

Lesson 2 (01/14/26)

Today: Lines and Planes (13.5)

Next: Quadric Surfaces (13.6)

Announcements: * HW Due: lesson 1, lesson 2 (tomorrow)

* SI Sessions

* Data Science Labs

* Lecture Notes

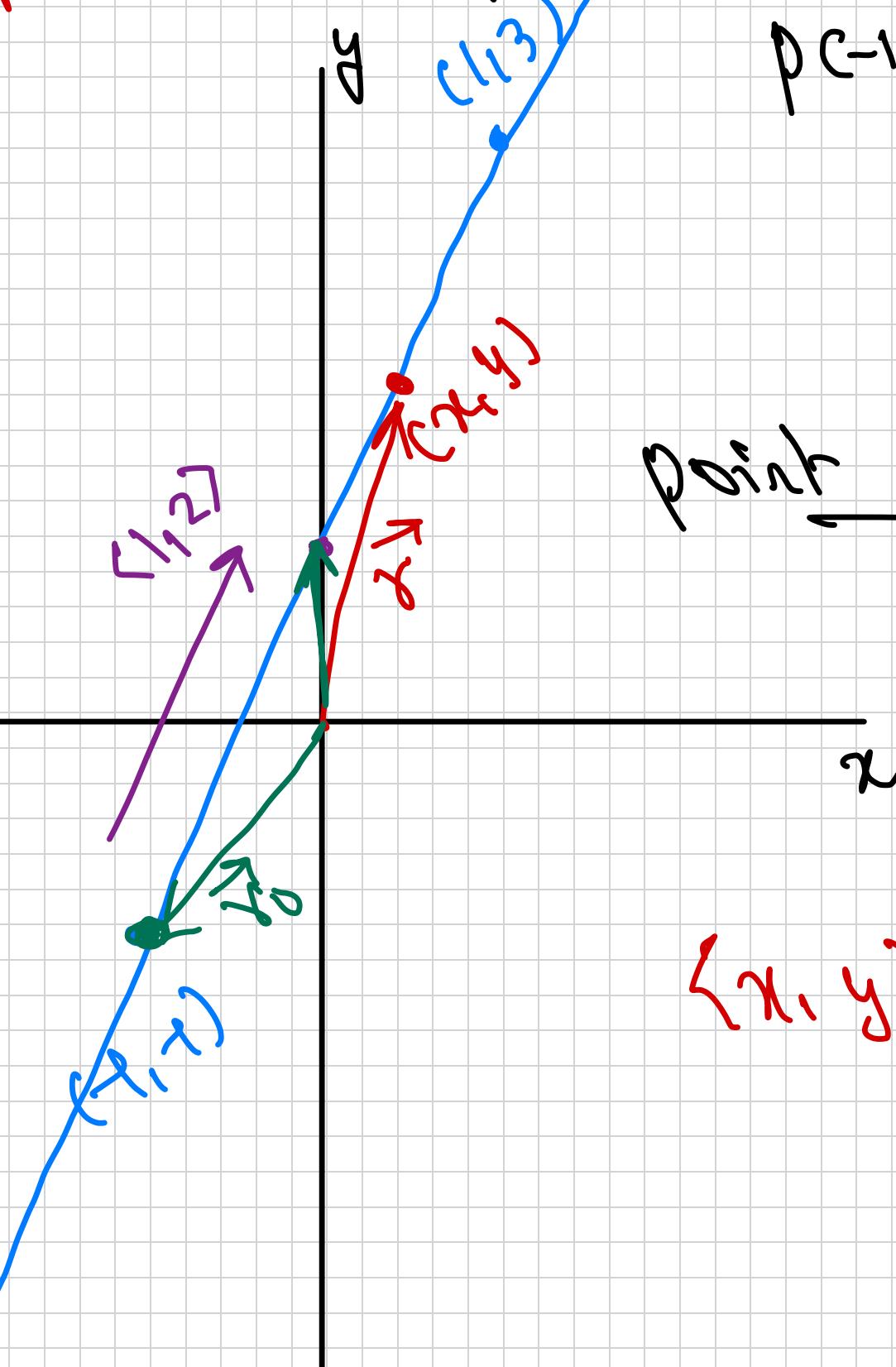
Check
Brightspace
Announcement

Office Hours: Monday, Friday 9:45 AM - 11:00 AM } MATH 842
Thursday 11:00 AM - 12:00 PM }

Feasting with Faculty: Thursday 12:15 PM - 1:15 PM } Windsor

Warmup:

Find equation of a line through
and $Q(1, 3)$



Slope: $\frac{3 - (-1)}{1 - (-1)} = 2$

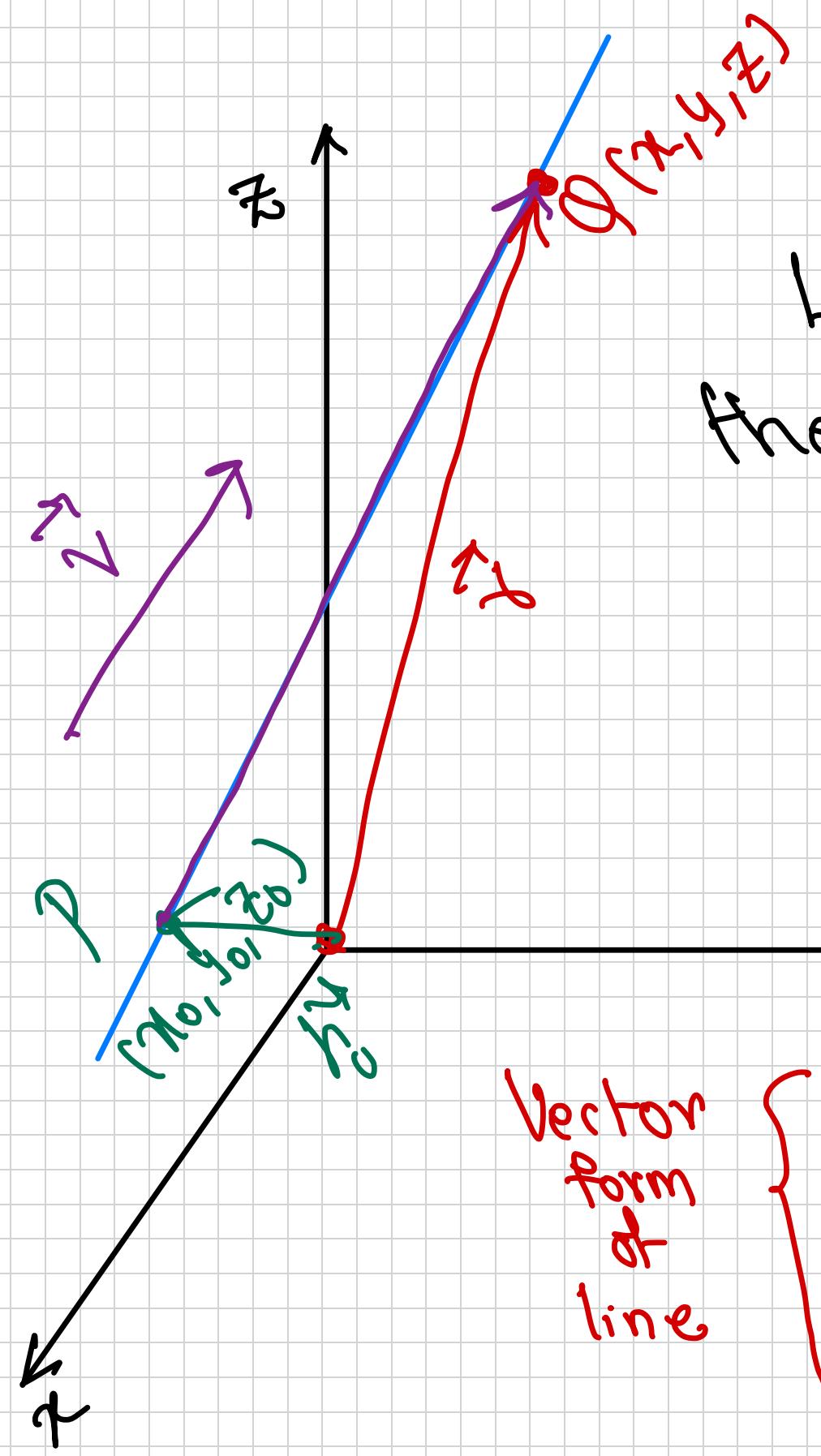
Point slope form: $\frac{y - y_0}{x - x_0} = \text{slope}$

$$\frac{y + 1}{x + 1} = 2 \rightarrow y = 2x + 1$$

$$\langle x, y \rangle = \langle x, 2x + 1 \rangle = t \langle 1, 2 \rangle + \langle 0, 1 \rangle$$

parallel
line
"Direction"

Lines in 3D: Need



Point on line \vec{v}

$$P(x_0, y_0, z_0)$$

"Slope"

Direction vector

$$\vec{v} = < a, b, c >$$

on line

$$Q(x_1, y_1, z_1)$$

$$\vec{v}$$

be a point parallel to \vec{v}

$$\vec{PQ} = t\vec{v}$$

$$\vec{PQ} = < x - x_0, y - y_0, z - z_0 > = t < a, b, c >$$

{ re arrange terms

$$\langle x, y, z \rangle = t \langle a, b, c \rangle + \langle x_0, y_0, z_0 \rangle$$

Parametric and Symmetric form of line

$$\vec{r} = \vec{r}_0 + t \vec{v} \quad \text{Vector form}$$

$$\langle x, y, z \rangle = t \langle a, b, c \rangle + \langle x_0, y_0, z_0 \rangle$$

$$\langle x, y, z \rangle = \langle ta+x_0, tb+y_0, tc+z_0 \rangle$$

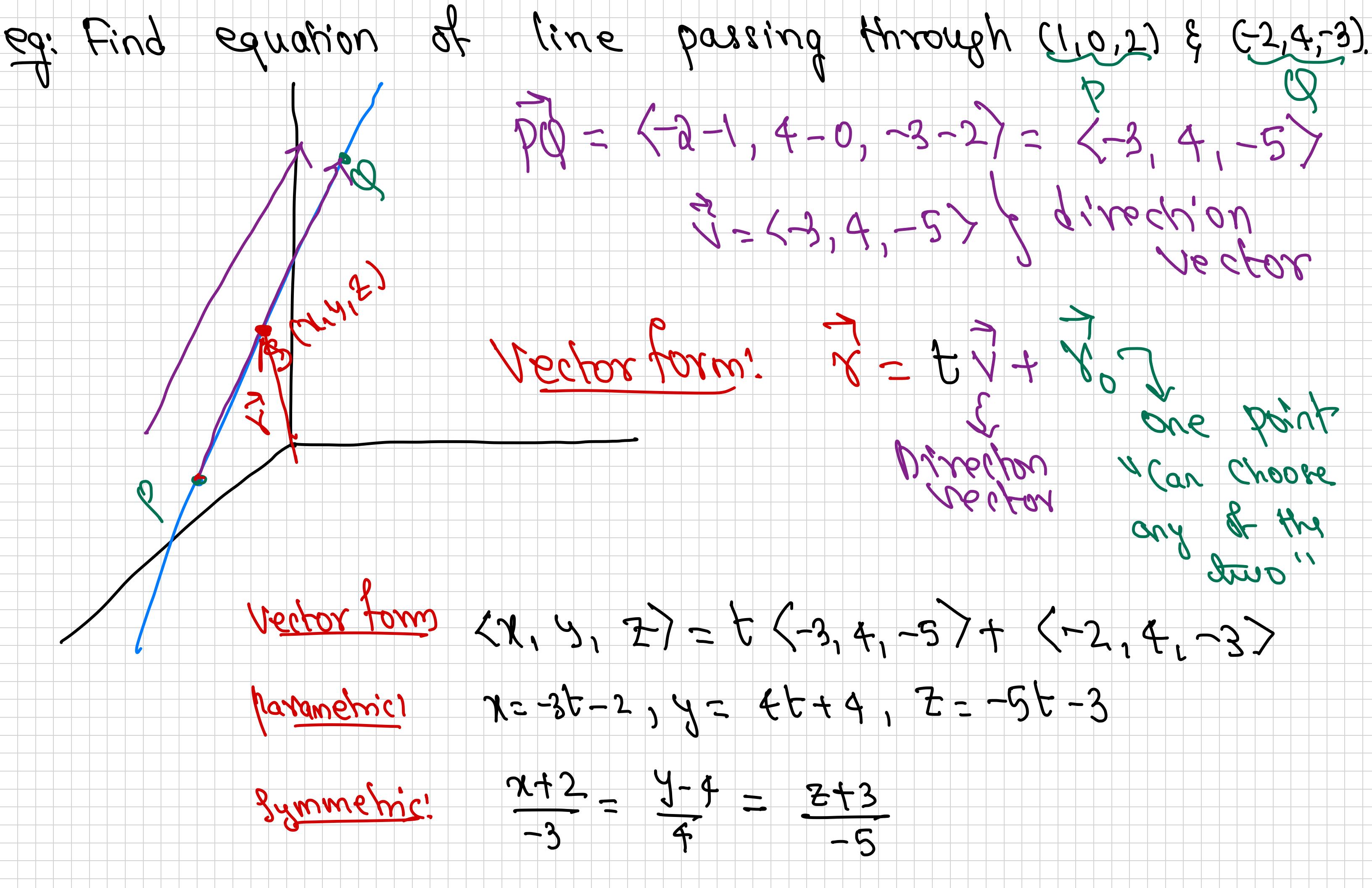
Solve for t

$$t = \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

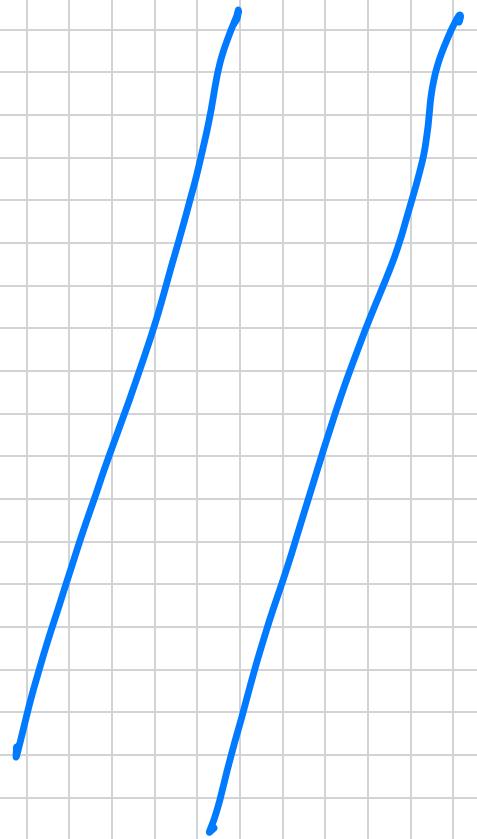
$$\begin{aligned} x &= ta + x_0 \\ y &= tb + y_0 \\ z &= tc + z_0 \end{aligned}$$

Parametric form.

Symmetric form or

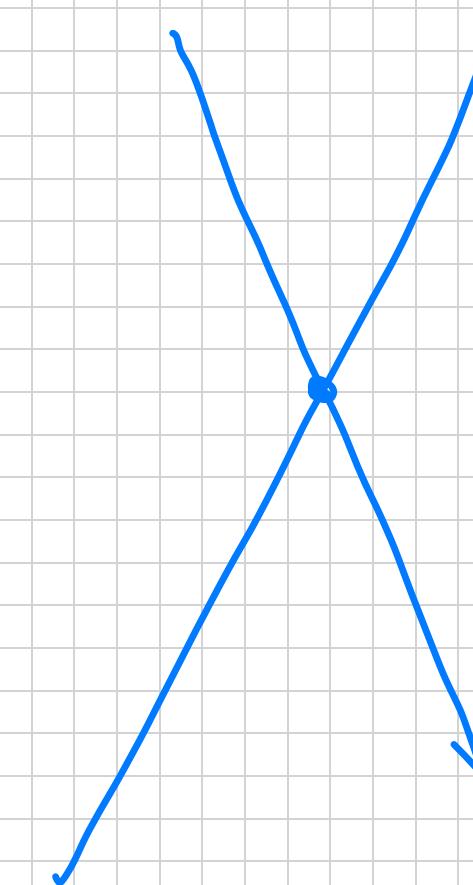


Parallel



Direction vectors
are parallel

Intersecting



have a
common
point

Skew



$$l_1: t \langle 0, 0, 1 \rangle$$

$$l_2: t \langle 0, 1, 0 \rangle + \langle 1, 0, 0 \rangle$$

→ No common point

→ Direction vectors
not parallel

Break

Stretch

Reflect

Ask questions

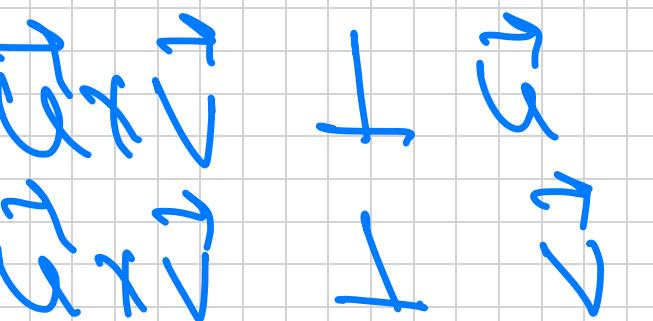
talk to your neighbor

.....

Next: Planes in 3D.

Turn to your neighbor & Discuss these questions:

① How do we find a vector orthogonal to \vec{u} & \vec{v} ?



② How do we check if \vec{u} and \vec{v} are orthogonal?

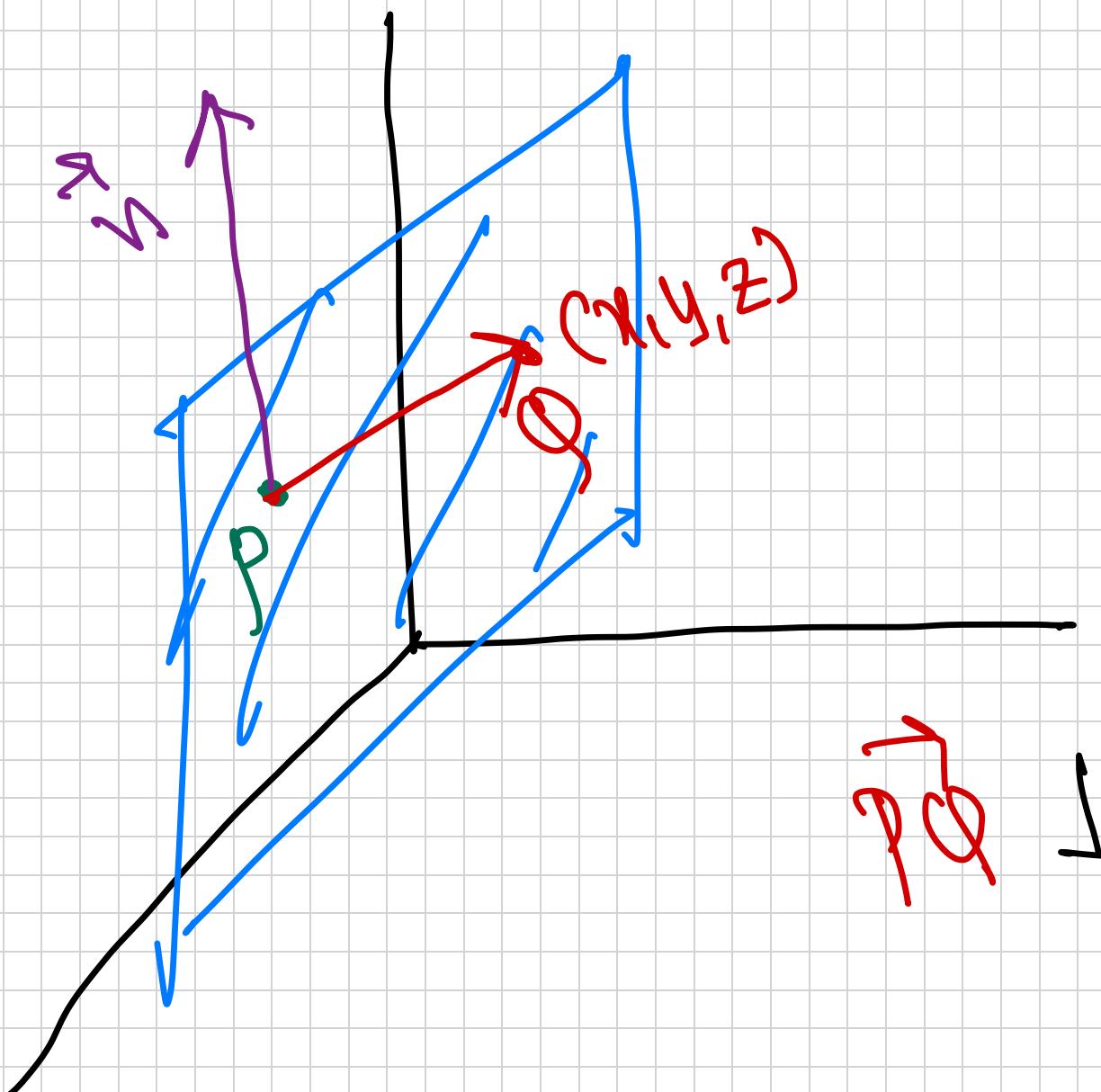
$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta = 0 \quad \rightarrow \quad \theta = 90^\circ$$

Plane:

Need a

point on plane

Normal Vector
 $\vec{n} = \langle a, b, c \rangle$
perpendicular
to
all vectors
on plane



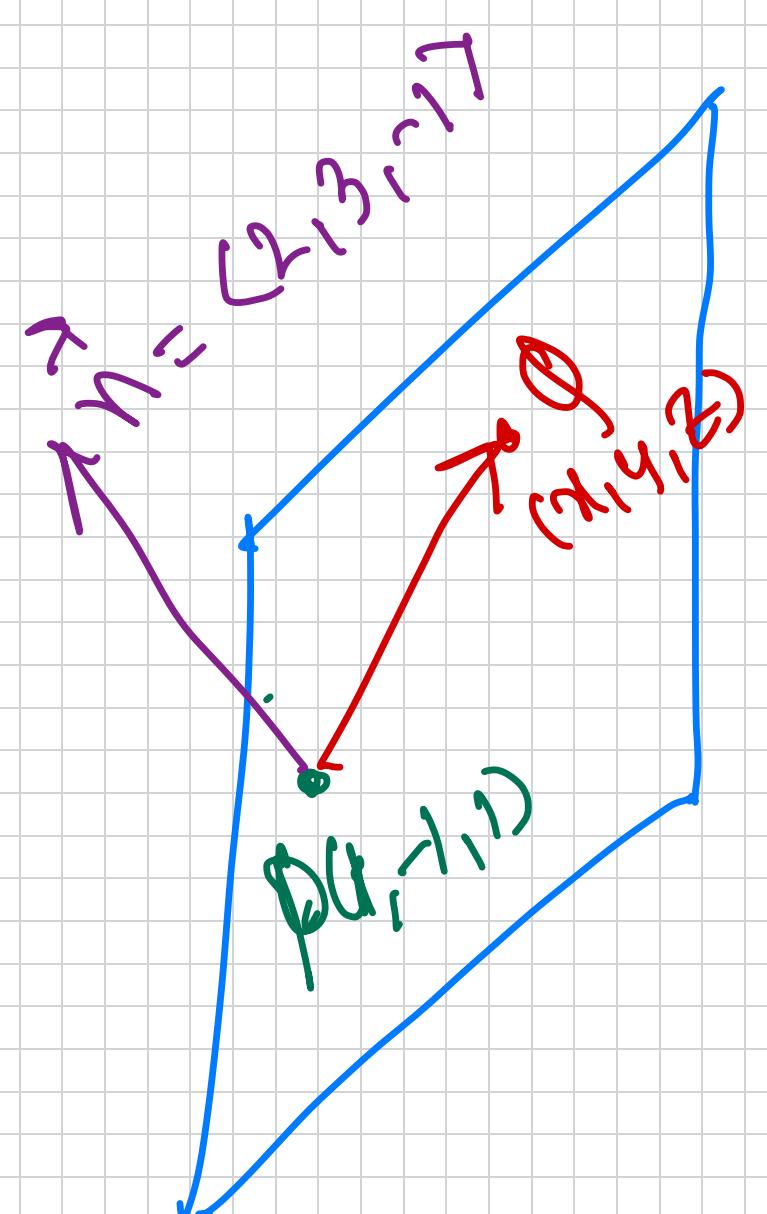
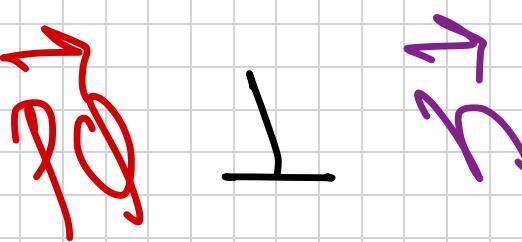
$$\{ \} \cdot (00) \cdot n = 0$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$ax + by + cz = ax_0 + by_0 + cz_0$$

Equation of Plane

Find equation of plane passing through $(1, -1, 1)$ with
Normal vector $\langle 2, 3, -1 \rangle$



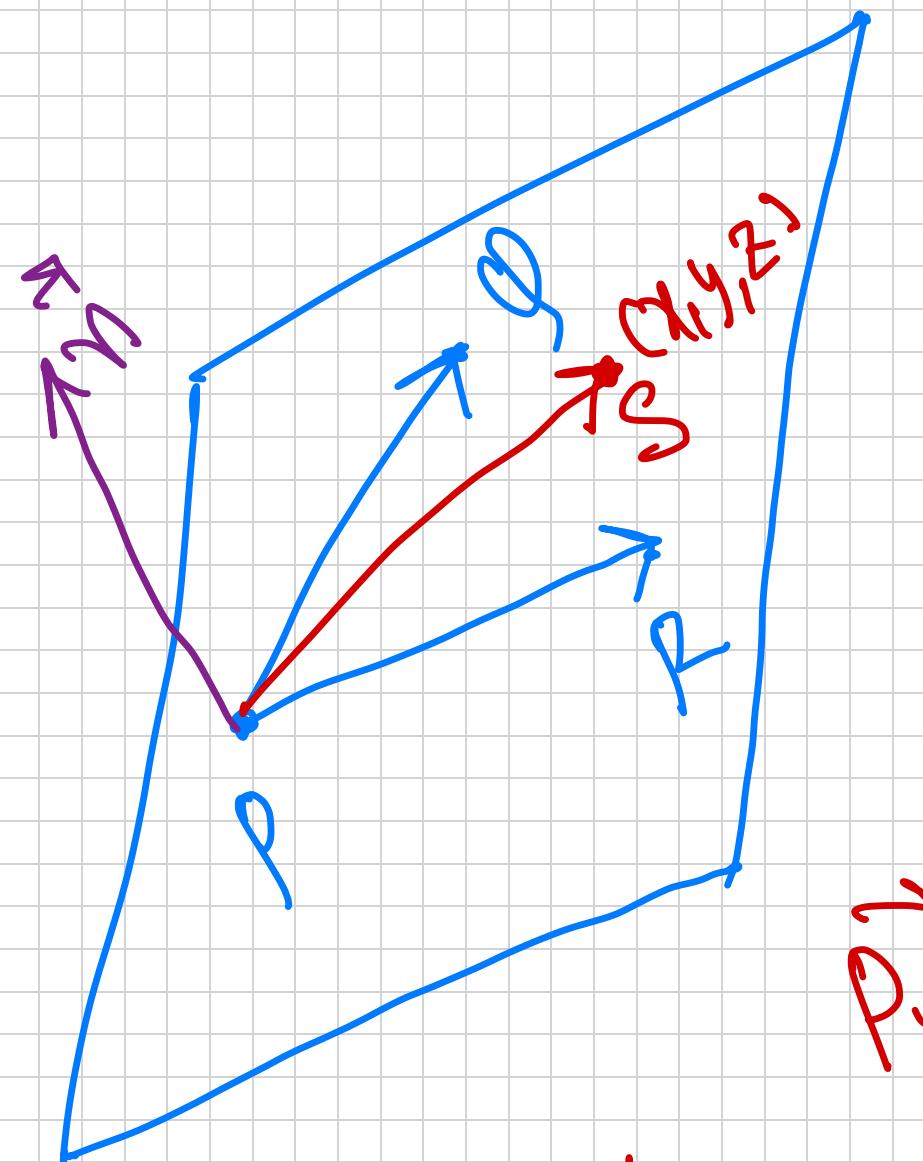
$$\langle x-1, y+1, z-1 \rangle \perp \langle 2, 3, -1 \rangle$$
$$\langle x-1, y+1, z-1 \rangle \cdot \langle 2, 3, -1 \rangle = 0$$

$$2(x-1) + 3(y+1) - (z-1) = 0$$

$$2x - 2 + 3y + 3 - z + 1 = 0$$

$$2x + 3y - z = -2$$

Find equation of plane containing $P(2, 3, -1)$, $Q(3, 5, -1)$ and $R(6, 2, 0)$



Plane containing $P(2, 3, -1)$, $Q(3, 5, -1)$ and $R(6, 2, 0)$ is to plane

$$\vec{PQ} =$$

$$\vec{PQ} = \langle 1, 2, 0 \rangle$$

$$\vec{PR} = \langle 4, 1, 1 \rangle$$

$$\begin{vmatrix} i & j & k \\ 1 & 2 & 0 \\ 4 & 1 & 1 \end{vmatrix} = \langle 2, -1, -9 \rangle$$

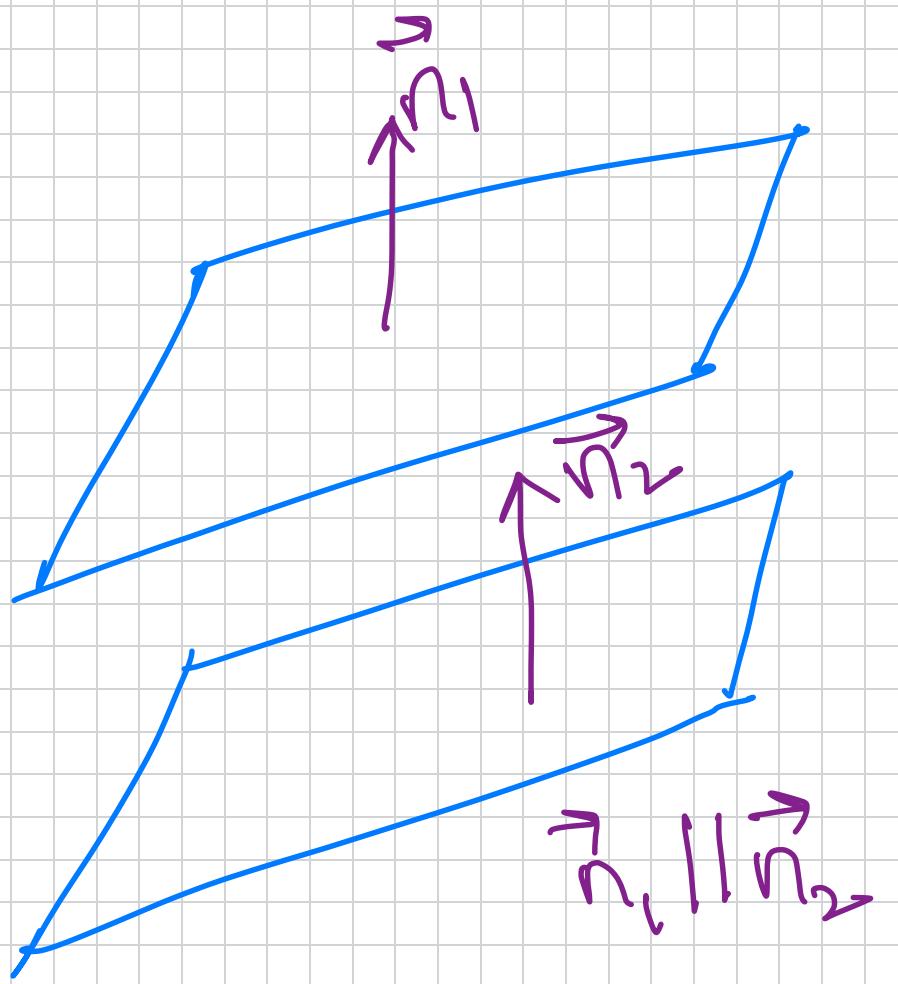
$$\langle x-2, y-3, z+1 \rangle \cdot \langle 2, -1, -9 \rangle = 0$$

$$2(x-2) - 4(y-3) - 9(z+1) = 0$$

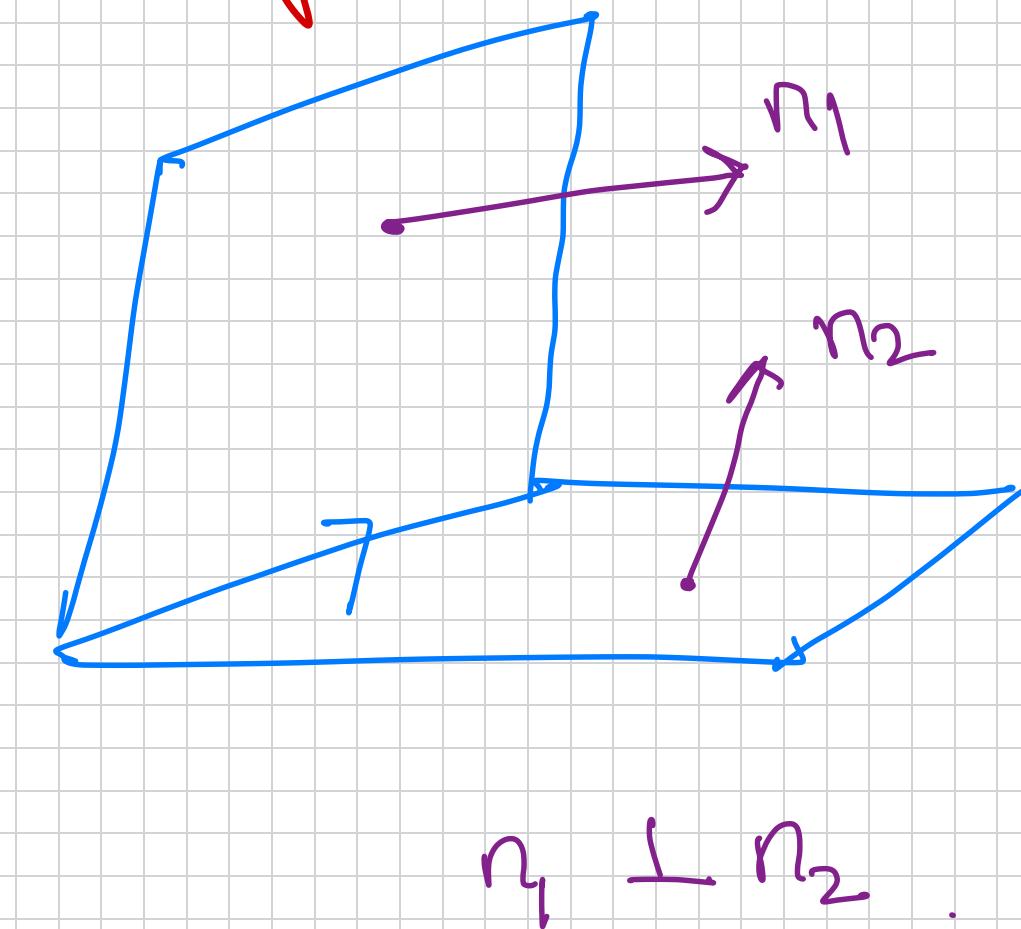
$$2x - 4y - 9z = 10$$

instead of you can choose Q or S . you will get same answer.

Parallel and Orthogonal Planes



planes are parallel if
Normal Vectors are
parallel



planes are orthogonal if
Normal Vectors are
orthogonal.

examples Not worked out in class

190

$$\vec{r}_1(t) = \langle 2t+3, 4t+2, 3t+5 \rangle$$

$$\vec{r}_2(t) = \langle s+2, 3s-1, -5s+10 \rangle$$

find point of intersection

$$2t+3 = s+2$$

$$\Rightarrow \boxed{s = 2t+1}$$

$$4t+2 = 3s-1$$

$$= 3(2t+1) - 1$$

$$4t+2 = 6t+2$$

$$t = 0$$

$$s = 2t+1 \quad \boxed{t=0} \quad \boxed{s=1}$$

point of intersection
 $= \langle 3, 2, 5 \rangle$

get by plugging in $t=0$ in \vec{r}_1
 or $s=1$ in \vec{r}_2

$$t = 0 \rightarrow 3t+5 = 5$$

$$s = 1 \rightarrow -5s+10 = 5$$

$$\text{eq1: } x + 3y - 2z = 1$$

$$\text{eq2: } x + y + z = 0$$

Find equation of the line of intersection.

Solve two

variables in terms of the third variable
for example write x & y in terms of z

$$x + 3y - 2z = 1$$

$$x + y + z = 0$$

$$\begin{cases} x + 3y - 2z = 1 \\ x + y + z = 0 \end{cases}$$

$$2y - 3z = 1$$

Plug into one of the equations

$$x + y + z = 0$$

$$x + \frac{1}{2} + \frac{3}{2}z + z = 0 \Rightarrow x = -\frac{1}{2} - \frac{5}{2}z$$

$$\langle x, y, z \rangle = \left\langle -\frac{1}{2} - \frac{5}{2}z, \frac{1}{2} + \frac{3}{2}z, z \right\rangle = z \left\langle -\frac{5}{2}, \frac{3}{2}, 1 \right\rangle + \left\langle -\frac{1}{2}, \frac{1}{2}, 0 \right\rangle$$

Equation of the line of intersection