
F -MODULES AND FINITENESS OF ASSOCIATED PRIMES

TAKUMI MURAYAMA

Abstract. We present Lyubeznik’s theory of F -modules, which are then used to show finiteness of
associated primes of local cohomology modules for regular rings in positive characteristic.
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1. Introduction

We are concerned with the following:

Conjecture 1.1 [Lyu93, Rem. 3.7]. Let R be a regular ring, and consider an ideal a ⊆ R. Then,

# AssR
(
H i

a(R)
)
<∞.

Recall that p ∈ AssR(M) if there exists m ∈ M such that p = ann(m). One geometric
interpretation is that the “scheme-theoretic support” has finitely many components, and so local
cohomology “looks like” it is of finite type.

We quickly review what is known about this question:

(1) charR = p > 0 [HS93, Cor. 2.3].
(2) char k = 0 when R finite type over k, or R local [Lyu93, Rem. 2.9, Cor. 3.6].
(3) R unramified regular local in mixed characteristic [Lyu00, Thm. 1].
(4) R smooth over Z [BBLSZ14, Thm. 1.2].

In the opposite direction, the regularity condition cannot be weakened substantially:

(5) There are counterexamples to Conjecture 1.1 when R has mild singularities (rational
singularities for charR = 0 or F -regular singularities for charR = p > 0) [SS04, Thm. 1.1].

Our goal is to show the following:
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Theorem 1.2 [Lyu97, Cor. 2.14]. Let R be a regular ring with charR = p > 0. Let T be any
functor of the form

T = T1 ◦ T2 ◦ · · · ◦ Tt,
where for each j, there exists a locally closed subscheme Yj = Y ′′j r Y ′j ⊆ Spec(R) where Y ′′j , Y

′
j are

closed, such that Tj = H i
Yj

(−) or Tj is the kernel, image, or cokernel of any arrow appearing in the

long exact sequence

0 −→ H0
Y ′j

(−) −→ H0
Y ′′j

(−) −→ H0
Yj (−) −→ H1

Y ′j
(−) −→ · · · .

Then, # AssR
(
T (R)

)
<∞.

1.1. The approach. We explain the general approach taken to show finiteness of associated primes.

Theorem 1.3 [Mat89, Thm. 6.5(i)]. If R is noetherian and M ∈ ModR is finitely generated, then

# AssR(M) <∞.

The usual proof goes through finding a composition series and arguing about the factors that
show up. Instead, we give a proof that will generalize to local cohomology.

We need the following:

Definition 1.4. Let M ∈ ModR and let a = (f1, f2, . . . , fr) ⊆ R be an ideal. The a-torsion
submodule of M is

Γa(M) :=
{
m ∈M

∣∣ ∃n such that anm = 0
}

= ker
(
M −→

r⊕
i=1

Mfi

)
.

Lemma 1.5. Let R be a noetherian ring, and let M ∈ ModR. If p is maximal in AssR(M), then

AssR
(
Γp(M)

)
= {p}.

Proof. To show “⊆” it suffices to show that for every q ∈ AssR
(
Γp(M)

)
, we have p ⊆ q. This is

because q is an associated prime of M as well, and by maximality of p. Let m ∈ Γp(M) such
that ann(m) = q. Then, m ∈ Γp(M) implies that for every f ∈ p, there exists some n such that
fn ∈ ann(m). Since q is prime, we see that f ∈ q, hence p ⊆ q. For “⊇” it suffices to note that
Γp(M) 6= 0 by definition, hence AssR

(
Γp(M)

)
6= ∅. �

We can now show Theorem 1.3.

Proof of Theorem 1.3. We construct a chain

0 (M1 ⊆M2 ⊆ · · · ⊆M

such that # AssR(Mi/Mi−1) = 1 as follows. By Lemma 1.5, we can let M1 = Γp1(M) for p1 ∈
AssR(M) maximal. For i > 0, we let pi ∈ AssR(M/Mi−1) be maximal, and set Mi to be the
preimage of Γpi(M/Mi−1) ⊆M/Mi−1 in M . We then have the commutative diagram

0 Mi−1 Mi Γpi(M/Mi−1) 0

0 Mi−1 M M/Mi−1 0

hence AssR(Mi/Mi−1) = {pi}. Since M is finitely generated, it is noetherian, hence the ascending
chain must stabilize at some point r. By looking at the short exact sequences

0 −→Mi−1 −→Mi −→Mi/Mi−1 −→ 0
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for each i, we therefore have that

AssR(M) = AssR(Mr) ⊆ AssR(Mr−1) ∪AssR(Mr/Mr−1) ⊆ · · ·

⊆
r⋃
i=1

AssR(Mi/Mi−1) = {p1, p2, . . . , pr},

which is finite. �

1.2. What we need. To carry out this strategy for local cohomology modules (Theorem 1.2), we
need a category A such that

(I) The category A is abelian.
(II) There is an abelian subcategory C of A such that every object of C satisfies ACC in C .

(III) R ∈ C .
(IV) If M ∈ C , then Mf ∈ C for every f ∈ R.

Note that (II–IV) imply that if M ∈ C , then H i
a(M) ∈ C . In particular, H i

a(R) ∈ C .
We are using the notation “∈” a bit loosely here: in actuality, the category C will consist of

R-modules with some extra information. In our proof of Theorem 1.3, we had A = ModR and

C = Modfg
F , although this category does not satisfy (IV).

Lyubeznik in [Lyu93] used that in characteristic zero, one can set C = D-Modhol
R ⊆ D-ModR = A .

Our main goal is to construct an analogous category in positive characteristic.
From now on, all rings will be of characteristic p > 0.

2. Preliminaries

Let R be a ring. Recall that the Frobenius morphism is the ring homomorphism

F : R −→ R

r 7−→ rp

We state some preliminary facts about the Frobenius morphism.

2.1. Kunz’s theorem. We will use the following result repeatedly.

Theorem 2.1 [Kun69, Cor. 2.7]. Let R be a noetherian ring. Then, R is regular if and only if
F : R→ R is flat and R is reduced.

2.2. The Frobenius functor of Peskine–Szpiro. We also need to define the Frobenius functor
of Peskine–Szpiro.

Definition 2.2 (cf. [PS73, Def. I.1.2]). Let R be a ring. The Frobenius functor is the extension of
scalars functor FR : ModR → ModR, which is right-exact, and is exact if R is regular. We denote FR
by F when it (hopefully) cannot cause any confusion.

Remark 2.3. We define the functor more explicitly. Let R be a ring. If M is an R-module, we
denote by M (1) the (R,R)-bimodule given by the usual R-module structure on the left, and the
right R-module structure given by m · r = rpm for all r ∈ R. One can define the Frobenius functor
as the functor

F : ModR ModR

M R(1) ⊗RM(
M

h−→ N
) (

R(1) ⊗RM
id⊗Rh−−−−→ R(1) ⊗R N

)
where the R-module structure on R(1) ⊗RM is given by the left R-module structure on R(1).

We will need the following facts:
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Lemma 2.4 (cf. [PS73, Prop. I.1.4] and [Lyu97, Rem. 1.0(i)]). Let R be a ring, and let T ⊆ R be
a multiplicative set. Then, the diagram

R R

T−1R T−1R

FR

π π

FT−1R

(1)

is cocartesian, and there is a natural isomorphism

β :
R

(
FT−1R(−)

) ∼−→ FR(R−)

of functors.

Proof. Let S be a ring fitting into the commutative diagram below:

R R

T−1R T−1R

S

FR

π π
f

FT−1R

g

ψ

We want to show there is a unique ring homomorphism ψ making the diagram commute. First, note
that if t ∈ T , then the image f(t) is invertible since g(t) is invertible and

f(t) · f(tp−1) · g(t)−1 = f(ϕR(t)) · g(t)−1 = g(t) · g(t)−1 = 1

by the commutativity of the diagram. There is therefore a unique ring homomorphism ψ making
the diagram commute by the universal property of localization [Stacks, Tag 00CP].

The final asserstion follows from cohomology and base change [Stacks, Tag 02KG]. Explicitly, in
the notation of Remark 2.3, we have natural isomorphisms

(T−1R)(1) ⊗T−1RM
∼−→
(
R(1) ⊗R T−1R

)
⊗T−1RM

∼−→ R(1) ⊗RM

as R-modules. �

Lemma 2.5 [Lyu97, Rem. 1.0(b)]. Let R be a regular ring. Then, the Frobenius functor commutes
with finite intersections of submodules, i.e., if {Ni}i∈I is a finite set of submodules of an R-module
M , then

F
(⋂
i∈I

Ni

)
=
⋂
i∈I

F(Ni) ⊆ F(M).

Proof. There exists an exact sequence

0 −→
⋂
i∈I

Ni −→M
m 7→

⊕
imi−−−−−−→

⊕
i∈I

M/Ni,

where mi ∈M/Ni is the image of m ∈M under the natural projection map M →M/Ni. By the
fact that F is flat, F is exact, and so we have an exact sequence

0 −→ F
(⋂
i∈I

Ni

)
−→ F(M)

m7→
⊕

imi−−−−−−→
⊕
i∈I

F(M/Ni),

where mi ∈ F(M/Ni) is the image of m ∈ F(M) under the natural projection map F(M)→ F(M/Ni).
Since this sequence is exact, it follows that F commutes with finite intersections. �

http://stacks.math.columbia.edu/tag/00CP
http://stacks.math.columbia.edu/tag/02KG
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3. F -modules

The Frobenius functor is important since for regular rings, F(H i
a(R)) ∼= H i

a(R) [HS93, Lem. 1.8].
We will prove this eventually, but for now this suggests the following candidate for A :

Definition 3.1 (cf. [Lyu97, Def. 1.1]). Let R be a ring. An F -module over R is a pair (M, θM ),
where M is an R-module and θM : M → F(M) is an R-module isomorphism, which we call the
structure morphism of M . A morphism f : (M, θM ) → (N, θN ) of F -modules is an R-module
homomorphism f : M → N for which the diagram

M N

F(M) F(N)

f

θM θN

F(f)

commutes in ModR. The category of F -modules over R is denoted F-ModR. There is a natural
“forgetful” functor

Forget : F-ModR ModR

(M, θM ) M

If (M, θM ) is an F -module, we will often abuse terminology by simply referring to M as an
F -module over R. In this case, we are simply asserting that M is already equipped with a structure
morphism θM : M

∼→ F(M).

Example 3.2 [Lyu97, Ex. 1.2(a)]. Any R-module isomorphism θR : R → F(R) makes R into an
F -module. In particular, there is a canonical F -module structure on R defined by the R-module
isomorphism

R R(1) ⊗R R =: F(R)

r r ⊗ 1

∼

3.1. F -modules form an abelian category. We first show some elementary properties of the
category F-ModR for an arbitrary ring R. See [Stacks, Tag 09SE] for definitions of preadditive and
additive categories.

Proposition 3.3. Let R be a ring. The category F-ModR of F -modules over R is additive and has
cokernels.

Proof. The forgetful functor F-ModR → ModR is faithful, and the subset of morphisms of F -modules
M → N is a subgroup of HomR(M,N), hence F-ModR is preadditive. Moreover, the zero module 0
is trivially an F -module, and if (M, θM ), (N, θN ) are two F -module, then (M ⊕N, θM ⊕ θN ) is an
F -module. We therefore see that F-ModR is additive.

Now let f : M → N be a morphism of F -modules. Consider the exact sequence

M
f−→ N −→ coker(f) −→ 0.

Applying F, we have the commutative diagram

M N coker(f) 0

F(M) F(N) F
(
coker(f)

)
0

f

θM

∼

θN

∼

θcoker(f)

F(f)

in ModR, where the bottom row is exact since ϕ∗R is right-exact. Since θM and θN are isomorphisms
by definition, we see that θcoker(f) is also an isomorphism, hence coker(f) is an F -module.

http://stacks.math.columbia.edu/tag/09SE
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Finally, we show that coker(f) is the cokernel for f in F-ModR. Suppose we have a sequence

M
f−→ N −→ Q

of morphisms of F -modules whose composition is zero. We then have the diagram

M N coker(f)

Q

F(M) F(N) F(coker(f))

F(Q)

f

θM

∼

θN

∼

θcoker(f)

∼

g

F(f)

F(g)

∼ θQ

in ModR, where g is uniquely constructed from the universal property of coker(f), and the bottom
layer is the top layer with F applied. The universal property of coker(f) applied to

M N Q F(Q)
f θQ

∼

implies that θQ ◦ g = F(g) ◦ θcoker(f), hence g : coker(f)→ Q is a morphism of F -modules. �

On the other hand, for F-ModR to be abelian, we need a stronger assumption on R. See [Stacks,
Tag 00ZX] for the definition of an abelian category.

Proposition 3.4. Let R be a regular ring. The category F-ModR of F -modules over R is abelian,
and the forgetful functor Forget : F-ModR → ModR reflects exactness.

Proof. Let f : M → N be a morphism of F -modules. By Proposition 3.3, to show that F-ModR is
abelian, it remains to show that ker(f) exists, and that the natural map coim(f) → im(f) is an
isomorphism. Consider the exact sequence

0 −→ ker(f) −→M
f−→ N.

Applying F, we have the commutative diagram

0 ker(f) M N

0 F(ker(f)) F(M) F(N)

θker(f)

f

θM

∼

θN

∼

F(f)

in ModR, where the bottom row is exact since F is exact by the flatness of Frobenius. Since θM and
θN are isomorphisms by definition, we see that θker(f) is also an isomorphism, hence ker(f) is an
F -module.

We now show that ker(f) is a kernel for f in F-ModR. Suppose we have a sequence

K −→M
f−→ N

of morphisms of F -modules whose composition is zero. We then have the diagram

ker(f) M N

K

F(ker(f)) F(M) F(N)

F(K)

θker(f)

∼

h

θM

∼

θN

∼

F(h)

∼ θK

http://stacks.math.columbia.edu/tag/00ZX
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in ModR, where h is uniquely constructed from the universal property of ker(f), and the bottom
layer is the top layer with F applied. The universal property of ker(f) applied to

K F(K) F(M) F(N)
θK
∼

F(f)

implies that θK ◦ h = F(h) ◦ θker(f), hence h : K → ker(f) is a morphism of F -modules.
To show that the natural map coim(f)→ im(f) is an isomorphism, consider the diagram

M N

coim(f) im(f)

F(M) F(N)

F(coim(f)) F(im(f))

f

θM

∼

θN

∼
θcoim(f)

∼

F(f)

∼ θim(f)

where the bottom layer is the top layer with F applied. The diagram commutes since all maps
are constructed using universal properties of kernels and cokernels. Since the category ModR is
abelian, the morphism coim(f) → im(f) is an isomorphism, hence F(coim(f)) → F(im(f)) is an
isomorphism as well. Thus, coim(f)→ im(f) is an isomorphism in F-ModR.

Finally, since the underlying modules for kernels and cokernels are the kernels and cokernels from
ModR, we see that the forgetful functor Forget reflects exactness. �

We now can set A = F-ModR for goal (I).

3.2. Local cohomology as an F -module. We disregard (II) for a moment, and first explain why
local cohomology gives an example of an F -module. The easiest way to do so is to define restriction
and extension of scalars for R-modules.

Definition 3.5 [Lyu97, Def.-Prop. 1.3(a)]. Let R and S be rings, and let π : R → S be a ring
homomorphism. Since the diagram

R R

S S

FR

π π

FS

commutes, there is a natural isomorphism

α : S ⊗R FR(−)
∼−→ FS(S ⊗R −)

of functors ModR → ModS . The extension of scalars functor

π∗ : F-ModR −→ F-ModS

is defined as follows. First, we define π∗(M, θM ) to be the S-module π∗M := S ⊗R M equipped
with the structure morphism

π∗M π∗FR(M) FS(π∗M).
π∗θM
∼

α(M)

∼

Second, if f : M → N is a morphism of F -modules over R, then we define π∗f := S ⊗R f , which
defines a morphism since the diagram

π∗M π∗FR(M) FS(π∗M)

π∗N π∗FS(N) FS(π∗N)

π∗θM
∼

π∗f

α(M)

∼

π∗FR(f) FS(π∗f)

π∗θN α(N)

∼
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commutes. We then have the commutative diagram

F-ModR F-ModS

ModR ModS

π∗

Forget Forget

π∗

of functors.

Definition 3.6 [Lyu97, Def.-Prop. 1.3(b)]. Let R be a ring, and let T ⊆ R be a multiplicative set.
The restriction of scalars functor

π∗ : F-ModT−1R −→ F-ModR

is defined as follows. First, we define π∗(M, θM ) to be the R-module π∗M := RM equipped with
the structure morphism

π∗M π∗FT−1R(M) FR(π∗M)
π∗θM
∼

β(M)

∼

where β(M) is the isomorphism from Lemma 2.4. Second, if f : M → N is a morphism of F -modules
over T−1R, then we define π∗f := Sf , which defines a morphism since the diagram

π∗M π∗FT−1R(M) FR(π∗M)

π∗N π∗FT−1R(N) FR(π∗N)

π∗θM
∼

π∗f

β(M)

∼

π∗FT−1R(f) FR(π∗f)

π∗θN
∼

β(N)

∼

commutes. We then have the commutative diagram

F-ModT−1R F-ModR

ModT−1R ModR

π∗

Forget Forget

π∗

of functors.

Proposition 3.7 [Lyu97, Def.-Prop. 1.3(b)]. Let R be a ring, and let T ⊆ R be a multiplicative set.
There is an adjunction π∗ ` π∗ of functors such that for every F -module M over R, the morphism

M −→ π∗π∗M

induced by the unit of the adjunction is the natural localization map ` : M → T−1M .

Proof. By the universal property of localization [Stacks, Tag 07K0], there is a natural bijection

HomT−1R(π∗M,N)
∼−→ HomR(M,π∗N)

where M is an R-module and N is a T−1R-module. The R-module homomorphism M → π∗π∗M
induced by the unit of the adjunction is the natural localization map ` : M → T−1M .

It therefore suffices to show that if M is an F -module over R and N is an F -module over
T−1R, then under this bijection, morphisms of F -modules over T−1R correspond to morphisms of

http://stacks.math.columbia.edu/tag/07K0
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F -modules over R. Consider the following diagram in ModR:

M π∗T−1M π∗N

π∗FT−1R(T−1M) π∗FT−1R(N)

F(M) FR(π∗T−1M) FR(π∗N)

`

θM

∼

π∗f

π∗θT−1M

∼

π∗θN

∼

FT−1R(π∗f)

β(T−1M)

∼

β(N)

∼

FR(`) π∗FR(f)

Since the bottom right square automatically commutes by Lemma 2.4, we see that the left square
commutes if and only if the top right square commutes as desired. �

We can now give our first non-trivial example of an F -module.

Proposition 3.8 [Lyu97, pp. 80–81]. Let R be a regular ring, and let M be an F -module over
R. Consider an ideal a ⊆ R. Then, the local cohomology modules H i

a(M) have natural F -module
structures, and form a δ-functor

H i
a : F-ModR −→ F-ModR.

Proof. Consider the Čech complex for a choice of generators f1, f2, . . . , fr of a together with its
image under F:

0 M
⊕
i

Mfi

⊕
i1<i2

Mfi1fi2
· · · Mf1f2···fr 0

0 F(M)
⊕
i

F
(
Mfi

) ⊕
i1<i2

F
(
Mfi1fi2

)
· · · F

(
Mf1f2···fr

)
0

d0

θM

∼

d1

⊕θMfi

∼

d2

⊕θMfi1
fi2

∼

dr−1

⊕θMf1f2···fr

∼

d0 d1 d2 dr−1

The bottom row is exact by the flatness of F , and the F -module structures on each localization of
M are induced by extending scalars via the localization map, and restricting scalars back to R. The
diagram commutes by Proposition 3.7 and the definition of the differentials dj . Since the category
F-ModR is abelian by Proposition 3.4, we see that H i

a(M) has a natural F -module structure for
each i. Finally, by performing the proof of [BS13, Lem. 5.1.9] in the category F-ModR, the functor
H i

a indeed defines a δ-functor. �

Remark 3.9. The F -module structure seems to depend on the choice of generators f1, f2, . . . , fr.
One can show that local cohomology modules can be given F -module structures using injective
resolutions [Lyu97, Ex. 1.2(b)], and that this definition will match the description in Proposition 3.8
by [Lyu97, Prop. 1.8].

4. F -finite F -modules

We now discuss (II). The idea is that the subcategory C should consist of F -modules that “come
from” finitely generated R-modules in a precise sense, which we describe first.

4.1. Generating morphisms.

Definition 4.1 [Lyu97, Def. 1.9]. Let R be a ring. Let M be an F -module over R. A generating
morphism for M is an R-module homomorphism ϑ : M0 → F(M0) where M0 is an R-module, such
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that M is the direct limit of the top row of the commutative diagram

M0 F(M0) F2(M0) · · ·

F(M0) F2(M0) F3(M0) · · ·

ϑ

ϑ

F(ϑ)

F(ϑ)

F2(ϑ)

F2(ϑ)

F(ϑ) F2(ϑ) F3(ϑ)

and such that the structure morphism θ : M
∼→ F(M) is induced by the vertical arrows in this

diagram.

Example 4.2 [Lyu97, Rem. 1.10(a)]. The structure morphism of an F -module M is automatically
a generating morphism for M , and a generating morphism ϑ for an F -module is the structure
morphism if and only if ϑ is an isomorphism.

We now describe how generating morphisms interact with localization.

Proposition 4.3 [Lyu97, Rem. 1.10(c)]. Let R be a regular ring. Let M be an F -module with
a generating morphism ϑ : M0 → F(M0). Let f ∈ R, and denote by π : R → Rf the localization
homomorphism. Then, ϑ ◦ fp−1 : M0 → F(M0) is a generating morphism for π∗π∗M .

Proof. Denote π∗π∗M = (Mf , θMf
), and denote by ` : M → Mf the natural localization map.

Consider the diagram

M0 F(M0) F2(M0) · · ·

M F(M) F2(M) · · ·

Mf F(Mf ) F2(Mf ) · · ·

ϑ◦fp−1

γ

F(ϑ◦fp−1)

F(γ)

F2(ϑ◦fp−1)

F2(γ)

θM◦fp−1

f−1◦`

F(θM◦fp−1)

F(f−1◦`)

F2(θM◦fp−1)

F2(f−1◦`)
θMf

F(θMf
) F2(θMf

)

where the vertical morphisms in the top row are those induced by ϑ. The top half of the diagram
commutes by definition of a generating morphism; the bottom half of the diagram commutes since

Fi(f−1 ◦ `) = f−p
i ◦ F(`), Fi(θM ◦ fp−1) = Fi(θM ) ◦ fpi+1−pi

and ` is a morphism of F -modules.
Let N0 and N be the F -modules generated by the first and second rows, respectively, and let

g : N0 → N be the corresponding morphism of F -modules. This morphism is an isomorphism since
the direct limit of the Fi(γ) is an isomorphism by the assumption that ϑ is a generating morphism
for M .

Now consider the morphism h : N →Mf induced by the second and third rows. We claim that g
is an isomorphism. First, the morphism h is injective since every element in

ker
(
Fi(f−1 ◦ `)

)
= ker

(
f−p

i ◦ Fi(`)
)

= ker
(
Fi(`)

)
= Fi ker(`)

is annihilated by some power of f , and is therefore eventually goes to zero in the directed system of
the middle row. Second, the morphism h is surjective since every morphism in the bottom row is an
isomorphism, so we have a map(

θ−1
Mf
◦ (F(θMf

))−1 ◦ · · · ◦ (Fi−1(θMf
))−1

)
◦ Fi(f−1 ◦ `) : FiM −→Mf

whose image is the R-submodule of Mf consists of all elements of the form m/fp
i

where m ∈M ,
and every element of Mf may be written in such a form for some i. �
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4.2. Definition of F -finite F -modules. We now define the category C we wanted to find in (II).

Definition 4.4 [Lyu97, Def. 2.1]. Let R be a ring, and let M be an F -module. We say M is F -finite
if M has a generating morphism ϑ : M0 → F(M0), where M0 is a finitely generated R-module.

If ϑ is injective, then we say M0 is a root of M and we call ϑ a root morphism.
The full subcategory of F -finite F -modules is denoted F-Modfin

R .

Example 4.5 [Lyu97, Ex. 2.2(a)]. The ring R with the F -module structure from Example 3.2 is
F -finite, since R is finitely generated over itself.

Example 4.6 (cf. [Lyu97, Prop. 2.9(b)]). Let R be a regular ring, and let M be an F -finite
F -module over R with generating morphism ϑ : M0 → F(M0). Let f ∈ R, and let π : R → Rf be
the natural localization homomorphism. Then, Mf := π∗π∗M is F -finite with generating morphism

ϑ ◦ fp−1 : M0 → F(M0) by Proposition 4.3. Once we show that F-Modfin
R is an abelian subcategory

of F-ModR, this implies H i
a(M) and more generally T (M) is F -finite for all M ∈ F-Modfin

R , where
T (−) is a functor as in Theorem 1.2.

This shows (III) and (IV). It therefore remains to show (II).

4.3. F -finite F -modules form a Serre subcategory. We start with the following:

Proposition 4.7 [Lyu97, Prop. 2.3]. Every F -finite F -module over a regular ring R has a root.

Proof. Let M ∈ F-Modfin
R , and let ϑ : M0 → F(M0) be a generating morphism. Denote

ϑi := Fi−1(ϑ) ◦ · · · ◦ F(ϑ) ◦ ϑ.

Since M0 is finitely generated over a noetherian ring, the ascending chain

ker(ϑ1) ⊆ ker(ϑ2) ⊆ · · · ⊆M0

of submodules of M0 eventually stabilizes with common value ker(ϑi). The generating morphism ϑ
then induces an injection

f : im(ϑi) −→ im
(
F(ϑi)

)
' F

(
im(ϑi)

)
,

which we claim is a root for M . The isomorphism here is by the fact that F is flat.
The commutative diagram

M0 F(M0) F2(M0) · · ·

im(ϑi) F(im(ϑi)) F2(im(ϑi)) · · ·

ϑ

ϑi

F(ϑ)

F(ϑi)

F2(ϑ)

F2(ϑi)

f F(f) F2(f)

induces a morphism on the corresponding F -finite modules that each row generates. The morphism
is surjective since every vertical arrow is surjective, and is injective since the kernel of every vertical
arrow eventually goes to zero in the direct limit of the top row. �

Now recall that a Serre subcategory C of an abelian category A is a strictly full subcategory
containing 0 such that C is closed under the formation of subobjects, quotient objects, and extensions
[Stacks, Tag 02MN]. The subcategory F-Modfin

R of F -finite F -modules contains 0 and is strictly full,

so it suffices to show that F-Modfin
R is closed under formation of subobjects, quotient objects, and

extensions. Note that Serre subcategories are automatically abelian, and that the inclusion functor
is exact [Stacks, Tag 02MP].

Proposition 4.8 [Lyu97, Prop. 2.5(b)]. Let R be a regular ring, and let (M, θ) be an F -module.
If M is F -finite with root M0 ⊆ M and N is an F -submodule of M , then N is F -finite and
N0 := N ∩M0 is a root of N . In particular, F-Modfin

R is closed under the formation of subobjects.

http://stacks.math.columbia.edu/tag/02MN
http://stacks.math.columbia.edu/tag/02MP
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Proof. We claim that N ∩ Fr(M0) = Fr(N0). This follows from definition of N0 for r = 0. For r > 0,
we have

Fr(N0) = F
(
Fr−1(N0)

)
= F(N ∩ Fr−1(M0)) = F(N) ∩ Fr(M0) = N ∩ Fr(M0)

by inductive hypothesis and Lemma 2.5, where the last equality is by the fact that θ maps N
isomorphically onto F(N).

Now the fact that M0 is a root implies

M =
⋃
r

Fr(M0),

hence

N =
⋃
r

(
N ∩ Fr(M0)

)
=
⋃
r

Fr(N0).

Thus, the direct limits of the rows in the commutative diagram

N0 F(N0) F2(N0) · · ·

F(N0) F2(N0) F3(N0) · · ·

ϑ′

ϑ′

F(ϑ′)

F(ϑ′)

F2(ϑ′)

F2(ϑ′)

F(ϑ′) F2(ϑ′) F3(ϑ′)

are isomorphic to N , and the structure isomorphism of N is the direct limit of the vertical arrows
of this diagram. �

We also take care of another property we need now:

Corollary 4.9 [Lyu97, Cor. 2.6, Prop. 2.7]. Let R be a regular ring, and let M be an F -finite
F -module with root M0 ⊆M .

(a) There is a one-to-one correspondence{
F -submodules N ⊆M

} {
R-submodules N0 ⊆M0

∣∣∣ N0 = M0 ∩ F(N0)
}

N M0 ∩N⋃
r F

r(N0) N0

1-1

(b) Every object in F-Modfin
R satisfies ACC in the category of F -modules.

Proof. For (a), the proof of Proposition 4.8 shows that N =
⋃
r F

r(M0 ∩N), and so it suffices to
consider the opposite composition. Let N0 ⊆M0 be an R-submodule such that N0 = M0 ∩ F(N0).
By Lemma 2.5, we have

Fr(N0) = Fr(M0) ∩ Fr+1(N0)

for all r ≥ 0. Let N be the F -finite F -module with root morphism ϑ′ : N0 → F(N0) induced by the
root morphism ϑ : M0 → F(M0). Let i : N0 ↪→M0 be the inclusion. Then, the diagram

N0 F(N0) F2(N0) · · ·

M0 F(M0) F2(M0) · · ·

ϑ′

i

F(ϑ′)

F(i)

F2(ϑ′)

F2(i)

ϑ F(ϑ) F2(ϑ)

commutes. Since every vertical arrow is injective, it makes N a sub-F -module of M . Since

N =
⋃
r

Fr(N0) and Fr(N0) = Fr(M0) ∩ Fr+1(N0),
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we have that for all r > 0,

M0 ∩ Fr(N0) = M0 ∩ Fr−1(M0) ∩ Fr(N0) = M0 ∩ Fr−1(N0) = N0,

hence N ∩M0 = N0 as desired.
For (b), an ascending chain

N1 ⊆ N2 ⊆ · · ·
of F -submodules of M induces an ascending chain

N1 ∩M0 ⊆ N2 ∩M0 ⊆ · · ·

of R-submodules of M0, which must eventually stabilize since M0 is finitely generated over a
noetherian ring. By (a), the chain N1 ⊆ N2 ⊆ · · · must then also stabilize. �

We now show the other two properties that a Serre subcategory must satisfy.

Theorem 4.10 [Lyu97, Thm. 2.8]. Let R be a regular ring. The subcategory F-Modfin
R ⊆ F-ModR

of the category of F -modules consisting F -finite F -modules is a Serre subcategory. In particular,
F-Modfin

R is an abelian subcategory of F-ModR.

Proof. By Proposition 4.8, it remains to show that F-Modfin
R is closed under formation of quotients

and extensions. Let

0 −→M ′ −→M −→M ′′ −→ 0

be a short exact sequence in F-ModR.
We first show that F-Modfin

R is closed under formation of quotients, i.e., that if M is F -finite, then
M ′′ is F -finite. Let (M0, ϑ) be a root for M , and set M ′0 = M0 ∩M ′ and M ′′0 = M0/M

′
0 ⊆M ′′. We

then have the commutative diagram

0 M ′0 M0 M ′′0 0

0 F(M ′0) F(M0) F(M ′′0 ) 0

...
...

...

ϑ′ ϑ ϑ′′

F(ϑ′) F(ϑ) F(ϑ)′′

where the morphism ϑ′′ is induced by the universal property of cokernels. Since the direct limits
along the left and middle columns give the F -modules M ′ and M , respectively, we see that (M ′′0 , ϑ

′′)
is a generating morphism for M ′′. Since M ′0 and M0 are finitely generated, the module M ′′0 is also
finitely generated, hence M ′′ is F -finite.

We now show that F-Modfin
R is closed under extensions, i.e., that if M ′ and M ′′ are F -finite,

then M is F -finite. Let (M ′0, ϑ
′) be a root of M ′ and (M ′′0 , ϑ

′′) a root of M ′′. Let x1, x2, . . . , xs be
elements of M whose images in M ′′ generate M ′′0 as an R-module. Let N be the R-submodule of
M generated by M ′ and x1, x2, . . . , xs. We have the diagram

0 M ′ N M ′′0 0

0 F(M ′) F(N) F(M ′′0 ) 0

θ′ θ ϑ′′

and we claim that θ : M → F(M) restricts to N → F(N) in the way shown above. We know that
the submodule M ′ ⊆ N has image in F(N), hence it suffices to show that each xi has image in F(N).
But the images of the xi in M ′′0 map into F(M ′′0 ) under ϑ′′, hence θ(xi) ∈ F(N) as well.
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Now let Ni be the R-submodule of M generated by Fi(M ′0) and x1, x2, . . . , xs. Then,

N =
⋃
i

Ni.

Combining these two facts, we see that x1, . . . , xs ∈ θ−1(F(Nr)) for large enough r, and so

θ(Nr) ⊆ F(Nr)

for some r. We therefore have a commutative diagram

0 M ′0 Nr M ′′0 0

0 F(M ′0) F(Nr) F(M ′′0 ) 0

...
...

...

ϑ′ θ ϑ′′

F(ϑ′) F(θ) F(ϑ′′)

Since the left and right columns have direct limits isomorphic to M ′ and M ′′, respectively, we see
that the middle column has direct limit isomorphic to M . Thus, M is F -finite. �

This completes the proof of Theorem 1.2, since T (R) carries the structure of an F -finite F -module
by Example 4.6, and then mimicking the proof of Theorem 1.3.

Proof of Theorem 1.2. We show more generally that if M is an F -finite F -module, then it has
finitely many associated primes. We construct a chain

0 (M1 ⊆M2 ⊆ · · · ⊆M

such that # AssR(Mi/Mi−1) = 1 as follows. By Lemma 1.5, we can let M1 = Γp1(M) for p1 ∈
AssR(M) maximal; note it is an F -finite F -submodule of M by Example 4.6, since it is the kernel
of the F -module morphism

M −→
⊕
i

Mfi

where fi is a choice of generators for p1. For i > 0, we let pi ∈ AssR(M/Mi−1) be maximal, and set
Mi to be the preimage of Γpi(M/Mi−1) ⊆M/Mi−1 in M . We then have the commutative diagram

0 Mi−1 Mi Γpi(M/Mi−1) 0

0 Mi−1 M M/Mi−1 0

hence AssR(Mi/Mi−1) = {pi}, and moreover, Mi is an F -finite F -module since it is the extension
of F -finite F -modules. Since M is F -finite, the ascending chain must stabilize at some point r. By
looking at the short exact sequences

0 −→Mi−1 −→Mi −→Mi/Mi−1 −→ 0

for each i, we therefore have that

AssR(M) = AssR(Mr) ⊆ AssR(Mr−1) ∪AssR(Mr/Mr−1) ⊆ · · ·

⊆
r⋃
i=1

AssR(Mi/Mi−1) = {p1, p2, . . . , pr},

which is finite. �
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