MA161 - Lesson 7: Limits at Infinity and Horizontal Asymptotes

Review: Vertical Asymptotes

Example: Determining Vertical Asymptotes

Find the vertical asymptotes of \(f(x) = \frac{x}{x^2(x-7)(x+3)(x-7)}\).

Solution:

Vertical asymptotes occur when the denominator equals zero but the numerator doesn't.

Setting denominator = 0: \(x = 1, x = -3, x = 7\)

Check \(x = 1\): Since \(\lim_{x \to 1} f(x) = 0\), this is NOT a vertical asymptote.

Check \(x = -3\) and \(x = 7\): These make the denominator very small while the numerator approaches a finite value, creating vertical asymptotes.

Answer: \(x = -3\) and \(x = 7\) are vertical asymptotes.

Limits at Infinity

Notation:

Basic Limit Rules: Let \(c\) be a constant and \(n > 0\):

\[\lim_{x \to \infty} \frac{c}{x^n} = 0 \quad \text{and} \quad \lim_{x \to -\infty} \frac{c}{x^n} = 0\]
Example: Understanding the Basic Rule

For \(c = 7, n = 2\): \(\frac{7}{x^2}\)

Horizontal Asymptotes

Definition: The line \(y = L\) is a horizontal asymptote of \(y = f(x)\) if:

\[\lim_{x \to \infty} f(x) = L \quad \text{or} \quad \lim_{x \to -\infty} f(x) = L\]

In general, any function \(f(x)\) has 0, 1, or 2 horizontal asymptotes.

Finding Horizontal Asymptotes of Rational Functions

Example 1: Equal Degrees

Find \(\lim_{x \to \infty} \frac{5x^2 + 3}{8x^2 - 7x + 2}\) and \(\lim_{x \to -\infty} \frac{5x^2 + 3}{8x^2 - 7x + 2}\)

Solution:

Degree of numerator = Degree of denominator = 2

Divide both numerator and denominator by \(x^2\):

\[\lim_{x \to \infty} \frac{5x^2 + 3}{8x^2 - 7x + 2} = \lim_{x \to \infty} \frac{5 + \frac{3}{x^2}}{8 - \frac{7}{x} + \frac{2}{x^2}} = \frac{5 + 0}{8 - 0 + 0} = \frac{5}{8}\]

Similarly, \(\lim_{x \to -\infty} \frac{5x^2 + 3}{8x^2 - 7x + 2} = \frac{5}{8}\)

Horizontal asymptote: \(y = \frac{5}{8}\)

Example 2: Numerator Degree Less Than Denominator

Find \(\lim_{x \to \infty} \frac{x + 1}{8x^2}\) and \(\lim_{x \to -\infty} \frac{x + 1}{8x^2}\)

Solution:

Degree of numerator = 1, Degree of denominator = 2

Divide by \(x^2\):

\[\lim_{x \to \infty} \frac{x + 1}{8x^2} = \lim_{x \to \infty} \frac{\frac{1}{x} + \frac{1}{x^2}}{8} = \frac{0 + 0}{8} = 0\]

Similarly, \(\lim_{x \to -\infty} \frac{x + 1}{8x^2} = 0\)

Horizontal asymptote: \(y = 0\)

Example 3: Equal Degrees (Another Case)

Find \(\lim_{x \to \infty} \frac{3x^2 + x}{x^2}\) and \(\lim_{x \to -\infty} \frac{3x^2 + x}{x^2}\)

Solution:

Degree of numerator = Degree of denominator = 2

Divide by \(x^2\):

\[\lim_{x \to \infty} \frac{3x^2 + x}{x^2} = \lim_{x \to \infty} \frac{3 + \frac{1}{x}}{1} = \frac{3 + 0}{1} = 3\]

Similarly, \(\lim_{x \to -\infty} \frac{3x^2 + x}{x^2} = 3\)

Horizontal asymptote: \(y = 3\)

Slant Asymptotes

When do slant asymptotes occur?

When \(\lim_{x \to \infty} f(x) = \infty\) or \(-\infty\), the function \(f(x)\) can have a slant asymptote.

Example: Finding a Slant Asymptote

Find the slant asymptote of \(\frac{7x^3 - x}{3x^2 + 1}\)

Solution:

Use long division or divide by the highest power in denominator (\(x^2\)):

\[\frac{7x^3 - x}{3x^2 + 1} = \frac{7x - \frac{1}{x}}{3 + \frac{1}{x^2}}\]

As \(x \to \infty\): \(\lim_{x \to \infty} \frac{7x - \frac{1}{x}}{3 + \frac{1}{x^2}} = \lim_{x \to \infty} \frac{7x}{3} = \infty\)

The slant asymptote is \(y = \frac{7x}{3}\)

Key Strategy: When finding limits at infinity for rational functions, always divide numerator and denominator by the highest power of \(x\) in the denominator.

Special Case: Limits with Square Roots

Example: Limit with Square Root

Find \(\lim_{x \to \infty} \frac{\sqrt{x^2 + x}}{7x + 2}\)

Solution:

For \(x > 0\), \(\sqrt{x^2} = |x| = x\)

Factor out \(x\) from under the square root:

\[\sqrt{x^2 + x} = \sqrt{x^2(1 + \frac{1}{x})} = x\sqrt{1 + \frac{1}{x}}\]

Therefore:

\[\lim_{x \to \infty} \frac{\sqrt{x^2 + x}}{7x + 2} = \lim_{x \to \infty} \frac{x\sqrt{1 + \frac{1}{x}}}{7x + 2} = \lim_{x \to \infty} \frac{\sqrt{1 + \frac{1}{x}}}{7 + \frac{2}{x}} = \frac{1}{7}\]

Important Note: When \(x < 0\), \(\sqrt{x^2} = |x| = -x\), so the analysis changes for \(\lim_{x \to -\infty}\).

Example: Limit with Square Root

Find \(\lim_{x \to -\infty} \frac{\sqrt{x^2 + x}}{7x + 2}\)

Solution:

For \(x < 0\), \(\sqrt{x^2} = |x| = -x\)

Factor out \(x\) from under the square root:

\[\sqrt{x^2 + x} = \sqrt{x^2(1 + \frac{1}{x})} = -x\sqrt{1 + \frac{1}{x}}\]

Therefore:

\[\lim_{x \to \infty} \frac{\sqrt{x^2 + x}}{7x + 2} = \lim_{x \to \infty} \frac{-x\sqrt{1 + \frac{1}{x}}}{7x + 2} = \lim_{x \to \infty} \frac{-\sqrt{1 + \frac{1}{x}}}{7 + \frac{2}{x}} = -\frac{1}{7}\]