for any small enough open ideal E in A. However, that implies that mn = Jn
and thus dimA/Jn = dimA/mn = n.

Now we show that α must always be injective, which will finish the proof of the proposition.
Otherwise, assume for the sake of contradiction that α is not injective. Since kJxK is a discrete
valuation ring with uniformizer x, we must then have Kerα = (xn) and A ' kJxK/xn (as k-algebras)
for some n ∈ N. In other words, G must be a finite flat unipotent group scheme over k whose
Cartier dual G∨ has underlying scheme Spec k[x]/xn. Since H1(BG,O) = 1, we must furthermore
have n > 1.

Let LG∨/k denote the cotangent complex. Next, we will compute the co-Lie complex `G∨ :=
Le∗LG∨/k, where e : Spec k → G∨ is the unit section [Ill72b]. Since G∨ is a complete intersection
over Spec k, its cotangent complex is given by the complex

LG∨ ' (A · xn → A · dx)
with boundary map a · xn 7→ naxn−1 · dx. The morphism k[x]/xn → k corresponding to the unit
section e must contain nilpotents in its kernel and is thus given by x 7→ 0. Therefore,

`G∨ ' e∗(A · xn → A · dx) ' (k 0−→ k) ' k[1]⊕ k[0].
By Grothendieck’s formula [MM74, § 14.1],

RHomk(`G∨ ,O) ' τ≥−1RHom(G,Ga)
we must then have Ext1(G,Ga) ' Hom(k, k) ' k, contradicting the assumption. �

We will now generalize the above result when H1(BG,O) = g > 1 in the case where G is a
commutative unipotent affine group scheme G. We note that unlike the non-commutative case
studied in Proposition 6.1.9, in the commutative case, it is impossible to have H2(BG,O) = 0, i.e.,
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adding the assumption that G is commutative increases the size of H2(BG,O). In fact, as we will
see later, if G is commutative then dimH2(BG,O) ≥

(
g
2
)
. In fact, dimHn(BG,O) ≥

(
g
n

)
. In this

case, we have the following proposition.

Proposition 6.1.12. Let G be a unipotent commutative affine group scheme over a field k. We
assume that dimH1(BG,O) = g. Then dimHn(BG,O) ≥

(
g
n

)
. Further, if(

g

n

)
≤ dimHn(BG,O) <

∑
i≥0

(
g

n− 2i

)
for some n > 1, then dual of G is a commutative formal Lie group of dimension g; moreover, in
such a case dimHn(BG,O) =

(
g
n

)
for all n.

We will defer the proof of Proposition 6.1.12 since it will be deduced from the somewhat finer
proposition proven below. As before, instead of looking at H2(BG,O), one can contemplate the
subspace Ext1(G,Ga) and prove the following.

Proposition 6.1.13. Let G be a unipotent affine commutative group scheme over a field k such
that dimH1(BG,O) = g. Then the dual of G is a commutative formal Lie group of dimension g if
and only if Ext1(G,Ga) = 0.

Proof. The only if part follows from Remark 6.1.8. For the converse, let G = SpecR and A := R∗.
Similar to the argument at the beginning of the proof of Proposition 6.1.9, we have a surjection
kJx1, . . . , xgK → A; thus it follows that A is a commutative noetherian local k-algebra. Since
G is a commutative group scheme, it also follows that A is a quotient of the power series ring
kJx1, . . . , xgK by a regular sequence. Let us write A = kJx1, . . . , xgK/I for an ideal I. The maximal
ideal m of A is (x1, . . . , xg). Let m[pi] := (x1

pn

, . . . , xg
pn). We note that SpecA/m[pi] is naturally a

commutative group scheme over k and the induced maps SpecA/m[pi] → SpecA/m[pi+1] are group
scheme homomorphisms. The latter claim follows from the observation that SpecA/m[pi] is dual
to the group scheme G/V i, where V is the Verschiebung operator on G. Since G is unipotent, it
follows that G ' lim←−G/V

i. This implies that A ' lim←−iA/m
[pi]. Since m is finitely generated, the

system of ideals (m[pi])i≥1 generate the same topology as the m-adic topology on A. This implies
that A is m-adically complete.

We note that Hi(BG,O) ' ExtiA(k, k) by duality (cf. Proposition 6.1.5). In this situation,
by [Gul80], dim Ext2

A(k, k) = dim Tor2(k, k) =
(
g
2
)

+ b for some integer b ≥ 0. Therefore, if
Ext1(G,Ga) = 0, then by Lemma 6.1.14 proven below, it follows that b = 0. Further, if b = 0, then
(see [Gul80]) A is a regular complete local ring of dimension dim Tor1(k, k) = dim Ext1

A(k, k) =
dimH1(BG,O) = g. This implies that the surjection kJx1, . . . , xgK→ A constructed above must
be an isomorphism (of complete local rings), which finishes the proof. �

Lemma 6.1.14. Let G be a unipotent commutative group scheme over k such that dimH1(BG,O) =
g. Then dimH2(BG,O) =

(
g
2
)

+ dim Ext1(G,Ga).

Proof. In order to prove this, we can base change to a perfect field. Therefore, without loss of
generality, we will now assume that k is perfect. We note that there is a natural map

sG : H2(BG,O)→ Hom(G ∧G,Ga)
which concretely sends a 2-cocycle u : G × G → Ga to the associated alternating bilinear form
v : G×G→ Ga defined as v(x, y) := u(x, y)− u(y, x) for scheme theoretic points x, y of G. The
kernel of this map is naturally identified with Ext1(G,Ga). On the other hand, there is a map
Bil(G×G,Ga)→ H2(BG,O) which just regards a bilinear form as a 2-cocycle. Composition with
sG yields a map

tG : Bil(G×G,Ga)→ Hom(G ∧G,Ga).
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Since dim Hom(G,Ga) = g, it follows that dim Im(tG) =
(
g
2
)
. Therefore, we would be done if

we prove that Im(tG) = Im(sG) as subspaces of Hom(G ∧ G,Ga). We note that when k has
characteristic 2, it can happen that dim Hom(G∧G,Ga) >

(
g
2
)
. Thus the equality Im(tG) = Im(sG)

does not simply follow from dimension count in that case. Instead, we argue as below.
Since dimH1(BG,O) is finite, by Proposition 4.2.31, it follows that G is profinite. Therefore,

by (co)limit considerations, in order to prove that Im(tG) = Im(sG), we can additionally assume
that G is a finite group scheme. Therefore the Cartier dual G∨ is a local finite group scheme
over a perfect field k and it follows that O(G∨) ' k[x1, . . . , xg]

(xpv1
1 , . . . , xp

vg

s )
([Wat79, Sec. 14.4]); here g =

dim Hom(G,Ga) = dimTe(G∨) = dimH1(BG,O) = dim Ext1
O(G∨)(k, k) = dim Tor1(k, k). Since

O(G∨) is an Artinian local ring, we have dimH2(BG,O) = dim Ext2
O(G∨)(k, k) = dim Tor2(k, k) =(

g
2
)

+ b, where the last equality follows from [Gul80]. Since O(G∨) is also a complete intersection, it
follows from [Gul80, Rmk. 3.2] that 0 = dim O(G∨) = g− b. On the other hand, by Grothendieck’s
formula [MM74, § 14.1],

RHomk(`G∨ ,O) ' τ≥−1RHom(G,Ga).

Since O(G∨) ' k[x1, . . . , xg]
(xpv1

1 , . . . , xp
vg

s )
, it follows from explicitly computing the co-Lie complex `G∨ that

dim Ext1(G,Ga) = g. Combining the equalities obtained so far, we see that dimH2(BG,O) =(
g
2
)

+ b =
(
g
2
)

+ g =
(
g
2
)

+ dim Ext1(G,Ga). The latter implies that Im(tG) = Im(sG), which finishes
the proof. �

Proposition 6.1.15. Suppose that G be a unipotent commutative group scheme over k such that
dimH1(BG,O) = g. Then Hn(BG,O) is finite-dimensional for all n. Moreover, the generating
function

p(t) :=
∞∑
n=0

dimHn(BG,O) · tn

has the closed-form expression

p(t) = (1 + t)g
(1− t2)dim Ext1(G,Ga) .

Proof. If k has characteristic zero, the claim follows directly (see [DG70, IV, § 2, Prop. 4.2.b)]);
therefore we will assume that k has characteristic p > 0. By base change, we can moreover assume
that k is perfect.

First, we claim that H∗(BG,O) is generated by elements of degree 1 and 2. Since H1(BG,O) is
finite-dimensional, by Proposition 4.2.31, it follows that G is profinite. Therefore, by considering
filtered colimits, it is enough to show that H∗(BG,O) is generated by elements of degree 1 and
2 when G is additionally assumed to be finite. The Cartier dual G∨ of G is a local finite group
scheme over k. Since k is perfect, it follows that O(G∨) ' k[x1, . . . , xs]

(xpv1
1 , . . . , xp

vs

s )
([Wat79, Sec. 14.4]).

The latter is isomorphic to the group algebra of the finite abelian group Z/pv1Z× . . .× Z/pvsZ.
Therefore, by Cartier duality,

H∗(BG,O) ' Ext∗ k[x1,...,xs]

(x
pv1
1 ,...,x

pvs
s )

(k, k) ' H∗(B(Z/pv1Z× . . .× Z/pvsZ),O).

It is thus enough to prove that the group cohomology H∗(Z/pv1Z× . . .× Z/pvsZ, k) is generated
in degree 1 and 2. One can further reduce to the case of H∗(Z/pvZ, k), where the claim follows by
considering Tate resolutions (see, e.g., [CTVEZ03, Prop. 4.5.1]).

Returning to the setting of the proposition, let us write G = SpecR and A = R∗. As in the
proof of Proposition 6.1.13, one knows that A is a noetherian complete local ring with residue field
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k. By duality, H∗(BG,O) ' Ext∗A(k, k). In particular, Hi(BG,O) is a finite-dimensional vector
space. Since H∗(BG,O) is generated by elements of degree 1 and 2, it follows that the function
i 7→ dimHi(BG,O) has polynomial growth, i.e., there exists a polynomial f(t) ∈ Z[t] such that
dimHi(BG,O) ≤ f(i) for i� 0.6

Since we have dim Tori(k, k) = dim ExtiA(k, k) = dimHi(BG,O), we conclude that the function
i 7→ dim Tori(k, k) has polynomial growth. By [Gul80, Sec. 2, Thm. 2.3] and [Gul71], it follows

that we must have
∞∑
i=0

dim Tori(k, k)ti = (1 + t)g
(1− t2)l . Therefore, dimH2(BG,O) = dim Ext2

A(k, k) =

dim Tor2(k, k) =
(
g
2
)

+ l. By Lemma 6.1.14, we have l = dim Ext1(G,Ga); thus we obtain
∞∑
i=0

dimHi(BG,O)ti = (1 + t)g
(1− t2)dim Ext1(G,Ga) .

This finishes the proof. �

Proof of Proposition 6.1.12. Follows immediately from Proposition 6.1.13 and Proposition 6.1.15.
Indeed, Proposition 6.1.15 implies that for an arbitrary n > 1, dimHn(BG,O) ≥

(
g
n

)
with equality

if and only if Ext1(G,Ga) = 0. Also, by Proposition 6.1.15, dimHn(BG,O) <
∑
i≥0
(

g
n−2i

)
implies

that dim Ext1(G,Ga) = 0. �

Example 6.1.16. Suppose that k has characteristic 2. Let G be dual of the formal Lie group
Ĝa. Then there is a surjection G→ α2. In this case, it follows that dim Hom(G ∧G,Ga) = 1 (see
Example 3.3.21). However, we also have H2(BG,O) = 0. Since (e.g., by using a spectral sequence
analogous to [Mon21, Prop. 3.12]) one has an exact sequence 0→ Ext1(G,Ga)→ H2(BG,Ga)→
Hom(G ∧G,Ga)→ Ext2(G,Ga) it follows that Ext2(G,Ga) 6= 0 in this case.

Example 6.1.17. Let G be a commutative group scheme over a perfect field k whose dual is a
1-dimensional formal Lie group of height > 1. Then it follows that the Verschiebung operator on
G∨ induces the zero map on tangent space of G∨. This implies that Hom(Gperf,Ga) = 0. Since
Gperf is unipotent, it follows that Gperf is trivial. In other words, the maximal pro-étale quotient of
G is trivial.

We end this subsection with the following lemma that will be used in Section 7.2.

Lemma 6.1.18. Let G be a unipotent affine group scheme over a field k whose dual is a non-
commutative formal Lie group. Let H be a unipotent affine commutative group scheme over k.
Then Hi(BG,H) = 0 for all i > 2.

Proof. First, we consider the case H ' GI
a for some index set I. By Proposition 6.1.6 and

Lemma 5.1.10, we then have

Hi(BG,H) ' Hi(BG,O)I ' Extik{{X1,...,Xg}}(k, k)I ' 0

for all i > 1. If k is of characteristic zero, any unipotent affine commutative group scheme is of this
form by [DG70, IV, § 2, Prop. 4.2.b)], so we are done. Thus, we may from now on assume that k
has characteristic p > 0.

Next, we consider the case where the Verschiebung V : H(p) → H is 0. Then H fits into a short
exact sequence of affine commutative group schemes

0→ H → GI
a → GJ

a → 0

6For example, if dimH1(BG,O) = g and dimH2(BG,O) = h and p 6= 2, one can find such a polynomial f(t)
such that deg f(t) < h; if p = 2, one can find such a polynomial f(t) satisfying deg f(t) < g + h.
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for some index sets I and J by [DG70, IV, § 3, Thm. 6.6, Cor. 6.8]. Since Hi(BG,GI
a) =

Hi(BG,GJ
a ) = 0 for all i > 1 by the previous case, the associated long exact sequence in

cohomology shows that Hi(BG,H) = 0 for all i > 2.

Now, we consider the case when the n-fold Verschiebung V n : H(pn) → H is 0 for some n > 0.
Then H admits a finite decreasing filtration

H ⊇ V (H(p)) ⊇ · · · ⊇ V (n−1)(H(pn−1)) ⊇ V n(H(pn)) = 0,

in which the objects V j(H(pj)) and the graded pieces V j(H(pj))/V (j+1)(H(pj+1)) are unipotent
affine commutative group schemes that are annihilated by V n−j and V , respectively. Using the
long exact sequences in cohomology for the short exact sequences

0→ V (j+1)(H(pj+1))→ V j(H(pj))→ V j(H(pj))/V (j+1)(H(pj+1))→ 0

and induction on n, we obtain that Hi(BG,H) = 0 for all i > 2.
Finally, we consider the general case of unipotent group schemes over a field k of characteristic

p > 0. As before, we consider the decreasing filtration

H ⊇ V (H(p)) ⊇ · · · ⊇ V (N−1)(H(pN−1)) ⊇ V j(H(pj)) ⊇ · · · .

Let Hj := H/V j(π(pj)). Since H is unipotent, we have H ' lim←−j Hj . Since the transition morphisms
Hj+1 → Hj are surjective for all j, we have lim←−j Hj ' R lim←−j Hj by [BS15, Ex. 3.1.7, Prop. 3.1.10].
We conclude that

RΓ(BG,H) ' RΓ(BG,R lim←−
j

Hj) ' R lim←−
j

RΓ(BG,Hj);

the associated Milnor sequences take the form

0→ lim←−
j

1Hi−1(BG,Hj)→ Hi(BG,Hj)→ lim←−
j

Hi(BG,Hj)→ 0 (6.1.1)

for all i ≥ 0. Since the Verschiebung acts as zero on the unipotent affine commutative group schemes
V j(H(pj))/V (j+1)(H(pj+1)), the previous case applied to the long exact sequence in cohomology for
the short exact sequences

0→ V j(H(pj))/V (j+1)(H(pj+1))→ Hj+1 → Hj → 0

shows that the map Hi−1(BG,Hj+1)→ Hi−1(BG,Hj) is surjective for all i > 2 and all j ∈ N. In
particular, the Hi−1(BG,Hj) form a Mittag-Leffler system for any fixed i > 2; thus we see that
lim←−

1Hi−1(BG,Hj) = 0. Now, again by the previous case, it follows that Hi(BG,Hj) = 0 for i > 2.
Therefore, by (6.1.1), it follows that Hi(BG,H) = 0 for i > 2, which finishes the proof. �

6.2. Construction of formal Lie groups. Let k be a field. In this section, we establish equiva-
lences between certain kinds of objects of DAlgccn

k and formal Lie groups (see Proposition 6.2.1,
Proposition 6.2.2, Proposition 6.2.3). In particular, Proposition 6.2.1 proposes an answer to a
problem posed by Nori [Nor82, p. 75]. In a different context, when k = Fp, a classification for
differential graded algebras with exterior (co)homology was obtained earlier by Dwyer, Greenlees
and Iyengar [DGI13, Thm. 1.1] in terms of complete discrete valuation rings with residue field Fp. In
the g = 1 case, Proposition 6.2.1 provides a refinement of [DGI13, Thm. 1.1]: the differential graded
algebra RHomFpJxK(Fp,Fp) can further be equipped with the structure of a different (augmented)
“commutative algebra” structure for each 1-dimensional formal Lie group over Fp. The proofs
of Proposition 6.2.1, Proposition 6.2.2 and Proposition 6.2.3 use a geometric approach. More
specifically, we use the notion of affine stacks and the results regarding the representability of duals
of unipotent group schemes by formal Lie groups established in Section 6.1.
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In Construction 6.2.6, we will construct formal Lie groups as duals of unipotent homotopy group
schemes of certain higher stacks that will be used in Section 6.3 to recover the Artin–Mazur formal
groups [AM77] in many cases of interest.

Proposition 6.2.1. The full subcategory of the∞-category (DAlgccn
k )/k spanned by B ∈ (DAlgccn

k )/k
that satisfies H0(B) = k, dimH1(B) = g and Hi(B) = 0 for i > 1 is equivalent to the category
of non-commutative formal Lie groups over k of dimension g via the functor that sends a non-
commutative formal Lie group

E 7→ RΓ(BE∨,O).

Proof. Given a non-commutative formal Lie group E of dimension g, one can dualize and obtain
a possibly non-commutative affine unipotent group scheme G := E∨. We set B := RΓ(BG,O).
The map Spec k → BG provides a natural augmentation B → k. Further, it also follows from
Proposition 6.1.6 that H0(B) = k, dimH1(B) = g and Hi(B) = 0 for i > 1. This shows that the
functor described in the above proposition indeed lands in the desired subcategory of (DAlgccn

k )/k.

Now we describe a functor in the opposite direction. Given a B ∈ (DAlgccn
k )/k satisfying the

properties in the proposition, one can look at SpecB as an affine stack; this is naturally a pointed and
connected higher stack. It follows that π1(SpecB) is representable by a possibly non-commutative
unipotent affine group scheme H. There is a natural map of pointed stacks SpecB → BH
arising via the 1-truncation. By Proposition 2.1.19, the natural map H1(BH,O)→ H1(B) is an
isomorphism and H2(BH,O)→ H2(B) = 0 is injective. This implies that dimH1(BH,O) = g and
dimH2(BH,O) = 0. Therefore by Proposition 6.1.9, it follows that dual of H is a non-commutative
formal Lie group. By the discussion in the previous paragraph, it also follows that Hn(BH,O) = 0
for n > 1 so that the map SpecB → BH induces an isomorphism on cohomology with coefficients
in the structure sheaf. This implies that the natural map SpecB → BH is an isomorphism since
the target is an affine stack. Using Remark 3.1.4, one sees that the full subcategory of (DAlgccn

k )/k
as in the proposition is equivalent to an ordinary 1-category. Therefore, the functor

B 7→ π1(SpecB)∨

gives an inverse to the functor described in the proposition, proving the desired equivalence. �

Proposition 6.2.2. The full subcategory of the∞-category (DAlgccn
k )/k spanned by B ∈ (DAlgccn

k )/k
that satisfies H0(B) = k, dimkH

1(B) = g, H∗(B) ' ∧∗H1(B) and π1(SpecB) is commutative is
equivalent to the category of commutative formal Lie groups over k of dimension g via the functor
that sends a formal Lie group

E 7→ RΓ(BE∨,O).

Proof. By Proposition 6.1.7, we see that the functor described in the above proposition indeed
lands in the desired subcategory of (DAlgccn

k )/k.

Now we describe a functor in the opposite direction. Given a B ∈ (DAlgccn
k )/k satisfying the

properties in the proposition, we look at SpecB which is naturally equipped with the structure of a
pointed connected higher stack. It follows from the hypothesis that π1(SpecB) is representable by a
commutative unipotent affine group scheme G. There is a natural map of pointed stacks SpecB →
BG arising via 1-truncation. By Proposition 2.1.19, the natural map H1(BG,O) → H1(B) is
an isomorphism and H2(BG,O) → H2(B) is injective. Therefore, dimkH

2(BG,O) ≤
(
g
2
)
. By

Proposition 6.1.12, it follows that G∨ is a formal Lie group of dimension g. By Proposition 6.1.7, it
follows that the natural map SpecB → BG induces an isomorphism on cohomology with coefficients
in the structure sheaf and therefore is an isomorphism since the target is an affine stack. Using
Remark 3.1.4, one sees that the full subcategory of (DAlgccn

k )/k as in the proposition is equivalent
to an ordinary 1-category. Therefore, the functor

B 7→ π1(SpecB)∨
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gives an inverse to the functor described in the proposition, proving the desired equivalence. �

Proposition 6.2.3. The full subcategory of the∞-category (DAlgccn
k )/k spanned by B ∈ (DAlgccn

k )/k
that satisfies H0(B) = k, dimkH

2(B) = g and H∗(B) ' Sym∗H2(B) is equivalent to the category
of commutative formal Lie groups over k of dimension g via the functor that sends a formal Lie
group

E 7→ RΓ(K(E∨, 2),O).

Proof. Let G = E∨. First we show that H∗(K(G, 2),O) ' Sym∗H2(K(G, 2),O). Note that by
Proposition 6.1.7, we have H∗(BG,O) ' ∧∗H1(BG,O). By applying faithfully flat descent along
Spec k → K(G, 2), we obtain a spectral sequence

Ei,j1 = Hj((BG)i,O) =⇒ Hi+j(K(G, 2),O),
where (BG)i denotes the i-fold fibre product of BG with itself. One can analyze this spectral
sequence in a manner entirely analogous to [Mon21, § 3.3]. Indeed, similar to [Mon21, Lem. 3.25],
we obtain that the complex E•,11 ' H1(BG)[−1]. Similar to [Mon21, Lem. 3.27], one obtains
that E•,n1 ' Symn(H1(BG,O))[−n]. Thus we obtain the desired calculation H∗(K(G, 2),O) '
Sym∗H2(K(G, 2),O). The object RΓ(K(G, 2),O) ∈ DAlgccn

k is also naturally augmented via the
map induced from Spec k → K(G, 2). This shows that the functor E 7→ RΓ(K(E∨, 2),O) indeed
lands in the desired subcategory of (DAlgccn

k )/k.

Now we describe a functor in the opposite direction. Given a B ∈ (DAlgccn
k )/k satisfying the

properties in the proposition, we look at SpecB, which is naturally a pointed connected higher stack.
By Proposition 3.2.11, since H1(B) = 0, it follows that τ≤2 SpecB ' K(H, 2) for some unipotent
commutative group scheme H. By Proposition 2.1.19, it follows that H3(K(H, 2),O) naturally
embeds into H3(B). However, by assumption the latter is zero. Therefore H3(K(H, 2),O) = 0. By
Lemma 3.2.10, this implies that Ext1(H,Ga) = 0 and dimk Hom(H,Ga) = dimkH

2(K(H, 2),O) =
dimkH

2(B) = g. By Proposition 6.1.13, it follows that H∨ is a formal Lie group of dimension
g. By the calculation of cohomology of K(H, 2) when H∨ is a formal Lie group discussed in the
previous paragraph, it follows that the natural map SpecB → K(H, 2) is an isomorphism since the
target is an affine stack. By delooping and using Remark 3.1.4, one sees that the full subcategory
of (DAlgccn

k )/k as in the proposition is equivalent to an ordinary 1-category. Therefore, the functor
B 7→ π2(SpecB)∨

gives an inverse to the functor described in the proposition, which proves the desired equivalence. �

Remark 6.2.4. In Proposition 6.2.3, B := RΓ(K(E∨, 2),O) acquires a natural coalgebra structure,
which is induced from the coalgebra structure of O(E∨) via a two-fold application of the cobar
construction [Lur17, § 5.2.3]. To identify this coalgebra structure, note that there is a canonical
isomorphism of cocommutative coalgebras O(E∨) ' Γ∗(V ) where V is the vector space of dimension
g given by the tangent space of the formal group E. This equivalence, under the two-fold cobar
construction, produces an isomorphism B ' Γ∗(V [−2]) of coalgebras.7 Since the tangent space
as an abstract vector space does not depend on the formal group, the cocommutative coalgebra
structure of Γ∗(V ) is also independent of the formal group. As a consequence, the isomorphism
class of the coalgebra structure on B does not depend on the formal group E and is given by
Γ∗(V [−2]) ' Γ∗(H2(B)[−2]). Roughly speaking, this should be seen as arising from the fact that
the topological algebra structure of the formal group E is Sym∗(V )∧, which does not depend on the
formal group E. However, the augmented algebra structure of B depends crucially on the formal
group E, as Proposition 6.2.3 shows. Similarly, in the context of Proposition 6.2.2, the coalgebra
structure on B′ := RΓ(BE∨,O) is given by Γ∗(H1(B′)[−1]).

7Here we use that Γ∗(V1 ⊕ V2) ' Γ∗(V1)⊗k Γ∗(V2), and the two-fold cobar construction applied to V viewed as
a cogroup via the diagonal map is equivalent to V [−2].
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Proposition 6.2.5. Let n ≥ 1 be a fixed integer. Let B ∈ (DAlgccn
k )/k be such that H0(B) =

k,Hi(B) = 0 for 0 < i < n, dimHn(B) = g and Hn+1(B) = 0. Then the dual of πn(SpecB) is
a commutative formal Lie group of dimension g for n > 1 and is a non-commutative formal Lie
group of dimension g if n = 1.

Proof. It follows that SpecB is naturally a pointed and connected affine stack and πn(SpecB) is
representable by a unipotent affine group scheme G, which is commutative when n > 1. Since
Hi(B) = 0 for all 0 < i < n, Proposition 3.2.11 shows that πi(SpecB) is trivial for all 0 ≤ i < n.
In other words, τ≤n SpecB ' K(G,n). Therefore, we have a natural map SpecB → K(G,n).
Further, by Proposition 2.1.19, the induced map Hn(K(G,n),O) → Hn(B) is an isomorphism
and Hn+1(K(G,n),O) → Hn+1(B) = 0 is injective. This implies that Hn+1(K(G,n),O) = 0.
By Lemma 3.2.10, it follows that dim Hom(G,Ga) = g and if n > 1, then Ext1(G,Ga) =
Hn+1(K(G,n),O) = 0. By applying Proposition 6.1.9 when n = 1 and Proposition 6.1.13 when
n > 1, we obtain the desired statements. �

Construction 6.2.6 (Formal Lie groups via unipotent homotopy group schemes). Let n ≥ 1 be a
fixed positive integer. Let X be a pointed higher stack over k such that H0(X,O) ' k,Hi(X,O) = 0
for 0 < i < n, dimHn(X,O) = g and Hn+1(X,O) = 0. By letting B := RΓ(X,O), as a consequence
of Proposition 6.2.5, it follows that πn(X)∨ is a commutative formal Lie group of dimension g for
n > 1 and is a non-commutative formal Lie group of dimension g if n = 1.
6.3. Recovering the Artin–Mazur formal groups. In this section, we show that our unipotent
homotopy group schemes recover the Artin–Mazur formal groups from [AM77] for many cases of
interest. Throughout this section, we fix an integer n ≥ 1. Further, let X be a proper scheme over
an algebraically closed field k of characteristic p > 0 (equipped with a k-rational point) satisfying
the conditions

H0(X,O) ' k, Hi(X,O) = 0 for all 0 < i < n, and Hn+1(X,O) = 0. (∗)
Examples of such varieties include curves, Calabi–Yau varieties of dimension n (see Definition 7.1.1)
and their blow-ups. When X is a surface and n = 2, the condition (∗) translates to the condition
that the irregularity of X is 0. One can also obtain more examples by considering suitable products
of schemes that satisfy (∗). Let us now begin by recalling the relevant formal Lie groups constructed
by Artin–Mazur [AM77].
Definition 6.3.1 ([AM77, § II.1, § II.4]). Let n ≥ 1 be an integer and X be a scheme satisfying
(∗). Then the contravariant functor

ΦnX : (Art/k)op → Ab, S 7→ Ker
(
Hn

ét(XS ,Gm)→ Hn
ét(X,Gm)

)
from the category of finite Artinian k-schemes to the category of abelian groups is pro-representable
by a commutative formal Lie group over k of dimension dimkH

n(X,OX). We call ΦnX the Artin–
Mazur formal Lie group of X.

Let us now recall the following construction based on unipotent homotopy group schemes.
Construction 6.3.2. Let n ≥ 1 be a fixed integer and let X be a proper scheme as in (∗). By
Construction 6.2.6, πU

n (X)∨ is a commutative formal Lie group of dimension dimkH
n(X,O) for

n > 1 and a non-commutative formal Lie group of dimension dimkH
n(X,O) if n = 1.

We will show in Proposition 6.3.6 that Construction 6.3.2 recovers the Artin–Mazur formal Lie
group. One of the concrete advantages of Construction 6.3.2 is that it does not require using the
étale cohomology groups; in particular, when n = 1, dual of πU

1 (X) gives a non-commutative formal
Lie group attached to X, which would not be seen by the Artin–Mazur formal Lie group. In other
words, Construction 6.3.2 recovers the commutative formal Lie group constructed by Artin–Mazur
[AM77] as well as the non-commutative formal Lie group constructed by Nori (for curves) in [Nor82,
§ IV, Prop. 4].
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To state the main result about Artin–Mazur formal Lie groups that we will use, we need the
following notions:

(1) Serre’s Witt vector cohomology Hn(X,W ) := lim←−rH
n
Zar(X,Wr) of a proper scheme X from

[Ser58, § 5], where Wr is the sheaf of truncated Witt vectors of length r on X
(2) Duality between the categories of commutative formal groups and commutative affine group

schemes over a field from Remark 5.2.3.
Using these notions, one can describe the Dieudonné module of the Artin–Mazur formal Lie group,
as we note below. First, we recall that for a commutative formal Lie group E over a perfect field k
of characteristic p > 0, its Dieudonné module is defined to be (cf. [Zin84, Thm. 4.15])

M(E) := Hom(Ŵ , E), (6.3.1)

where Ŵ is the infinite-dimensional, commutative formal group obtained from formally completing
the group scheme of p-typical Witt vectors W at zero. The following proposition expresses the
Dieudonné module of the Artin–Mazur formal Lie group of X in terms of Serre’s Witt vector
cohomology.

Proposition 6.3.3 ([AM77, Cor. 4.3]). Let n ≥ 1 be an integer and X be a proper scheme as in
(∗). Then there is a natural isomorphism M(ΦnX) ' Hn(X,W ).

Before we proceed further, let us note the following lemma, which expresses the Dieudonné
module of a formal Lie group in terms of its dual group scheme.

Lemma 6.3.4. Let M(E) denote the Dieudonné module of a commutative formal Lie group E
over a perfect field k of characteristic p > 0. Then we have a natural isomorphism

M(E) ' Hom(E∨,W ),
where E∨ is the (unipotent) group scheme dual to E.

Proof. This amounts to the statement that (Ŵ )∨ 'W . In order to see this, let A be an arbitrary k-
algebra. Then the group of p-typical curves on (Ĝm)A is naturally isomorphic to Hom(ŴA, (Ĝm)A),
where the homomorphisms are taken in the category of formal groups. Now, by the Artin–
Hasse exponential ([Haz12, Prop. 15.3.8, Prop. 17.4.23]), one has a natural isomorphism W (A) '
Hom(ŴA, (Ĝm)A). This proves the desired statement. �

Remark 6.3.5. Let E be a commutative formal group of finite height (i.e., p : E → E is an isogeny
of height h) over a perfect field k of characteristic p > 0. Then M(E) from (6.3.1) is naturally
isomorphic to σ∗M(E[p∞]∨) from Theorem 5.3.3 where E[p∞] is the p-divisible group (E[pn])n≥1
of height h obtained from E; see the corollary on [Fon77, p. 255] or [Hed21, Thm. 3.34].

Proposition 6.3.6. Let n ≥ 1 be an integer and let X be a proper scheme as in (∗). Then if n > 1,
ΦnX is naturally isomorphic to the dual πU

n (X)∨ of the n-th unipotent homotopy group scheme of
X. If n = 1, ΦnX is naturally isomorphic to (πU

1 (X)ab)∨.

Proof. Let us first suppose that n > 1. It will suffice to exhibit a natural isomorphism
M(πU

n (X)∨) ∼−→M(ΦnX) ' Hn(X,W )
of the associated Dieudonné modules. Since (by Lemma 6.3.4) we have

M(πU
n (X)∨) ' Hom(πU

n (X),W ) ' lim←−
r

Hom(πU
n (X),Wr),

it is in fact enough to give compatible natural isomorphisms
vr : Hom(πU

n (X),Wr)
∼−→ Hn(X,Wr),

where the homomorphisms are taken in the category of commutative group schemes over k and
Hn(X,Wr) denotes Hn

Zar(X,Wr) ' Hn
fpqc(X,Wr).
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We begin with the construction of vr. By Corollary 3.2.12, the assumption (∗) guarantees that
τ≤nU(X) ' K(πU

n (X), n). Since K(Wr, n) is n-truncated, we obtain maps
Hom(πU

n (X),Wr)→ π0 Map(K(πU
n (X), n),K(Wr, n)) ' π0 Map(U(X),K(Wr, n))

Since Wr is unipotent, K(Wr, n) is an affine stack (Theorem 2.1.17). Therefore, we have
π0 Map(U(X),K(Wr, n)) ' π0 Map(X,K(Wr, n)) ' Hn(X,Wr).

Composing these maps, we obtain the desired maps
vr : Hom(πU

n (X),Wr)→ Hn(X,Wr),
which are compatible in r. We will now inductively show that

(ar) Hn+1(X,Wr) = 0,
(br) Ext1(πU

n (X),Wr) = 0, and
(cr) vr is an isomorphism

for all r ≥ 1. For r = 1, we have W1 ' Ga; therefore the assertions follow directly from the fact
that Hn+1(X,O) = 0, Proposition 6.1.13 and Corollary 3.2.12. For the induction step, let us
assume that (ar), (br) and (cr) hold. The short exact sequences of commutative group schemes

0→Wr →Wr+1 → Ga → 0 (6.3.2)
induces an exact sequence

Hn+1(X,Wr)→ Hn+1(X,Wr+1)→ Hn+1(X,Ga),
which yields (ar+1). The short exact sequence (6.3.2) also induces an exact sequence

Ext1(πU
n (X),Wr)→ Ext1(πU

n (X),Wr+1)→ Ext1(πU
n (X),Ga),

giving (br+1). We also obtain a diagram

0 Hom(πU
n (X),Wr) Hom(πU

n (X),Wr+1) Hom(πU
n (X),Ga) 0

0 Hn(X,Wr) Hn(X,Wr+1) Hn(X,O) 0.

vr vr+1 v1

In order to see that the rows above are indeed short exact, we recall that Hn−1(X,O) = 0
by assumption (∗) and Ext1(πU

n (X),Wr) = Hn+1(X,Wr) = 0 by (br) and (ar). Thus, vr+1 is an
isomorphism, which yields (cr+1) and finishes the proof. The case n = 1 follows exactly the same
way by working with πU

1 (X)ab. �

Construction 6.3.7. Let X be a variety over an algebraically closed field k equipped with a k-
rational point x satisfying the conditions as in (∗). Let E = ΦnX . By the proof of Proposition 6.3.6, we
obtain maps X → U(X) −→ τ≤nU(X) ∼−→ K(πU

n (X), n) ∼−→ K(E∨, n) of higher stacks. This defines
a canonical class (does not depend on the choice of x) ξAM

H ∈ π0Maps(X,K(E∨, n)) ' Hn(X,E∨)
that we call the Artin–Mazur–Hurewicz class. By construction, the class ξAM

H induces a canonical
isomorphism τ≤nU(X) ' K(E∨, n) in the homotopy category of higher stacks.

Remark 6.3.8. Note that the proof of Proposition 6.3.6 shows more generally that in the situation
of Construction 6.2.6, the Dieudonné module of the (abelianization) of the formal Lie group πU

n (X)∨
is given by Hn(X,W ).

Construction 6.3.9 (Formal groups associated to de Rham cohomology). Let X be a smooth
proper scheme over an algebraically closed field k of characteristic p > 0 and n ≥ 1 be an integer
such that Hi

dR(X) = 0 for 0 < i < n and Hn+1
dR (X) = 0; for n = 2, an interesting class of examples

is supplied by K3 surfaces over k. Let XdR be the mod p reduction of the stack W (Xperf)/G , where



UNIPOTENT HOMOTOPY THEORY OF SCHEMES 79

we use Xperf to denote the perfection of X and G is the flat affine groupoid from [Dri22]. By [Dri22,
Thm. 2.4.2.(iii)], Hi

dR(X) ' Hi(XdR,O). Therefore, by Construction 6.2.6, (the abelianization of)
πU
n (XdR)∨ is a formal Lie group of dimension dimkH

n
dR(X), whose Dieudonné module is given by

Hn(XdR,W ).

Remark 6.3.10. In [AM77, § III], Artin and Mazur constructed certain formal groups ΦnDR(X/k,Gm)
from the multiplicative de Rham complex. Our Construction 6.3.9 recovers these in the above
situation, i.e., we have ΦnDR(X/k,Gm) ' (πU

n (XdR)ab)∨. To prove this, it would be enough to show
that the Dieudonné module of ΦnDR(X/k,Gm) is isomorphic to Hn(XdR,W ). Since this does not
appear in [AM77] or elsewhere in the literature, we sketch an argument that relies on some p-adic
Hodge theory. To this end, let B denote a smooth k-algebra and let FdR×(B)(k[t]/tr) denote the
complex of abelian groups

(1 + t(k[t]/tr)⊗k B) dlog−−→ t(k[t]/tr)⊗k Ω1
B/k

d−→ t(k[t]/tr)⊗k Ω2
B/k

d−→ · · · . (6.3.3)

Set m := tk[t]/tr. Note that for any non-unital commutative ring I over k, (1+m⊗k I) has a natural
abelian group structure induced from multiplication as polynomials, and we view (1 + m ⊗k B)
above with this group structure. By Cartier’s theory of p-typical curves (see e.g. [AM77, § I.3]), for
the desired isomorphism of Dieudonné modules, it would be enough to show that

FdR×(B)(k[t]/tr) ' RΓ((SpecB)dR, 1 + tk[t]/trO) =: RΓ((SpecB)dR, 1 + mO)
in the derived category of abelian groups. Note that we have a fiber sequence

1 + mFil1Hodge Ω•B → RΓ((SpecB)dR, 1 + mO)→ 1 + mB.

By Lemma 6.3.11 below, in the derived category, we have an isomorphism exp: mFil1Hodge Ω•B '
1 + mFil1Hodge Ω•B . This gives a natural map

1 + mB → mFil1Hodge Ω•B [1] '
[
m⊗k Ω1B

d−→ m⊗k Ω2B
d−→ · · ·

]
,

necessarily induced by a map of abelian groups 1 +mB → m⊗k Ω1B that identifies with dlog. This
identifies the fiber of the map 1 + mB → mFil1Hodge Ω•B [1] with the complex (6.3.3), which finishes
the proof.

In the above remark, Fil1Hodge Ω•B can be realized as a cosimplicial non-unital ring since by
descent along B → Bperf (cf. [BMS19, Rmk. 8.15]) one has

Fil1Hodge Ω•B ' lim
(

Fil1PD Acrys(Bperf)/p //// Fil1PD Acrys(Bperf ⊗B Bperf)/p ////// · · ·
)

;
(6.3.4)

see [BMS19, Prop. 8.12] and [Mon22a, Ex. 3.5.5]. This equips 1 + mFil1Hodge Ω•B with the structure
of a cosimplicial abelian group, which can be viewed as an object of the derived category, as used
in Remark 6.3.10. The following lemma was also used above.

Lemma 6.3.11. In the above set up, there is a natural isomorphism

exp: mFil1Hodge Ω•B ' 1 + mFil1Hodge Ω•B .

Proof. Let A be a commutative k-algebra and I ⊂ A be an ideal equipped with divided powers.
This induces a divided power structure γi : I[t]/tr → A[t]/tr on the ideal I[t]/tr ⊂ A[t]/tr. We
therefore obtain a map exp: tI[t]/tr → 1 + tI[t]/tr defined by exp(c) :=

∑
i≥0 γi(c), which is

well-defined since t is nilpotent in A[t]/tr. The map 1 + tI[t]/tr → tI[t]/tr given by 1 + c 7→
log(1 + c) :=

∑
i≥1(−1)i+1(i− 1)! γi(x) is an inverse to exp. Setting m := tk[t]/tr as before, this

gives an isomorphism exp: mI ' 1 + mI.
Now let S be a quasi-regular semiperfect ring ([BMS19, Def. 4.20]). Then Fil1 Acrys(S)/p is an

ideal of Acrys(S)/p equipped with divided powers. Since the rings Bperf ⊗B · · · ⊗B Bperf appearing
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in (6.3.4) are all quasi-regular semiperfect, applying the discussion from the previous paragraph
yields the desired isomorphism. �
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7. Calabi–Yau varieties and homotopy of spheres

7.1. Unipotent homotopy groups of weakly ordinary Calabi–Yau varieties. In this sec-
tion, we apply the unipotent homotopy theory developed in our paper to the study of Calabi–Yau
varieties. We will begin by proving that the p-adic étale homotopy type of a weakly ordinary
n-dimensional Calabi–Yau variety is equivalent to the p-completed n-sphere. This implies (Re-
mark 7.1.4) that the unipotent homotopy groups of a weakly ordinary Calabi–Yau variety are
isomorphic to (the affine group schemes associated with) the unstable p-adic homotopy groups of
the n-sphere.

Definition 7.1.1. Let k be an algebraically closed field of characteristic p > 0. A Calabi–Yau
variety over k is a smooth, projective variety X over k such that

(1) the canonical bundle ωX ' OX ;
(2) Hi(X,O) = 0 for 0 < i < dimX.

Remark 7.1.2. A Calabi–Yau variety is weakly ordinary if and only if the Artin–Mazur formal Lie
group ΦnX is isomorphic to Ĝm; this follows from the isomorphism Hn(X,O) ' Hom((ΦnX)∨,Ga)
and Example 6.1.17 (by using duality).

The following result shows that the p-adic étale homotopy type of a weakly ordinary Calabi–Yau
variety is isomorphic to the p-completed n-sphere (Sn)∧p ; our proof will freely make use of the
notions introduced in [AM69]; see also the discussion following Definition 4.4.2.

Proposition 7.1.3. Let X be a weakly ordinary Calabi–Yau variety of dimension n ≥ 2. Then
Ét(X)∧p is isomorphic to the p-completed n-sphere (Sn)∧p , considered as an object of Pro(Sp-fc).

Proof. Since the X is weakly ordinary, by Remark 4.4.8, we have
SpecRΓét(X, k) ' SpecRΓ(X,O) ' U(X).

As Hi(X,O) = 0 for 0 < i < n, it follows from Corollary 3.2.12 that πU
i (X) ' πét

i (X)p is the trivial
group scheme for 0 < i < n. Combined with Proposition 4.4.3, this implies that πi(Ét(X)∧p ) is
trivial as a pro-p-finite group for 0 < i < n. Further, we have Hom(πU

n (X),Ga) ' Hn(X,O), which
is nonzero. By Proposition 4.4.3, this implies that the pro-p-finite group πn(Ét(X)∧p ) is nonzero.
Moreover, since X is a weakly ordinary Calabi–Yau variety, it follows that the Artin–Mazur formal
Lie group of X is isomorphic to Ĝm. By Proposition 6.3.6, this implies that πU

n (X) is isomorphic
to the profinite group scheme Zp. Another application of Proposition 4.4.3 yields that πn(Ét(X)∧p )
is isomorphic to the profinite group Zp.

This implies that there is a map Sn → Ét(X)∧p in Pro(S) which induces the map Z 1 7→1−−−→ Zp on πn;
here, Sn is considered as a constant pro-object. By the universal property of pro-p-finite completion,
we get a map (Sn)∧p → Ét(X)∧p in Pro(Sp-fc). This induces a map C∗(Ét(X)∧p , k)→ C∗((Sn)∧p , k).
We will show that this map is an isomorphism. To do so, we recall that Hi(Ét(X)∧p , k) '
Hi

ét(X, k) ' Hi(X,O) for all i ≥ 0. Therefore, it would be enough to show that the induced map
Hn(Ét(X)∧p , k) → Hn((Sn)∧p , k) is nonzero (since they are both 1-dimensional k-vector spaces).
For the latter, it would be enough to show that the composition Hn(Ét(X)∧p , k)→ Hn((Sn)∧p , k)→
Hn(Sn, k) is nonzero. However, we recall that by construction, the map Sn → Ét(X)∧p induces
the map Z 1 7→1−−−→ Zp of pro-homotopy groups. By [AM69, Cor. 4.5], this implies that the map on
pro-homology groups is also given by Z 1 7→1−−−→ Zp. Since Hn−1(Ét(X)∧p ) and Hn−1(Sn) are both zero
as pro-objects, it follows from the universal coefficient theorem that Hn(Ét(X)∧p , k) and Hn(Sn, k)
are both pro-isomorphic to k. Further, the map Hn(Sn, k) → Hn(Ét(X)∧p , k) is identified with
the map k

1 7→1−−−→ k of k-vector spaces. This implies that the map Hn(Ét(X)∧p , k)→ Hn(Sn, k) is
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nonzero, which establishes that the map C∗(Ét(X)∧p , k)→ C∗((Sn)∧p , k) is an isomorphism. Now,
applying Remark 4.4.4 proves the claim in the proposition. �

Remark 7.1.4. Via Remark 4.4.8, Proposition 7.1.3 has the following consequence: Let X be
a weakly ordinary Calabi–Yau variety of dimension n ≥ 2. Then πU

i (X) is the group scheme
associated with the profinite group πi((Sn)∧p ) for all i ≥ 0. In fact, over an algebraically closed
field k of characteristic p > 0, the unipotent homotopy type of an ordinary Calabi–Yau variety of
dimension n is isomorphic to the unipotent homotopy type of the n-sphere.
7.2. Derived equivalent Calabi–Yau varieties. Let X and Y be two smooth, projective alge-
braic varieties over a field k such that the categories Dperf(X) and Dperf(Y ) of perfect complexes
on X and Y are equivalent as k-linear triangulated categories. In such a case, we say that X and
Y are derived equivalent or Fourier–Mukai equivalent. A very natural question arising from the
foundational work of Bondal–Orlov [BO01] is the following: if X and Y are derived equivalent,
what can we say about the algebraic varieties X and Y ? Bondal and Orlov proved that if two
smooth projective varieties X and Y with ample (anti-)canonical bundle are derived equivalent,
then X and Y are isomorphic as varieties.

We say that an invariant h of algebraic varieties is a derived invariant if h(X) ' h(Y ) whenever
X and Y are derived invariant. There are many questions and conjectures regarding whether
certain invariants of algebraic varieties, such as the Hodge numbers hi,j , are derived invariants or
not. Such questions can be asked not only for numerical but also for categorical invariants. For
example, a conjecture of Orlov [Orl05] asks whether the rational Chow motive M(·)Q of a smooth
projective variety is a derived invariant.

Since our paper introduces the notion of unipotent homotopy types of algebraic varieties, it is
natural to ask the following question.
Question 7.2.1. For what class of smooth projective varieties X and Y over an algebraically closed
field k does Dperf(X) ' Dperf(Y ) as k-linear triangulated categories imply that U(X) ' U(Y )?

If X and Y have ample (anti-)canonical bundles, then the answer is clearly yes because X and
Y are isomorphic as algebraic varieties by [BO01]. However, the following example coming from
the recent work of Addington–Bragg [ABP23] would quickly show that this question is too strong
to have a positive answer in general.
Example 7.2.2 (Addington–Bragg). There exist smooth projective threefolds X and M over the
field F3 which are derived equivalent but satisfy dimHi(X,O) = 0 whereas dimHi(M,O) = 1 for
1 ≤ i ≤ 2. This shows that U(X) ' U(M) cannot be true since RΓ(X,O) cannot be isomorphic to
RΓ(Y,O). In fact, in the language of unipotent fundamental group schemes, it follows that in this
case, πU

1 (X) is trivial, whereas πU
1 (M) is nontrivial.

We remind the reader that according to Definition 7.1.1, the variety M is not a Calabi–Yau
variety. Moreover, as we saw in Remark 5.3.10, Question 7.2.1 is too strong even under the
additional assumption that dimHi(X,O) = dimHi(Y,O). The main goal of this subsection is to
prove Theorem 7.2.3 which addresses Question 7.2.1 affirmatively for Calabi–Yau varieties, and
Theorem 7.2.4, which gives a much stronger functorial refinement of Theorem 7.2.3.
Theorem 7.2.3. Let X and Y be two Calabi–Yau varieties of dimension n (cf. Definition 7.1.1)
over an algebraically closed field k of characteristic p > 0 such that Dperf(X) ' Dperf(Y ). Then
there is an isomorphism U(X) ' U(Y ) of unipotent homotopy types of X and Y .

Theorem 7.2.4. Let k be an algebraically closed field of characteristic p > 2 and n > 2 be an
integer. Let U : CYn → hShv(k) be the functor obtained by sending X to the unipotent homotopy
type U(X). Then there is a canonical functor Ũ : NCYop

n → hShv(k) such that Ũ ◦ N is naturally
equivalent to U. (See Definition 1.0.13.)
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Remark 7.2.5. Note that since the canonical bundle of a Calabi–Yau variety is trivial, the
techniques from [BO01] do not yield useful conclusions. Instead, the techniques we use to prove
the above two results are more of a homotopical nature and work more generally for smooth proper
n-dimensional varieties that satisfy the conditions (∗) from Section 6.3.

Let us give an outline of the proof of Theorem 7.2.3 (Theorem 7.2.4 will need additional
ingredients that will be discussed later). In their recent work [AB22], Antieau and Bragg prove
that if X and Y are derived equivalent Calabi–Yau varieties of dimension n, then the Artin–Mazur
formal Lie groups ΦnX and Φn

Y are naturally isomorphic. The key ingredient in [AB22] is the use
of topological Hochschild homology, which attaches a p-typical cyclotomic spectrum THH(X) to
the variety X. By definition, THH(X) is manifestly a derived invariant since its definition only
depends on Dperf(X). To any p-typical cyclotomic spectrum C, there is a construction of Hesselholt
[Hes96] that attaches a new spectrum TR(C) with an S1-action and natural endomorphisms F
and V . For the Calabi–Yau variety X, one sets TR(X) := TR(THH(X)). In their paper, using
the descent spectral sequence, Antieau and Bragg observe that the Dieudonné module of Φn

X is
naturally isomorphic to π−nTR(X), which shows that ΦnX is a derived invariant.

In our paper, we gave a reconstruction of ΦnX based on the unipotent homotopy theory developed
here. In particular, Proposition 6.3.6 shows that ΦnX is dual to the unipotent group scheme πU

n (X).
When X is a ordinary Calabi–Yau, one knows that πU

n (X) is the profinite group scheme Zp, which
is dual to the formal Lie group Ĝm. By Proposition 7.1.3, we know that in this case U(X) is
isomorphic to the unipotent homotopy type of the (p-completed) n-sphere Sn. Motivated by this,
we take the following approach in order to prove the derived invariance of the unipotent homotopy
type of Calabi–Yau varieties.

(1) Construct a notion of “formal n-sphere” SnE for every 1-dimensional formal Lie group E
defined over k. SnE will be defined to be a pointed higher stack.

(2) Prove that U(X) ' U(SnΦn(X)).
We now proceed towards realizing the two steps above. First, we focus on some preliminaries. As

before, let Shv(k) denote the category of (higher) stacks over k. Let Shv(k)∗ denote the category
of pointed (higher) stacks over k. Recall that there is a functor

Ω: Shv(k)∗ → Shv(k)∗, X 7→ ΩX := ∗ ×X ∗.
This functor has a left adjoint Σ: Shv(k)∗ → Shv(k)∗, called the suspension functor.

Lemma 7.2.6. Let G be a commutative group scheme over k. Let X ∈ Shv(k)∗. Suppose that
Hn(Spec k,G) = 0 for all n > 0. Then Hn(X,G) = π0MapShv(k)∗(X,K(G,n)) for n > 0.

Proof. We know that Hn(X,G) = π0MapShv(k)(X,K(G,n)) for n ≥ 0. Note that there is a natural
forgetful functor Shv(k)∗ → Shv(k) which forgets the base point. This functor has a left adjoint
Shv(k)→ Shv(k)∗ which adds a disjoint base point, i.e., it sends Y to Y

∐
{∗}.

We note that there is a natural map MapShv(k)∗(X,K(G,n)) → MapShv(k)(X,K(G,n)). By
adjunction, we have MapShv(k)∗(X

∐
{∗} ,K(G,n)) ' MapShv(k)(X,K(G,n)). This defines a map

MapShv(k)∗(X,K(G,n))→ MapShv(k)∗(X
∐
{∗} ,K(G,n)). (7.2.1)

Since X is pointed, there is a natural map {∗} → X which induces a map

X
∐
{∗} → X. (7.2.2)

in Shv(k)∗. We note that the map in (7.2.1) is induced by the map (7.2.2). The pushout diagram

{∗}
∐

X
∐
{∗}

X ' S1
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in Shv(k)∗ therefore induces a fibre sequence
MapShv(k)∗(S

1,K(G,n+ 1))→ MapShv(k)∗(X,K(G,n+ 1))→ MapShv(k)(X,K(G,n+ 1)).

We note that MapShv(k)∗(S1,K(G,n+ 1)) ' MapShv(k)∗(Σ({∗}
∐
{∗}),K(G,n+ 1)). By adjunc-

tion, the latter term is isomorphic to MapShv(k)(Spec k,K(G,n)). Thus, for n > 1, we obtain
that the map π1MapShv(k)∗(X,K(G,n + 1)) → π1MapShv(k)(X,K(G,n + 1)) is an isomorphism
since Hr(Spec k,G) = 0 for r > 0. This implies that the map π0MapShv(k)∗(X,K(G,n)) →
π0MapShv(k)(X,K(G,n)) is an isomorphism for n > 1. For n = 1, since the map

π0MapShv(k)(X,G)→ π0MapShv(k)(Spec k,G) ' G(k)
is surjective, the long exact sequence of homotopy groups associated to the above fibre sequence
shows that the map π0MapShv(k)∗(X,K(G,n)) → π0MapShv(k)(X,K(G,n)) is an isomorphism.
This finishes the proof. �

Lemma 7.2.7. Let k be an algebraically closed field and G be a commutative unipotent affine
group scheme over k. Then Hn(Spec k,G) = 0 for n > 0.

Proof. First, we show the claim when G is of finite type over k. If G is of finite type and unipotent,
then there is a filtration on G where the graded pieces are isomorphic to Z/pZ, αp or Ga, for
which the claim can be checked directly. Now if G is not assumed to be finite type, one still has
an injection f : G →

∏
i∈I Gi, where (Gi)i∈I are all the finite type quotients of G. Consider the

resulting exact sequence
0→ G

f−→
∏
i∈I

Gi → Coker(f)→ 0. (7.2.3)

By Lemma 7.2.8 and the fact that H1(Spec k,
∏
i∈I Gi) = 0 for i > 0, we obtain H1(Spec k,G) = 0.

Let n ≥ 1 be an integer and assume that Hi(Spec k,G) = 0 has been proven for any unipotent
group scheme G for i ≤ n. Since Coker(f) is unipotent, we must have Hn(Spec k,Coker(f)) = 0.
Since Hi(Spec k,

∏
i∈I Gi) = 0 for all i > 0, we obtain Hn+1(Spec k,G) = 0. Therefore, we are

done by induction. �

The following lemma was used in the proof above.

Lemma 7.2.8. Let k be an algebraically closed field. Let ϕ : G→ H be a surjection of commutative
group schemes over k. Then the map G(k)→ H(k) on k-valued points is surjective.

Proof. We thank Peter Scholze for suggesting the idea of the proof. Let us fix x ∈ H(k). Let C
denote the category whose objects are diagrams of group schemes

H̃

G H,

u

ϕ

ϕ̃

where H̃ is further equipped with a k-rational point x̃ such that u(x̃) = x. We will simply denote this
data by (G� H̃) if no confusion is likely to occur. The morphisms between (G� H̃1)→ (G� H̃2)
are group homomorphisms H̃1 → H̃2 which are compatible with all the extra data (including the
k-rational points). We note that the category C is essentially a partially ordered set. By considering
inverse limits in the category of affine group schemes, it follows that every chain has an upper
bound. Therefore, by Zorn’s lemma, C must have maximal elements. Let (G� H ′) denote such
a maximal element. We note that the map ϕ′ : G � H ′ is faithfully flat. The induced functor
Repk(H ′)→ Repk(G) of the category of finite-dimensional representations is fully faithful. If this
functor was also an equivalence, then the map ϕ′ would be an isomorphism, which would finish the
proof of the lemma. Therefore, we assume on the contrary that the functor Repk(H ′)→ Repk(G)
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is not an equivalence. Let X ∈ ob(Repk(G)) that is not in the essential image of the latter functor.
We let N denote the neutral Tannakian category (see [DMOS82, Def. 2.19]) generated by the
essential image of Repk(H ′)→ Repk(G) and X under tensor, dual, direct sum and subquotients.
It follows that there is an affine group scheme H ′ such that Rep(H ′) ' N and the fully faithful
functors Repk(H ′) → N → Repk(G) are induced by surjections G � H ′ � H ′ (see [DMOS82,
Cor. 2.9, Thm. 2.11, and Prop. 2.21]). Let K denote the kernel of the map H ′ → H ′. Then it
follows from construction that Repk(K) is generated by one object under tensor, dual, direct sum
and subquotients. Therefore, by [DMOS82, Prop. 2.20], K is a finite type group scheme over k. Let
H ′x′ denote the scheme theoretic fibre of the map H ′ → H ′ over the k-rational point x′ ∈ H ′(k).
Since K is finite type, it follows that H ′x′ is also finite type over k. But since k is algebraically
closed, there exists a k-rational point of H ′x′ ; this defines a k-rational point x′ ∈ H ′(k) that maps
to x′ under the map H ′ → H ′. But this contradicts the maximality of (G� H ′), which finishes
the proof. �

Combining the above two lemmas, we obtain the following proposition, which will be used
frequently in the following parts of the paper.

Proposition 7.2.9. Let G be a commutative unipotent affine group scheme over an algebraically
closed field k. Let X ∈ Shv(k)∗. Then Hn(X,G) = π0MapShv(k)∗(X,K(G,n)) for n > 0.

Proof. Follows directly from Lemma 7.2.6 and Lemma 7.2.7. �

Lemma 7.2.10. Let G and H be commutative affine group schemes over an algebraically closed
field k. Assume that H is unipotent. Then τ≤n−1Map(K(G,n),K(H,n)) ' Hom(G,H) for n ≥ 1.
In other words, τ≤n−1Map(K(G,n),K(H,n)) is 0-truncated.

Proof. Note that π0Map(K(G,n),K(H,n)) ' Hom(G,H), by Proposition 7.2.9. Thus we have a
natural map

τ≤n−1Map(K(G,n),K(H,n))→ Hom(G,H).
Since Map(K(G,n),K(H,n)) is naturally a grouplike E∞-space, it is enough to show that
πiMap(K(G,n),K(H,n)) is trivial for 0 < i < n. To this end, we note that

πiMap(K(G,n),K(H,n)) ' π0Map(K(G,n),K(H,n− i)) ' Hn−i(Spec k,H);

the latter is trivial by Lemma 7.2.7, as desired. �

Finally, we are ready to introduce the key construction of the formal n-sphere.

Construction 7.2.11 (Formal n-sphere). Let E be a 1-dimensional commutative formal Lie group.
Let us consider the unipotent affine group scheme E∨. The classifying stack BE∨ is naturally a
pointed connected stack. We set

SnE := Σn−1BE∨.

It follows that SnE is a pointed connected stack.

Remark 7.2.12. The construction of the formal sphere is motivated by the fact that Sn '
Σn−1S1 ' Σn−1BZ.

Proposition 7.2.13 (Cohomology of the formal sphere). Let E be a 1-dimensional formal Lie
group and SnE be the associated formal n-sphere. Then H0(SnE ,O) ' k, Hn(SnE ,O) ' k and
Hi(SnE ,O) = 0 for n 6= {0, n}.

Proof. We note that H0(SnE ,O) ' k since the formal n-sphere is connected as a stack. When n = 1,
the desired computation is a special case of Proposition 6.2.1 since S1

E ' BE∨. For n ≥ 2, we have

H1(SnE ,O) ' π0MapShv(k)∗(S
n
E ,K(Ga, 1)).
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However, since n ≥ 2, it follows that τ≤1S
n
E ' {∗}. Therefore, H1(SnE ,O) = 0, when n ≥ 2.

Further, for n ≥ 2 and i ≥ 2, we have
Hi(SnE ,O) ' π0MapShv(k)∗(ΣSn−1

E ,K(Ga, i)) ' π0MapShv(k)∗(S
n−1
E ,ΩK(Ga, i)) ' Hi−1(Sn−1

E ,O).
Therefore, by induction on n, we obtain the computation as desired. �

Proposition 7.2.14 (Unipotent homotopy type of a Calabi–Yau variety). Let X be a Calabi–Yau
variety of dimension n ≥ 2 over an algebraically closed field k equipped with a k-rational point. Let
ΦnX be the Artin–Mazur formal Lie group of X. Then

(1) There exists an isomorphism
U(SnΦn

X
) ' U(X)

of higher stacks over k; in the homotopy category, this isomorphism can be chosen to induce
the canonical isomorphism τ≤nU(SnΦn

X
) ' τ≤nU(X) induced by the Artin–Mazur–Hurewicz

class ξAM
H (see Construction 6.3.7) on the n-truncations.

(2) The set of isomorphisms
U(SnΦn

X
) ' U(X)

in the homotopy category of higher stacks over k that induces the isomorphism induced by
ξAM
H on the n-truncations is a torsor under the group H2(BπU

n (X), πU
n+1(X)).

Proof. We note that πU
i (X) is trivial for i < n by Proposition 3.2.11. For simplicity, let us use E to

denote the formal Lie group ΦnX . The class ξAM
H (see Construction 6.3.7) induces an isomorphism

τ≤nU(X) ' K(E∨, n) that is canonical in the homotopy category. By Lemma 3.4.4, it also follows
that τ≤nSnE ' K(E∨, n). Therefore, we obtain the following maps

SnE → U(SnE)→ τ≤nS
n
E
∼−→ τ≤nU(X).

Suppose that we are given a map Gr : SnE → τ≤n+rU(X) for some r ≥ 0. We will lift the given
map Gr : SnE → τ≤n+rU(X) along the Postnikov truncation τ≤n+r+1U(X)→ τ≤n+rU(X).

Now, we note that πU
1 (X) ' π1(U(X)) ' {∗} which implies (by the discussion before [Toë06,

Prop. 1.2.2] for example) that for every r ≥ 0, there is a pullback diagram

τ≤n+r+1U(X) τ≤n+rU(X)

∗ K(πn+r+1U(X), n+ r + 2).

(7.2.4)

This gives an exact sequence
π0Map(SnE , τ≤n+r+1U(X))→ π0Map(SnE , τ≤n+rU(X))→ π0Map(SnE ,K(πn+r+1U(X), n+r+2)).
In order to prove that Gr lifts along τ≤n+r+1U(X)→ τ≤n+rU(X), it is thus enough to prove that

π0Map(SnE ,K(πn+r+1U(X), n+ r + 2)) ' Hr+3(BE∨, πU
n+r+1(X)) (7.2.5)

vanishes; here, the isomorphism follows from Proposition 7.2.9 and the adjunction of (Σ,Ω). To
see the desired vanishing, we may note that πU

n+r+1(X) is a unipotent group scheme and apply
Lemma 6.1.18, which gives that Hr+3(BE∨, πU

n+r+1(X)) = 0 since r ≥ 0. Therefore, we can lift the
morphism Gr : SnE → τ≤n+rU(X) to obtain a map Gr+1 : SnE → τ≤n+r+1U(X). In other words, we
have the following commutative diagram in the homotopy category of stacks over k

τ≤n+r+1U(X)

SnE τ≤n+rU(X).Gr

Gr+1
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Proceeding by induction on r, we may obtain a map G : SnE → lim←−r τ≤n+rU(X). Since U(X) '
lim←−r τ≤n+rU(X), this constructs a map SnE → U(X). By construction and Proposition 7.2.9, it
follows that the induced map Hi(U(X),O)→ Hi(SnE ,O) is an isomorphism for i ≤ n. However,
since X is a Calabi–Yau variety of dimension n, the cohomology groups Hi(U(X),O) ' Hi(X,O) =
0 for i > n. On the other hand, Hi(SnE ,O) = 0 for i > n by Proposition 7.2.13. This implies
that the induced maps Hi(U(X),O)→ Hi(SnE ,O) are isomorphisms for all i ≥ 0. Thus the map
SnE → U(X) induce an isomorphism U(SnE) ' U(X). This proves the first part of the proposition.

Now we prove the second part of the proposition. Note that U(X) ' lim←−r τ≤n+rU(X). Therefore,

Map(SnE ,U(X)) ' lim←−
r

Map(SnE , τ≤n+rU(X)).

Let y ∈ π0Map(SnE ,U(X)). We can lift y to obtain a map ỹ : {∗} → Map(SnE ,U(X)), which
induces maps ỹr : {∗} → Map(SnE , τ≤n+rU(X)). By using the associated Milnor sequence, we have
an exact sequence of pointed sets
0→ lim←−

r

1π1(Map(SnE , τ≤n+rU(X)), ỹr)→ π0Map(SnE ,U(X))→ lim←−
r

π0Map(SnE , τ≤n+rU(X))→ 0.

Using the diagram (7.2.4), we obtain a pullback diagram

Map(SnE , τ≤n+r+1U(X)) Map(SnE , τ≤n+rU(X))

∗ Map(SnE ,K(πn+r+1U(X), n+ r + 2)).

(7.2.6)

We claim that for r ≥ 1, the maps
π1(Map(SnE , τ≤n+r+1U(X)), ỹr)→ π1Map((SnE , τ≤n+rU(X)), ỹr)

are surjective. Given the claim, we have lim←−
1
r
π1(Map(SnE , τ≤n+rU(X)), ỹr) ' 0, which implies that

we have an isomorphism
π0Map(SnE ,U(X)) ' lim←−

r

π0Map(SnE , τ≤n+rU(X)). (7.2.7)

In order to see the surjectivity as in the above claim, we apply the long exact sequence in homotopy
groups associated to (7.2.6). Indeed, since (7.2.5) vanishes, it would be enough to show that for
r ≥ 1,

π1Map(SnE ,K(πn+r+1U(X), n+ r + 2)) ' 0. (7.2.8)
To this end, note that

π1Map(SnE ,K(πn+r+1U(X), n+ r + 2)) ' π0Map(SnE ,K(πn+r+1U(X), n+ r + 1));
by applying Proposition 7.2.9 and the (Σ,Ω)-adjunction, the latter is Hr+2(BE∨, πn+r+1U(X)),
which vanishes for r ≥ 1 by Lemma 6.1.18, as desired. A similar argument using (7.2.6) and the
vanishing of (7.2.5) and (7.2.8) proves that for r ≥ 1, the maps

π0Map(SnE , τ≤n+r+1U(X))→ π0Map(SnE , τ≤n+rU(X))
are isomorphisms. Together with (7.2.7), this implies that

π0Map(SnE ,U(X)) ' π0Map(SnE , τ≤n+1U(X)).
Using the long exact sequence associated with (7.2.6) for r = 0, we obtain an exact sequence

π1Map(SnE ,K(πU
n+1(X), n+ 2))→ π0Map(SnE , τ≤n+1U(X))→ π0Map(SnE , τ≤nU(X));

the last map is surjective by the vanishing of (7.2.5). The first map is injective since by Lemma 7.2.10
τ≤1Map(SnE , τ≤nU(X)) ' τ≤1Map(K(E∨, n),K(E∨, n)) ' Hom(E∨, E∨)



88 SHUBHODIP MONDAL AND EMANUEL REINECKE

is 0-truncated. Finally, by applying Proposition 7.2.9 and the (Σ,Ω)-adjunction again, we have
π1Map(SnE ,K(πU

n+1(X), n+ 2)) ' H2(BE∨, πU
n+1(X)). This finishes the proof. �

Proof of Theorem 7.2.3. This is a consequence of Proposition 7.2.14. Indeed, the Dieudonné
module of Φn

X is naturally isomorphic to Hn(X,W ), which is identified with π−nTR(X) via the
descent spectral sequence (see [AB22, Def. 3.5(a), Thm. 5.1]). Similarly, the Dieudonné module
of Φn

Y is isomorphic to π−nTR(Y ). By construction, TR( · ) is a derived invariant; therefore,
π−nTR(X) ' π−nTR(Y ). Since we are working over an algebraically closed field k, by choosing
k-rational points on X and Y and applying Proposition 7.2.14, it follows that U(X) ' U(Y ). �

In order to prove Theorem 7.2.4, we need to obtain a concrete understanding of certain unipotent
homotopy group schemes of Calabi–Yau varieties. This will require some additional preparations.

Proposition 7.2.15 (Some homotopy groups of the formal sphere). Let SnE be the formal n-sphere
for a fixed formal Lie group E over k. Then

(1) We have πi(U(SnE)) ' {∗} for i < n and πn(U(SnE)) ' E∨.
(2) Further, π3(U(S2

E)) ' (E∨ ⊗ E∨)uni and
πn+1(U(SnE)) ' (E∨ f E∨)uni

for all n ≥ 3 (cf. Definition 3.3.15).

Proof. The first part follows from the fact that τ≤n(SnE) ' K(E∨, n); since the latter is an affine
stack, we obtain that τ≤n(U(SnE)) ' K(E∨, n).

We proceed to prove the second part. We begin by showing that π3(U(S2
E)) ' (E∨ ⊗ E∨)uni.

We note that τ≤2(S2
E) ' K(E∨, 2), which is an affine stack. Therefore, we can appeal to Proposi-

tion 3.4.9 to compute π3(U(S2
E)). Indeed, by Example 3.4.13, π3(S2

E) ' E∨ ⊗Z E
∨. Therefore, by

Proposition 3.4.9, it follows that π3(U(S2
E)) ' (E∨ ⊗ E∨)uni, as desired.

By construction of the formal n-sphere and the Freudenthal suspension theorem in unipotent
homotopy theory (Corollary 3.4.11), it is enough to prove the claim when n = 3, i.e., we only need
to prove that π4(U(S3

E)) ' (E∨ fE∨)uni. By the proof of Proposition 3.4.10 and Lemma 3.4.3, we
have an exact sequence of group schemes(

π2(U(S2
E))⊗ π2(U(S2

E))
)uni W−→ π3(U(S2

E)) −→ π4(U(Σ(U(S2
E)))) −→ 0. (7.2.9)

Further, the map W is induced by the Whitehead product
W2,2 : πU

2 (S2
E)× πU

2 (S2
E)→ πU

3 (S2
E)

constructed in Construction 3.4.2. Since π3(U(S2
E)) ' (E∨ ⊗ E∨)uni, by the explicit computation

of the Whitehead product from Example 3.4.14, it follows that the map

W :
(
π2(U(S2

E))⊗ π2(U(S2
E))
)uni −→ π3(U(S2

E))
above identifies with the map (E∨ ⊗ E∨)uni → (E∨ ⊗ E∨)uni that is induced by x ⊗ y 7→ x ⊗
y + y ⊗ x. Therefore, by the exact sequence (7.2.9) above and Remark 3.3.17, π4(U(S3

E)) '
π4(U(Σ(U(S2

E)))) ' (E∨ f E∨)uni. This finishes the proof. �

Corollary 7.2.16 (Some homotopy groups of Calabi–Yau varieties). Let X be a Calabi–Yau
variety of dimension n and Φn

X be the Artin–Mazur formal Lie group of X. As a consequence of
Proposition 7.2.14 and Proposition 7.2.15, we obtain the following results.

(1) If X is a Calabi-Yau variety of dimension 2, i.e., if X is a K3 surface, then
πU

3 (X) ' ((ΦnX)∨ ⊗ (ΦnX)∨)uni.

(2) If X is a Calabi–Yau variety of dimX = n ≥ 3, then
πU
n+1(X) ' ((ΦnX)∨ f (ΦnX)∨)uni.
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We will show that π3(U(S2
E))∨ as computed by Proposition 7.2.15 is a formal Lie group of

dimension 1. To this end, we will prove a more general assertion.

Proposition 7.2.17. Let E1 and E2 be two commutative formal Lie groups of dimension m and
n over a perfect field k of characteristic p > 0. Then ((E∨1 ⊗E∨2 )uni)∨ is a commutative formal Lie
group of dimension mn.

Proof. We work in the derived category of abelian sheaves in the fpqc site. Let E∨1 and E∨2 denote
the sheaves represented by E∨1 and E∨2 and E∨1 ⊗ E∨2 denote their ordinary tensor product. Let
K := (E∨1 ⊗L E∨2 ). Computing H1(RHom(K,Ga)) via a spectral sequence ([SP22, Tag 07A9]), we
see that Ext1(E∨1 ⊗ E∨2 ,Ga) is a subspace of H1(RHom(K,Ga)). On the other hand, the latter
term is isomorphic to

H1(RHom(E∨1 , τ≥−1RH om(E∨2 ,Ga))).
By Remark 6.1.8, we see that

H1(RHom(E∨1 , τ≥−1RH om(E∨2 ,Ga))) = 0.

Consequently, it follows that Ext1(E∨1 ⊗ E∨2 ,Ga) ' 0. Note that

Ext1(E∨1 ⊗ E∨2 ,Ga) ' H3(B2(E∨1 ⊗ E∨2 ),O).

However, by Proposition 2.1.19.(2) (and Lemma 3.3.4), the vector space

H3(τ≤2U(B2(E∨1 ⊗ E∨2 )),O) ' H3(B2(E∨1 ⊗ E∨2 )uni,O) ' Ext1((E∨1 ⊗ E∨2 )uni,Ga)

embeds into H3(B2(E∨1 ⊗E∨2 ),O) ' Ext1(E∨1 ⊗E∨2 ,Ga) = 0. Therefore, Ext1((E∨1 ⊗E∨2 )uni,Ga) =
0. Finally, we note that dimk Hom(E∨1 ⊗ E∨2 ,Ga) = dimk Hom(E∨1 ,Ga)⊗k Hom(E∨2 ,Ga) = mn.
Thus, we are done by applying Proposition 6.1.13. �

Remark 7.2.18. Commutative formal Lie groups over a perfect field can be classified by their
Dieudonné modules. At the level of Dieudonné modules, the equivalent statement of Proposi-
tion 7.2.17 was also observed by Drinfeld and Mathew. More precisely, if M1 and M2 denote the co-
variant Dieudonné module of E1 and E2 respectively, then the Dieudonné module of ((E∨1 ⊗E∨2 )uni)∨
is isomorphic to M1�̂M2, where we refer to [AN21, Sec. 4] for the definition of M1�̂M2. We thank
Drinfeld for sharing a proof of the latter fact. The tensor product M1�̂M2 was originally intro-
duced in [Goe99] and has been studied in [BL07] and [BC19]. We point out that in [AN21], the
tensor product M1�̂M2 has been shown to be induced from the symmetric monoidal structure on
cyclotomic spectra (see [AN21, Sec. 4.1]). Proposition 7.2.17 gives a direct geometric approach
to these constructions by using group schemes and higher stacks without passing to associated
Dieudonné modules.

Definition 7.2.19. If E1 and E2 are two commutative formal Lie groups over a perfect field k, we
define

E1 � E2 := ((E∨1 ⊗ E∨2 )uni)∨.
By Proposition 7.2.17, we have dim(E1 � E2) = dimE1 · dimE2.

Remark 7.2.20. We note that ( · )� ( · ) defines a symmetric monoidal operation on the category
of commutative formal Lie groups over k. One can check (for example, by Lemma 6.3.4 and
Dieudonné theory) that the formal Lie group Ĝm is the unit object under this operation. In
particular, Ĝm � Ĝm ' Ĝm.

Proposition 7.2.21. Let E1 and E2 be two 1-dimensional formal Lie groups over a perfect field k
such that height of E1 and E2 are both > 1. Then E1 � E2 ' Ĝa.

https://stacks.math.columbia.edu/tag/07A9
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Proof. Since E1 and E2 both have height > 1, then there are surjections E1
∨ � αp and E2

∨ �
αp; for example, this can be deduced from Example 6.1.17. These maps induce a surjection
(E1
∨ ⊗E2

∨)uni � (αp ⊗ αp)uni 'W [F ]. Here, the latter isomorphism follows from Example 3.3.20.
Moreover, since Ext1(W [F ],Ga) = 0, a similar argument as in Example 3.3.20 shows that the
surjection (E1

∨ ⊗E2
∨)uni �W [F ] must be an isomorphism. Now, taking dual yields the claim in

the proposition. �

Corollary 7.2.22. Let E be a 1-dimensional formal Lie group over k. Then

πU
3 (S2

E) '
{

Zp if height of E = 1, i.e., E = Ĝm,

W [F ] if height of E is > 1.

Proof. This follows from Proposition 7.2.15, Remark 7.2.20 and Proposition 7.2.21. �

Remark 7.2.23. Note that if E = Ĝm, then the fact that πU
3 (S2

E) ' Zp is consistent with the
calculation from the p-adic (unstable) homotopy group of the topological 2-sphere S2. However,
Corollary 7.2.22 shows that in general, πU

3 (S2
E) behaves quite differently.

Corollary 7.2.24. Let X be a K3 surface over an algebraically closed field k of characteristic
p > 0. Then

πU
3 (X) '

{
Zp if X is weakly ordinary,
W [F ] otherwise.

Proof. Follows from Proposition 7.2.14 and Corollary 7.2.22. �

Next, we proceed towards computing the weak wedge product (Definition 3.3.15) in order to
obtain an understanding of πn+1(U(SnE)) for n ≥ 3. Before we do that, let us begin by understanding
the wedge product first in this context.

Proposition 7.2.25. Let G be a 1-dimensional formal Lie group over a perfect field k of charac-
teristic p > 0. Then

(G∨ ∧G∨)uni '

{
W [F ] if p = 2 and height of G is > 1,
0 otherwise.

Proof. First, we recall that dimk Hom(G∨,Ga) = 1. Therefore, the space of bilinear maps G∨ ×
G∨ → Ga is also 1-dimensional. As a consequence, any nonzero bilinear map u : G∨ ×G∨ → Ga

is necessarily given by u(x, y) = cf(x)f(y) where c ∈ k× and f : G∨ → Ga is a nonzero map of
group schemes. The bilinear map u is alternating if and only if u(x, x) = 0 for all scheme theoretic
points x of G∨. In such a case, we must have f(x)2 = 0 for all x. However, f is also a group
homomorphism. Therefore, for all x and y, we must have

0 = f(x+ y)2 = (f(x) + f(y))2 = 2f(x)f(y) = 2c−1u(x, y).
In the case when p 6= 2, this implies that any alternating bilinear map u : G∨ ×G∨ → Ga must be
zero. In other words, Hom(G∨ ∧G∨,Ga) = 0, implying (G∨ ∧G∨)uni = 0, as desired.

Now let us suppose that p = 2 and the height of G is > 1. In that case, we have a surjective
map ϕ : G∨ → α2. By Proposition 3.3.6 and Example 3.3.20, we have a surjection (G∨ ⊗G∨)uni �
(α2 ⊗ α2)uni = W [F ]. Since Ext1(W [F ],Ga) = 0, it follows that the latter map is an isomorphism.
Consider the induced bilinear map G∨ × G∨ → W [F ]. Since we are working in the case when
p = 2, by Example 3.3.20, it follows that this bilinear map is alternating.8 This implies that the
isomorphism (G∨ ⊗G∨)uni 'W [F ] factors through the surjection (G∨ ⊗G∨)uni � (G∨ ∧G∨)uni.
This shows that (G∨ ∧G∨)uni 'W [F ].

8Here, we use that for any F2-algebra S and any s ∈ S, we have [s]2 = F ([s]).
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In the remaining case when p = 2 and G = Ĝm, we know that G∨ ' Z2, which is a reduced
group scheme. In particular, there is no nonzero map of group schemes f : Z2 → Ga with f(x)2 = 0
for all scheme theoretic points x of Z2; because then f would factor through a map Z2 → α2, which
is necessarily zero. Therefore, by the discussion in the first paragraph of the proof, we see that
(Z2 ∧ Z2)uni = 0. �

Proposition 7.2.26. Let G be a 1-dimensional formal Lie group over a perfect field k of charac-
teristic p > 0. Then

(G∨ fG∨)uni '


W [F ] if p = 2 and height of G is > 1,
Z/2Z if p = 2 and G ' Ĝm, i.e., height of G = 1,
0 otherwise.

Proof. As noted in the proof of Proposition 7.2.25, any nonzero bilinear map u : G∨ ×G∨ → Ga

is necessarily given by u(x, y) = cf(x)f(y) where c ∈ k× and f : G∨ → Ga is a nonzero map
of group schemes. Since Ga is a commutative ring scheme, it follows that the bilinear map u
is symmetric. This bilinear map would correspond to an element of Hom(G∨ f G∨,Ga) if and
only if u(x, y) + u(y, x) = 0. However, since u is symmetric, the latter condition implies that
2u(x, y) = 0. In the case when p 6= 2, this implies that u(x, y) = 0, which further implies that
Hom(G∨ fG∨,Ga) = 0. Therefore, (G∨ fG∨)uni = 0, as desired.

Now let us suppose that p = 2 and height of G is > 1. The second paragraph of the proof of
Proposition 7.2.25 shows that the natural map (G∨ ⊗G∨)uni → (G∨ ∧G∨)uni is an isomorphism
and they are both further isomorphic to W [F ]. However, the natural map (G∨ ⊗ G∨)uni →
(G∨ ∧G∨)uni factors through the natural surjection (G∨ ⊗G∨)uni � (G∨ fG∨)uni, which shows
that (G∨ fG∨)uni 'W [F ], as well.

Now we are left with the case when p = 2 and G = Ĝm. In this case, G∨ ' Z2. Note that Z2
naturally has the structure of a commutative ring scheme which induces a map m : (Z2⊗Z2)uni → Z2
that is an isomorphism (Remark 7.2.20). Remark 3.3.17 implies that (Z2 f Z2)uni is identified
(under the isomorphism m) with the cokernel of the multiplication by 2 map on Z2. This shows
that (Z2 f Z2)uni ' Z/2Z, as desired. �

Corollary 7.2.27. Let E be a 1-dimensional formal Lie group over a perfect field k of characteristic
p > 0. Then, for n ≥ 3,

πU
n+1(SnE) '


W [F ] if p = 2 and height of E is > 1,
Z/2Z if p = 2 and E ' Ĝm, i.e., height of E = 1,
0 otherwise, i.e., if p 6= 2.

Proof. Follows from Proposition 7.2.15 and Proposition 7.2.26. �

Remark 7.2.28. Note that if E = Ĝm and n ≥ 3, then the fact that πU
n+1(SnE) ' Z/2Z when

p = 2 and is zero when p 6= 2 is consistent with the calculation from the homotopy group of the
topological n-sphere Sn. Indeed, πn+1(Sn) ' Z/2Z for n ≥ 3. As we saw above, the computation of
the (n+ 1)-th unipotent homotopy group scheme of a general formal n-sphere requires a significant
amount of additional ingredients, which includes establishing a more general form of the Freudenthal
suspension theorem in unipotent homotopy theory (Corollary 3.4.11) as we did in our paper.

Corollary 7.2.29. Let X be a Calabi–Yau variety of dimension n ≥ 3 over an algebraically closed
field k of characteristic p > 0. Then

πU
n+1(X) '


W [F ] if p = 2 and X is not weakly ordinary,
Z/2Z if p = 2 and X is weakly ordinary,
0 otherwise, i.e., if p 6= 2.
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Proof. Follows from Proposition 7.2.14 and Corollary 7.2.27. �

Now we are ready to prove the final result of our paper.

Proof of Theorem 7.2.4. Note that sending X 7→ π−nTR(X) induces a functor from NCY to the
category of Dieudonné modules. By Proposition 7.2.14 and Corollary 7.2.29, there is a unique
isomorphism U(SnΦn

X
) ' U(X) determined by the Artin–Mazur–Hurewicz class. This finishes the

proof (cf. the proof of Theorem 7.2.3). �
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groupes commutatifs, Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970,
Avec un appendice Corps de classes local par Michiel Hazewinkel.

[DGI13] William G. Dwyer, John P. C. Greenlees, and Srikanth B. Iyengar, DG algebras with exterior homology,
Bull. Lond. Math. Soc. 45 (2013), no. 6, 1235–1245.
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[Mon21] Shubhodip Mondal, Dieudonné theory via cohomology of classifying stacks, Forum Math. Sigma 9

(2021), Paper No. e81, 25.
[Mon22a] , Gperf

a -modules and de Rham cohomology, Adv. Math. 409 (2022), no. part B, Paper No. 108691,
72.

[Mon22b] , Reconstruction of the stacky approach to de Rham cohomology, Math. Z. 302 (2022), no. 2,
687–693.

[MR85] Vikram B. Mehta and Annamalai Ramanathan, Frobenius splitting and cohomology vanishing for
Schubert varieties, Ann. of Math. (2) 122 (1985), no. 1, 27–40.

[MR25] Shubhodip Mondal and Emanuel Reinecke, On Postnikov completeness for replete topoi, Homology
Homotopy Appl. 27 (2025), no. 1, 179–196.

[MRT22] Tasos Moulinos, Marco Robalo, and Bertrand Toën, A universal Hochschild–Kostant–Rosenberg theorem,
Geom. Topol. 26 (2022), no. 2, 777–874.

[MS87] Vikram B. Mehta and Vasudevan Srinivas, Varieties in positive characteristic with trivial tangent
bundle, Compositio Math. 64 (1987), no. 2, 191–212, With an appendix by M. V. Nori and V. Srinivas.

[Muk81] Shigeru Mukai, Duality between D(X) and D(X̂) with its application to Picard sheaves, Nagoya Math.
J. 81 (1981), 153–175.

http://www.math.uchicago.edu/~may/IMA/Joyal.pdf
http://www.math.uchicago.edu/~may/IMA/Joyal.pdf
https://www.math.ias.edu/~lurie/papers/DAG-VIII.pdf
https://www.math.ias.edu/~lurie/papers/DAG-XIII.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://personal.math.ubc.ca/~smondal/papers/affinestacks.pdf
https://personal.math.ubc.ca/~smondal/papers/affinestacks.pdf


UNIPOTENT HOMOTOPY THEORY OF SCHEMES 95

[MV99] Fabien Morel and Vladimir Voevodsky, A1-homotopy theory of schemes, Inst. Hautes Études Sci. Publ.
Math. 90 (1999), 45–143.

[MW10] Roman Mikhailov and Jie Wu, On homotopy groups of the suspended classifying spaces, Algebr. Geom.
Topol. 10 (2010), no. 1, 565–625.

[Nor76] Madhav V. Nori, On the representations of the fundamental group, Compositio Math. 33 (1976), no. 1,
29–41.

[Nor82] , The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), no. 2, 73–122.
[OO78] Tadao Oda and Frans Oort, Supersingular abelian varieties, Proceedings of the International Symposium

on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, pp. 595–621.
[Oor00] Frans Oort, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. of

Math. (2) 152 (2000), no. 1, 183–206.
[Orl97] Dmitri O. Orlov, Equivalences of derived categories and K3 surfaces, J. Math. Sci. (New York) 84

(1997), no. 5, 1361–1381, Algebraic geometry, 7.
[Orl02] , Derived categories of coherent sheaves on abelian varieties and equivalences between them, Izv.

Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 3, 131–158.
[Orl05] , Derived categories of coherent sheaves, and motives, Uspekhi Mat. Nauk 60 (2005), no. 6(366),

231–232.
[Qui68] Daniel G. Quillen, Some remarks on etale homotopy theory and a conjecture of Adams, Topology 7

(1968), 111–116.
[Qui69a] , On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc.

75 (1969), 1293–1298.
[Qui69b] , Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295.
[Rak20] Arpon Raksit, Hochschild homology and the derived de Rham complex revisited, 2020, arXiv:2007.02576.
[Ser58] Jean-Pierre Serre, Sur la topologie des variétés algébriques en caractéristique p, Symposium internacional
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contribution by Jean-Louis Verdier.

[Shi79] Tetsuji Shioda, Supersingular K3 surfaces, Algebraic geometry (Proc. Summer Meeting, Univ. Copen-
hagen, Copenhagen, 1978), Lecture Notes in Math., vol. 732, Springer, Berlin, 1979, pp. 564–591.

[Sim96] Carlos Simpson, A relative notion of algebraic Lie group and applications to n-stacks, 1996,
arXiv:9607002.

[SP22] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu, 2022.
[SR72] Neantro Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, Vol. 265, Springer-

Verlag, Berlin-New York, 1972.
[SS16] Alexander Schmidt and Jakob Stix, Anabelian geometry with étale homotopy types, Ann. of Math. (2)

184 (2016), no. 3, 817–868.
[Sul74] Dennis Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974),

1–79.
[Sul77] , Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977),

269–331.
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