Given \(\vec{a}(t) = \langle e^t, \sin t, t \rangle\), \(\vec{v}(0) = \langle 1, 2, 3 \rangle\) (initial velocity), and \(\vec{r}(0) = \langle -1, 3, -4 \rangle\) (initial position), find the position vector \(\vec{r}(t)\).
Solution:
Step 1: Find velocity by integrating acceleration:
\[
\vec{v}(t) = \int \vec{a}(t) \, dt = \int \langle e^t, \sin t, t \rangle \, dt
\]
\[
= \left\langle e^t, -\cos t, \frac{t^2}{2} \right\rangle + \vec{C}
\]
Step 2: Use initial velocity to find \(\vec{C}\):
\[
\langle 1, 2, 3 \rangle = \vec{v}(0) = \left\langle e^0, -\cos(0), \frac{0^2}{2} \right\rangle + \vec{C} = \langle 1, -1, 0 \rangle + \vec{C}
\]
\[
\vec{C} = \langle 1, 2, 3 \rangle - \langle 1, -1, 0 \rangle = \langle 0, 3, 3 \rangle
\]
Therefore:
\[
\vec{v}(t) = \left\langle e^t, -\cos t, \frac{t^2}{2} \right\rangle + \langle 0, 3, 3 \rangle = \left\langle e^t, -\cos t + 3, \frac{t^2}{2} + 3 \right\rangle
\]
Step 3: Find position by integrating velocity:
\[
\vec{r}(t) = \int \vec{v}(t) \, dt = \int \left\langle e^t, -\cos t + 3, \frac{t^2}{2} + 3 \right\rangle \, dt
\]
\[
= \left\langle e^t, -\sin t + 3t, \frac{t^3}{6} + 3t \right\rangle + \vec{D}
\]
Step 4: Use initial position to find \(\vec{D}\):
\[
\langle -1, 3, -4 \rangle = \vec{r}(0) = \left\langle e^0, -\sin(0) + 3(0), \frac{0^3}{6} + 3(0) \right\rangle + \vec{D}
\]
\[
= \langle 1, 0, 0 \rangle + \vec{D}
\]
\[
\vec{D} = \langle -1, 3, -4 \rangle - \langle 1, 0, 0 \rangle = \langle -2, 3, -4 \rangle
\]
Final Answer:
\[
\vec{r}(t) = \left\langle e^t, -\sin t + 3t, \frac{t^3}{6} + 3t \right\rangle + \langle -2, 3, -4 \rangle
\]
\[
= \left\langle e^t - 2, -\sin t + 3t + 3, \frac{t^3}{6} + 3t - 4 \right\rangle
\]