
F -SINGULARITIES FOR NON-F -FINITE RINGS

TAKUMI MURAYAMA

We review some classes of singularities defined using the Frobenius morphism, taking care to
avoid F -finiteness assumptions. Most of this material is well-known, but some of the implications
in Theorem 8 are new, at least in the non-F -finite case. We recommend [TW18] for a survey of
F -singularities (mostly in the F -finite setting), and [DS16, §6] and [Has10, §3] as references for the
material on strong F -regularity in the non-F -finite setting.

To define different versions of F -rationality, we will need the following:

Definition 1 [HH90, Def. 2.1]. Let R be a noetherian ring. A sequence of elements x1, x2, . . . , xn ∈
R is a sequence of parameters if for every prime ideal p containing (x1, x2, . . . , xn), the images of
x1, x2, . . . , xn in Rp are part of a system of parameters in Rp.

We now begin defining different classes of singularities. We start with F -singularities defined
using tight closure. Recall that if R is a ring, then R◦ is the complement of the union of the minimal
primes of R.

Definition 2 [HH90, Def. 8.2]. Let R be a ring of characteristic p > 0, and let ι : N →֒ M be an
inclusion of R-modules. The tight closure of N in M is the R-module

N∗

M
:=

{

x ∈ M

∣

∣

∣

∣

there exists c ∈ R◦ such that for all e ≫ 0,
c⊗ x ∈ im

(

id⊗ ι : F e
∗
R⊗R N → F e

∗
R⊗R M

)

}

.

We say that N is tightly closed in M if N∗

M
= N .

Definition 3 (F -singularities via tight closure). Let R be a noetherian ring of characteristic p > 0.
We say that

(a) R is strongly F -regular if N is tightly closed in M for every inclusion N →֒ M of R-modules
[Hoc07, Def. on p. 166];

(b) R is weakly F -regular if I is tightly closed in R for every ideal I ⊆ R [HH90, Def. 4.5];
(c) R is F -regular if Rp is weakly F -regular for every prime ideal p ⊆ R [HH90, Def. 4.5]; and
(d) R is F -rational if I is tightly closed in R for every ideal I generated by a sequence of

parameters in R [FW89, Def. 1.10].

We note that (a) is not the usual definition of strong F -regularity, although it coincides with the
usual definition (Definition 6(a)) for F -finite rings; see Theorem 8. We also note that the original
definition of F -regularity asserted that localizations at every multiplicative set are weakly F -regular,
but the definition using prime ideals is equivalent by [HH90, Cor. 4.15].

Next, we define F -singularities via purity of homomorphisms involving the Frobenius. We recall
that a ring homomorphism ϕ : R → S is pure if the homomorphism

ϕ⊗ id : R⊗R M −→ S ⊗R M

is injective for every R-module M . To simplify notation, we fix the following:

Notation 4. Let R be a noetherian ring of characteristic p > 0. For every c ∈ R and every integer
e > 0, we denote by λe

c the composition

R
F e

−→ F e

∗
R

F e

∗
(−·c)

−−−−−→ F e

∗
R.
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Definition 5 (F -singularities via purity). Let R be a noetherian ring of characteristic p > 0. For
c ∈ R, we say that R is F -pure along c if λe

c is pure for some e > 0. Moreover, we say that

(a) R is F -pure regular if it is F -pure along every c ∈ R◦ [HH94, Rem. 5.3];
(b) R is F -pure if it is F -pure along 1 ∈ R [HR76, p. 121]; and
(c) R is strongly F -rational if for every c ∈ R◦, there exists e0 > 0 such that for all e ≥ e0,

the homomorphism λe
c ⊗ R/I is injective for every ideal I ⊆ R generated by a sequence of

parameters in R [Vél95, Def. 1.2].

The terminology F -pure regular is from [DS16, Def. 6.1.1] to distinguish it from the definition using
tight closure (Definition 3(a)). F -pure regular rings are also called very strongly F -regular [Has10,
Def. 3.4].

We note that F -purity is a local condition [DS16, Lem. 6.1.4(e)]. Strong F -regularity is a local
condition [Has10, Lem. 3.6], and while it is equivalent to F -pure regularity in the local case [Has10,
Lem. 3.6], F -pure regularity is not known to be a local condition [DS16, Rem. 6.3.3].

Next, we define F -singularities via splitting of homomorphisms involving the Frobenius. We use
the same notation as for F -singularities defined using purity (Notation 4).

Definition 6 (F -singularities via splitting). Let R be a noetherian ring of characteristic p > 0.
For c ∈ R, we say that R is F -split along c if λe

c splits as an R-module homomorphism for some
e > 0. Moreover, we say that

(a) R is split F -regular if it is F -split along every c ∈ R◦ [HH94, Def. 5.1]; and
(b) R is F -split if it is F -split along 1 ∈ R [MR85, Def. 2].

The terminology split F -regular is from [DS16, Def. 6.6.1]. Split F -regularity is usually known as
strong F -regularity in the literature.

Finally, we define F -injective singularities.

Definition 7 [Fed83, Def. on p. 473]. A noetherian local ring (R,m) of characteristic p > 0 is
F -injective if the R-module homomorphism

H i

m(F ) : H i

m(R) −→ H i

m(F∗R)

induced by Frobenius is injective for all i. An arbitrary noetherian ring R of characteristic p > 0
is F -injective if Rm is F -injective for every maximal ideal m ⊆ R.

The relationship between these classes of singularities can be summarized as follows:

Theorem 8. Let R be a noetherian ring of characteristic p > 0. We have the following diagram
of implications of properties of R:

regular

split F -regular F -pure regular strongly F -rational

strongly F -regular F -regular

weakly F -regular F -rational C–M

normal

F -split F -pure F -injective reduced

WN1 weakly normal

local
F -finite

N-graded

Gor. away from isolated points + C–M
Gor.

F -finite

locally excellent
or

image of
C–M ring

local
or

locally excellent
domain

or
image of
C–M ring

F -finite
or

complete local

quasi-Gor.

F -finite
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where “C–M” (resp. “Gor.”) is an abbreviation for Cohen–Macaulay (resp. Gorenstein).

Proof. We first list the implications that are easy or appear in the literature.

Implication Proof

split F -regular =⇒ F -split Definition

F -regular =⇒ weakly F -regular Definition

weakly F -regular =⇒ F -rational Definition

split F -regular =⇒ F -pure regular split maps are pure

F -split =⇒ F -pure split maps are pure

F -split =⇒ WN1 [SZ13, Thm. 7.3]

regular =⇒ strongly F -regular [DS16, Thm. 6.2.1]

F -pure regular =⇒ strongly F -regular [Has10, Lem. 3.8]

F -pure regular =⇒ strongly F -rational [DS16, Rem. 6.1.5]

strongly F -regular =⇒ F -regular [Has10, Cor. 3.7]

weakly F -regular =⇒ F -pure [FW89, Rem. 1.6]

F -pure =⇒ F -injective [Fed83, Lem. 3.3]

strongly F -rational =⇒ F -rational [Vél95, Prop. 1.4]

F -rational =⇒ normal [HH94, Thm. 4.2(b)]

F -rational
+ locally excellent

=⇒ Cohen–Macaulay [Vél95, Prop. 0.10]

F -rational
+ image of C–M ring

=⇒ Cohen–Macaulay [HH94, Thm. 4.2(c)]

F -rational + local =⇒ F -injective [QS17, Thm. 3.7]

F -rational
+ locally excellent domain

=⇒ F -injective
[Smi94, Thm. 5.1]
[QS17, Thm. 3.7]

F -rational
+ image of C–M ring

=⇒ F -injective
[HH94, Thm. 4.2(e)]
[QS17, Thm. 3.7]

F -injective =⇒ reduced [QS17, Lem. 3.11]

F -injective + F -finite =⇒ weakly normal [Sch09, Thm. 4.7]

strongly F -regular + F -finite =⇒ split F -regular [Has10, Lem. 3.9]

strongly F -regular + local =⇒ F -pure regular [Has10, Lem. 3.6]

F -pure + F -finite =⇒ F -split [HR76, Cor. 5.3]

F -pure + complete local =⇒ F -split [Fed83, Lem. 1.2]

F -rational + Gorenstein =⇒ F -regular [HH94, Cor. 4.7(a)]

F -injective + quasi-Gorenstein =⇒ F -pure [EH08, Rem. 3.8]

We now show the remaining implications, for which we could not find a reference.
F -pure ⇒ weakly normal. We adapt the proof of [Sch09, Thm. 4.7]. It suffices to show that if R

is F -pure, then Rp is weakly normal for every prime ideal p ⊆ R by [Man80, Cor. IV.4]. Suppose
not, and choose a prime ideal p ⊆ R of minimal height such that Rp is not weakly normal. The
local ring Rp is F -pure by [DS16, Lem. 6.1.4(e)] hence F -injective and reduced. Moreover, the
punctured spectrum Spec(Rp)r{pRp} is weakly normal by the minimality of p, hence [Sch09, Lem.
4.6] implies Rp is weakly normal, a contradiction.

Weakly F -regular + Gorenstein away from isolated points + Cohen–Macaulay ⇒ strongly F -
regular. Let R be the weakly F -regular ring that is Cohen–Macaulay, and also Gorenstein away
from isolated points. Then, the localization Rm is weakly F -regular for every maximal ideal m ⊆ R
by [HH90, Cor. 4.15], and to show that R is strongly F -regular, it suffices to show that 0 is tightly
closed in

Em := ERm
(R/m)
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for every maximal ideal m ⊆ R [Has10, Lem. 3.6]. Since Rm is weakly R-regular, every submodule
of a finitely generated module is tightly closed [HH90, Prop. 8.7], hence the finitistic tight closure

0∗fg
Em

as defined in [HH90, Def. 8.19] is zero. Finally, since 0∗fg
Em

= 0∗
Em

under the assumptions on R
[LS01, Thm. 8.8], we see that 0 is tightly closed in Em, hence R is strongly F -regular.

Weakly F -regular + N-graded ⇒ split F -regular. We adapt the proof of [LS99, Cor. 4.4]. Let R
be the N-graded ring with irrelevant ideal m; note that by assumption in [LS99, §3], the ring R is
finitely generated over a field R0 = k of characteristic p > 0. The localization Rm of R is weakly
F -regular by [HH90, Cor. 4.15]. Now let L be the perfect closure of k, and let m′ be the expansion
of m in R⊗k L; since R is graded, m′ is the irrelevant ideal in R⊗k L. The ring homomorphism

Rm −→ Rm ⊗k L ∼= (R⊗k L)m′

is purely inseparable and m expands to m′, hence (R ⊗k L)m′ is weakly F -regular by [HH94, Thm.
6.17(b)]. By the proof of [LS99, Cor. 4.3], R ⊗k L is strongly F -regular. Finally, R is a direct
summand of R⊗k L as an R-module, hence R is strongly F -regular as well [HH94, Thm. 5.5(e)].

F -rational + F -finite ⇒ strongly F -rational. The hypotheses of [Vél95, Thm. 1.12] are satisfied
when the ring is F -finite since an F -finite ring is excellent and is isomorphic to a quotient of a
regular ring of finite Krull dimension by [Gab04, Rem. 13.6]. �

Remark 9. The condition that R is the image of a Cohen–Macaulay ring is not too restrictive in
practice. For instance, it suffices for R to have a dualizing complex [Kaw02, Cor. 1.4], which in
turn is implied by F -finiteness [Gab04, Rem. 13.6].

Remark 10. In the implication Weakly F -regular + Gorenstein away from isolated points + Cohen–
Macaulay ⇒ strongly F -regular, MacCrimmon [Mac96, Thm. 3.3.2] showed that for F -finite rings,
the Gorenstein condition can be weakened to being Q-Gorenstein away from isolated points. The
implication weakly F -regular + F -finite ⇒ split F -regular is a famous open problem, and is known
in dimensions at most three by [Wil95, §4]. See also [Abe02] for other situations in which this
implication is known and for a proof of MacCrimmon’s theorem.

Remark 11. The stated cases for the implication “F -rational ⇒ F -injective” follow by reducing
to the local case, which is proved in [QS17, Thm. 3.7]. Thus, the implication “F -rational ⇒
F -injective” holds under different hypotheses by using [AHH93, Thm. 5.21], which shows that F -
rationality localizes under various assumptions. In particular, by [AHH93, Thm. 5.21(b)], it suffices
to assume that R has a weak test element and that R/p is of acceptable type (in the sense of
[AHH93, p. 87]) for every minimal prime ideal p ⊆ R.

Acknowledgments. I would like to thank Rankeya Datta for pointing out the implication “weakly
F -regular + N-graded ⇒ split F -regular,” and for finding a correct reference for the implication
“F -rational + local ⇒ F -injective.”
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