FINITE GENERATION OF K-GROUPS OF RINGS OF INTEGERS IN NUMBER FIELDS

TAKUMI MURAYAMA

ABSTRACT. I present Quillen's proof of the fact that the K-groups K_iA where A is the ring of integers in a number field F are finitely generated. This talk was given in the Algebraic K-theory seminar at Michigan during the Winter semester of 2015.

CONTENTS

Introduction	1
1. Buildings	1
2. A long exact sequence	3
3. Proof of Theorem 1	6
3.1. Reduction to a group homology calculation	6
3.2. The Borel-Serre compactification	7
3.3. Proof of Theorem 8	8
References	9

INTRODUCTION

We follow [Qui73a]. The main result we will show in this talk is the following

Theorem 1. If A is the ring of algebraic integers in a number field F (finite over \mathbf{Q}) then K_iA is a finitely generated group for all $i \geq 0$.

To show this, we use the definition of $K_i A$ as

$$K_i A \coloneqq \pi_{i+1}(N(Q\mathscr{P}), 0)$$

where Q- denotes Quillen's q-construction [Qui73b], N- denotes the nerve of a category, and \mathscr{P} is the category of finitely-generated projective A-modules.

We pause to note the arithmetic significance of this result. Lichtenbaum in [Lic73] conjectured that higher K-groups K_iA can give information about special values of the Dedekind zeta functions $\zeta_F(s)$. In particular, the ranks of K_iA computed by Borel in [Bor74] give multiplicities of trivial zeros of $\zeta_F(s)$. We unfortunately don't have much time to go deeply into this, but see [Kah05; Wei05] for surveys on the subject.

1. Buildings

To prove Theorem 1, we introduce the notion of a building.

Definition. The building [V] of an *n*-dimensional vector space V over a field F is the nerve associated to the poset of nontrivial proper subspaces of V, i.e., *p*-simplices are chains $0 \subsetneq W_0 \subsetneq \cdots \subsetneq W_p \subsetneq V$ of subspaces W_i of V. If $n \le 1$, then $[V] = \emptyset$; if n = 2, then [V] is the projective space $\mathbf{P}(V)$ of lines in V as a discrete space.

A fundamental theorem about buildings is the following

Theorem 2 (Solomon-Tits [Sol69]). If $n \ge 2$, then \overline{V} has the homotopy type of a wedge of (n-2)-spheres.

Date: March 26 and April 3, 2015.

TAKUMI MURAYAMA

To prove this, we first state a corollary of the following theorem by Quillen:

Theorem A*. Let $f: \mathcal{C} \to \mathcal{C}'$ be a functor, and let $f/Y \coloneqq \{(X, u) \mid u: f(X) \to Y\}$. Then, if N(f/Y) is contractible for every object $Y \in \mathcal{C}'$, then f induces a homotopy equivalence of nerves.

Lemma 3. Let $g: K \to K'$ is a simplicial map of simplicial complexes. If for every closed subsimplex $\sigma \subset K'$, its inverse image $g^{-1}(\sigma)$ is contractible, then g is a homotopy equivalence.

Proof. Let Simpl K and Simpl K' denote the posets of subsimplices of K, K' ordered by inclusion, and let h be the map on posets such that g is homeomorphic to Nh. Then, h/σ is the poset of subsimplices of $g^{-1}(\sigma)$, and the claim follows by Theorem A*.

Now to prove the Solomon-Tits theorem, we introduce a new simplicial complex. We call V the simplicial complex with *p*-simplices being chains $0 \subseteq W_0 \subsetneq \cdots \subsetneq W_p \subsetneq V$, i.e., it is defined in the same way as V but W_0 can be 0. Note Cone $V \simeq V$.

Proof of Theorem 2 (by induction). If n = 2, then the claim is trivial since V is discrete hence is trivially a wedge of 0-spheres.

Now suppose $n \geq 3$. Fix a line $L \subseteq V$, and let \mathscr{H} be the set of hyperplanes H such that $V = H \oplus L$. Now let Y be the full subcomplex of V obtained by removing the vertices \mathscr{H} .

Claim. Y is contractible.

Proof of Claim. If $V \to V/L$ is the projection, we get an induced simplicial map $q: Y \to V/L$; the latter is contractible since it has a minimal element 0. Now by the Lemma 3, it suffices to show for every subsimplex $\sigma = (W_0/L \subsetneq \cdots \subsetneq W_p/L)$ of V/L, its inverse image $q^{-1}(\sigma)$ in Y is contractible. Now if $U \in q^{-1}(\sigma)$, then $q(U) = W_i/L$ for some *i*, so $U + L = W_i$. We can then visualize the simplices in Y and V/L as follows:

"Pushing up" then defines a deformation retraction $q^{-1}(\sigma) \simeq \Delta^p$.

We then have the following schematic picture of |V| from [Qui10, p. 483]:

where for each $H \in \mathscr{H}$, Link(H) is the subcomplex of [V] formed by simplices σ such that $H \notin \sigma$ but $\sigma \cup \{H\}$ is a simplex. Note $Link(H) \subset Y$, and that [V] is the union of Y with the cones over these links, glued along the Link(H) as H varies in \mathscr{H} . Thus,

$$\boxed{V} \simeq \boxed{V} / Y \simeq \bigvee_{H \in \mathscr{H}} \sum_{Link(H)} Link(H).$$

Now Link(H) = H for any $H \in \mathcal{H}$, so the theorem follows by induction since dim H = n - 1. \Box

Now we define another poset J(V) which will be useful later because it is simpler to analyze.

Let J(V) be the set of subspaces $W_0 \subseteq W_1$ of V such that $\dim(W_1/W_0) < n$, ordered by $(W_0, W_1) \leq (W'_0, W'_1)$ if $W'_0 \leq W_0$ and $W_1 \leq W'_1$. For n = 1, J(V) consists of (0, 0) and (V, V), which are incomparable, hence $NJ(V) = S^0$.

Proposition. If $n \ge 2$, there is a GL(V)-equivariant homotopy equivalence

$$\boxed{V} \longrightarrow N(J(V))$$

where \overline{V} is the simplicial complex with *p*-simplices being chains $0 \subseteq W_0 \subsetneq \cdots \subsetneq W_p \subseteq V$ such that $\dim(W_p/W_0) < n$, which is a subsimplicial complex of the complex \widehat{V} formed without this restriction.

Proof. Define a map $g: \operatorname{Simpl} V \to J(V)$ by

$$q(W_0 \subsetneq W_1 \subsetneq \cdots \subsetneq W_p) = (W_0, W_p).$$

g is a $\operatorname{GL}(V)$ -equivariant functor. Now $N\left(\operatorname{Simpl}\overline{V}\right)$ is a barycentric subdivision of \overline{V} , so it suffices to show Ng is a homotopy equivalence. By Theorem A*, it suffices to show for each $(U_0, U_1) \in J(V)$, the category $g/(U_0, U_1)$ is contractible. But the objects of $g/(U_0, U_1)$ are simplices $W_0 \subsetneq W_1 \subsetneq \cdots W_p$ such that $U_0 \subsetneq W_0$ and $W_p \subsetneq U_1$ ordered by inclusion. Now this is isomorphic to $\operatorname{Simpl}(\widehat{V})$, which is contractible since it has an initial object.

Noting that $\boxed{V} \simeq \sum V$, we have the following

Corollary 4. Suppose $n \ge 1$. The reduced homology $\tilde{H}_i(NJ(V))$ vanishes for $i \ne n-1$, and is a free **Z**-module for i = n-1.

Definition. The **Z**-module $\tilde{H}_{n-1}(NJ(V)) \cong \tilde{H}_{n-2}(V)$ with the natural GL(V) action is called the *Steinberg module* of V, and is denoted st(V).

2. A LONG EXACT SEQUENCE

The main homological input in this theorem is a long exact sequence, which we will prove in this section.

Let A be a Dedekind ring with field of fractions F. For each $n \ge 0$, let Q_n be the full subcategory of $Q\mathscr{P}(A)$ formed by projective modules of rank $\le n$. Then, Q_0 is the trivial category with one object and no morphisms, $Q_n \subset Q_{n+1}$, and $Q = \bigcup_n Q_n$.

Theorem 5. Let $n \ge 1$. The inclusion $w: Q_{n-1} \to Q_n$ induces a long exact sequence

$$\cdots \longrightarrow H_i(NQ_{n-1}) \longrightarrow H_i(NQ_n) \longrightarrow \coprod_{\alpha} H_{i-n}(\mathrm{GL}(P_{\alpha}), \mathrm{st}(V_{\alpha})) \longrightarrow H_{i-1}(NQ_{n-1}) \longrightarrow \cdots$$

where P_{α} represent isomorphism classes of projective modules of rank n, and $V_{\alpha} = P_{\alpha} \otimes_A F$.

To prove this theorem, we first recall the following fact about computing homology of nerves:

Proposition 6 ([GZ67, App. II, 3.3]). If $F: \mathscr{C} \to \mathsf{Ab}$ is a functor, then $H_n(N\mathscr{C}, F)$ can be computed by $\varinjlim_n \mathscr{C} F$, the *n*th derived functor of $\varinjlim^{\mathscr{C}} : \mathsf{Ab}^{\mathscr{C}} \to \mathsf{Ab}$.

Example. If L is the constant functor **Z**, then $\lim_{n \to \infty} \mathbb{Z}$ gives integral homology $H_n(N\mathscr{C})$.

Proof of Theorem 5. The main ingredient in this proof is a Grothendieck spectral sequence obtained from the following commutative diagram of functors:

where w^* is defined (on objects) by

$$(w^*f)(P) = \varinjlim_{(P',u) \in w/P} f(P') = \varinjlim_{w(P') \to P} f(P')$$

for any functor $f: Q_{n-1} \to Ab$. Note this "looks like" the pullback functor for sheaves, and indeed the functor w_* defined by precomposition is a right adjoint to this functor that preserves epimorphisms since it does so componentwise. Thus, w^* preserves projectives and so we have the following Grothendieck spectral sequence:

$$E_{pq}^{2} = \varinjlim_{p}^{Q_{n}}((L_{q}w^{*})(f)) \Rightarrow \varinjlim_{p+q}^{Q_{n-1}}(f)$$

for any functor $f: Q_{n-1} \to Ab$. We can simplify this further by looking at the following commutative diagram:

for each $P \in Q_n$, where i_P is the projection $w/P \to Q_{n-1}$ defined by $(P', u) \mapsto P'$. The two vertical functors are exact, hence we have that

$$(L_q w^*)(f) \cong \left(P \mapsto \varinjlim_q^{w/P} f \circ i_P\right)$$

and the spectral sequence becomes

$$E_{pq}^{2} = \underline{\lim}_{p}^{Q_{n}} \left(P \mapsto \underline{\lim}_{q}^{(w/P)} f \circ i_{P} \right) \Rightarrow \underline{\lim}_{p+q}^{Q_{n-1}} (f).$$

In particular, for $f = \mathbf{Z}$, by Proposition 6 this becomes the spectral sequence

$$E_{pq}^{2} = \varinjlim_{p}^{Q_{n}}(P \mapsto H_{q}(N(w/P))) \Rightarrow H_{p+q}(NQ_{n-1}).$$
(1)

Now to use this spectral sequence, we would like to know what $H_q(N(w/P))$ looks like. Recall $w/P = \{(P', u) \mid u \colon P' \to P\}$. We can write down the following bijection, noting that the morphisms $u \colon P' \to P$ in Q_n are of the form on the left by the q-construction:

$$\{P' \twoheadleftarrow P_1 \rightarrowtail P\} \leftrightarrow \left\{ \begin{array}{l} \text{pairs } (P_0, P_1) \text{ of submodules } P_0 \subseteq P_1 \text{ of } P \\ \text{ such that } P' \xrightarrow{\sim} P_1/P_0 \text{ is an isomorphism} \end{array} \right\}$$

so w/P is equivalent to the poset J of pairs of submodules $P_0 \subseteq P_1$ of P such that $\operatorname{rk}(P_1, P_0) < n$, with the ordering $(P_0, P_1) \leq (P'_0, P'_1)$ if $P'_0 \subseteq P_0$ and $P_1 \subseteq P'_1$.

Now if $\operatorname{rk} P < n$, then J has a maximal element (0, P), so N(w/P) is contractible. If instead $\operatorname{rk} P = n$, then the map $P' \mapsto P' \otimes_A F \subset V = P \otimes_A F$ induces an equivalence $J \simeq J(V)$, hence Corollary 4 applies. Thus, if n = 1, then

$$H_q(N(w/P)) = 0 \qquad \text{if } q > 0$$
$$H_0(N(w/P)) = \begin{cases} \mathbf{Z} & \text{if } P = 0\\ \mathbf{Z} \oplus \mathbf{Z} & \text{if } \operatorname{rk} P = 1 \end{cases}$$

and if $n \geq 2$,

$$H_0(N(w/P)) = \mathbf{Z}$$

$$H_q(N(w/P)) = 0 \quad \text{if } q \neq 0, n-1$$

$$H_{n-1}(N(w/P)) = \begin{cases} 0 & \text{if } \operatorname{rk} P < n \\ \operatorname{st}(V) & \text{if } \operatorname{rk} P = n \end{cases}$$

$$(2)$$

We first analyze the case when $n \ge 2$. The E_{pq}^2 terms in the spectral sequence (1) are given by

$$E_{pq}^{2} = \varinjlim_{p}^{Q_{n}}(P \mapsto H_{q}(N(w/P))) = \begin{cases} H_{p}(NQ_{n}) & \text{if } q = 0\\ 0 & \text{if } q \neq 0, n-1 \end{cases}$$

It remains to analyze what happens when q = n - 1. To do so, consider the full subcategory Q' of Q_n consisting of rank n projectives. Since functor $P \mapsto H_q(N(w/P))$ is the zero functor for objects not in Q', we have an isomorphism of functors

$$\varinjlim_p^{Q_n}(P \mapsto H_q(N(w/P))) \cong \varinjlim_p^{Q'}(P \mapsto H_q(N(w/P)))$$

where in the latter, the functor is restricted to $P \in Q'$ (to be precise, it is necessary to understand the details of the calculation of left-derived functors \varinjlim_p from [GZ67, App. II, 3.2]). Q' is equivalent to the groupoid of rank n projectives and their isomorphisms, which is in turn equivalent to the full skeletal subcategory with one object P_{α} from each isomorphism class, and this is the category for the groupoid $Q'' = \coprod_{\alpha} \operatorname{GL}(P_{\alpha})$. On this category, the functor $P_{\alpha} \mapsto H_{n-1}(w/P)$ maps P_{α} to the $\operatorname{GL}(P_{\alpha})$ -modules $\operatorname{st}(V_{\alpha})$ where $V_{\alpha} = P_{\alpha} \otimes_A F$ by (2). Thus,

$$E_{p,n-1}^2 = \varinjlim_p^{Q_n}(P \mapsto H_{n-1}(N(w/P))) = \coprod_{\alpha} H_p(\operatorname{GL}(P_\alpha), \operatorname{st}(V_\alpha)) \eqqcolon L_p$$

and the E^2 page of our spectral sequence looks like

which is the same until the E^n page, where it converges to E^{∞} . The desired long exact sequence is obtained by splicing together the maps from the E^{∞} page:

Finally, for n = 1, the spectral sequence (1) degenerates to an isomorphism

$$\varinjlim_p^{Q_1}(P \mapsto H_0(w/P)) \cong H_p(Q_0) = \begin{cases} \mathbf{Z} & \text{if } p = 0\\ 0 & \text{if } p > 0 \end{cases}$$

We also have the short exact sequence

$$0 \longrightarrow (P \mapsto \tilde{H}_0(w/P)) \longrightarrow (P \mapsto H_0(w/P)) \longrightarrow \mathbf{Z} \longrightarrow 0$$

in Ab^{Q_1} and just like the case $n \ge 2$, we have the isomorphism

$$\varinjlim_{p}^{Q_1}(P \mapsto H_0(N(w/P))) = \prod_{\alpha} H_p(\operatorname{GL}(P_{\alpha}), \operatorname{st}(V_{\alpha})) \eqqcolon L_p$$

The desired long exact sequence is exactly that obtained by the long exact sequence on homology for $\lim_{n \to \infty} Q_1$:

$$\cdots \longrightarrow H_p(NQ_0) \longrightarrow H_p(NQ_1) \longrightarrow L_{p-1} \longrightarrow H_{p-1}(NQ_0) \longrightarrow \cdots$$

3. Proof of Theorem 1

3.1. Reduction to a group homology calculation. We are now ready to prove the main theorem. Grayson in [Gra82] noted that Quillen's argument boils down to the following statement:

Proposition 7. Let A be a Dedekind domain with fraction field F. Then, K_iA is finitely generated for all $i \ge 0$ if Pic A is finite and $H_i(GL(P), st(V))$ is finitely generated for all $P \in \mathscr{P}$ and $V = P \otimes_A F$.

Proof. By Theorem 5, there is a long exact sequence

$$\cdots \longrightarrow H_i(NQ_{n-1}) \longrightarrow H_i(NQ_n) \longrightarrow \coprod_{\alpha} H_{i-n}(\mathrm{GL}(P_{\alpha}), \mathrm{st}(V_{\alpha})) \longrightarrow H_{i-1}(NQ_{n-1}) \longrightarrow \cdots$$

Note for each *n* there are only finitely many isomorphism classes of projective *A*-modules of rank *n* by the finiteness of Pic *A* and the classification of finitely generated modules over a Dedekind domain [DF04, Ch. 6, Thm. 22], so the groups $\coprod_{\alpha} H_{i-n}(\operatorname{GL}(P_{\alpha}), \operatorname{st}(V_{\alpha}))$ are finitely generated.

We first claim $H_i(NQ_n)$ is finitely generated for all i, n. First, $H_0(NQ_0) = \mathbb{Z}$ and $H_i(NQ_0) = 0$ for all i > 0 by the fact that Q_0 is the trivial category. Using the long exact sequence above, the claim follows by induction.

Now $H_i(NQ\mathscr{P}(A))$ is finitely generated for each *i*, since fixing *i* and letting $n \gg i+2$, the long exact sequence above gives

hence the homology groups stabilize.

Finally, $NQ\mathscr{P}(A)$ is an *H*-space with addition induced by $\oplus : \mathscr{P}(A) \times \mathscr{P}(A) \to \mathscr{P}(A)$, hence $NQ\mathscr{P}(A)$ is simple [Hat02, Ex. 4A.3]. Thus, by (a modification of) the generalized Hurewicz theorem, the finite generation of homology groups implies finite generation of homotopy groups [Hat04, Thm. 1.7], so $K_i A = \pi_{i+1}(NQ\mathscr{P}(A))$ is finitely generated for all $i \geq 0$.

We note that Grayson in [Gra82] went on to show that the hypotheses for Proposition 7 hold for coordinate rings of smooth affine curves over finite fields.

Now let A be the ring of integers in a number field F. Since Pic A is finitely generated in this setting [Sam70, §4.3, Thm. 2], it suffices to show that

Theorem 8. If $P \in \mathscr{P}(A)$ and $V = P \otimes_A F$, then $H_i(GL(P), st(V))$ is finitely generated for all *i*.

Note that GL(P) is an arithmetic subgroup of $GL(V \otimes_{\mathbf{Q}} \mathbf{R})$, so the main technical tool we use here is the *Borel-Serre compactification*, which is used to compute the (co)homology of arithmetic groups.

3.2. The Borel-Serre compactification. We give a short description of the compactification and its applications to computing (co)homology of arithmetic groups in our particular case; see [Bor75; Bor06] for surveys on the cohomology of arithmetic groups, and [Gor05; Sap03] for surveys on the Borel-Serre (and other compactifications) in the reductive case. Note that most treatments of the Borel-Serre compactification only deal with the semi-simple case.

Let **G** be a connected reductive linear algebraic group defined over **Q**; we write $G = \mathbf{G}(\mathbf{R})$. Fix an arithmetic subgroup $\Gamma \subset \mathbf{G}(F)$ where F is a number field, that is, a subgroup a subgroup that is commensurable with $\mathbf{G}(A)$ where A is the ring of integers in F. We make the assumption that Γ is torsion-free. One motivation for the Borel-Serre compactification is the following

Question. What is a good finite classifying space $B\Gamma$ for an arithmetic group Γ , from which we can deduce facts about the group cohomology of Γ ?

We outline the construction of such a classifying space in the sequel.

Let $K \subset G$ be a fixed maximal compact subgroup, and let A_G be the (topologically) connected identity component of the group of real points of the greatest **Q**-split torus $\mathbf{A}_{\mathbf{G}}$ in the center of **G**. Define $X \coloneqq G/KA_G$. Then, Borel and Serre proved the following

Theorem 9 ([BS73]). There exists an enlargement \overline{X} of X satisfying the following properties:

- (1) \overline{X} is contractible [BS73, Lem. 8.6.4];
- (2) $\partial \overline{X}$ has the homotopy type of the Tits building T associated to $\mathbf{G}(\mathbf{Q})$, and has dimension ℓ , the \mathbf{Q} -rank of G/RG, where RG denotes the radical of G [BS73, Thm. 8.4.1];
- (3) Γ acts freely on \overline{X} , hence \overline{X}/Γ is a space $B\Gamma$ that is compact [BS73, Thm. 9.3, n^o 9.5].

We give a brief outline of the construction.

Construction. First, for any **G** as above, define 0 **G** as follows:

$${}^{0}\mathbf{G} \coloneqq \bigcap_{\chi} \ker(\chi^{2}),$$

where the intersection is taken over all rationally defined characters $\chi: \mathbf{G} \to \mathbf{G}_m$ [BS73, n^o 1.1]. Then, the group G decomposes as $G = {}^{0}GA_G$, where ${}^{0}G = {}^{0}\mathbf{G}(\mathbf{R})$ [BS73, Prop. 9.2].

TAKUMI MURAYAMA

Let **P** be a rational parabolic subgroup of **G**, and let $P = \mathbf{P}(\mathbf{R})$ be its group of real points. Then, P has a Langlands decomposition

$$P = U_P A_P {}^0 L_P,$$

where U_P is the unipotent radical of P, L_P is the Levi quotient of P, and the decomposition follows as above. Now define $e(P) = X/A_P$. \overline{X} is obtained set-theoretically by glueing each space e(P) to X, and the topology is defined in [BS73, §7]. The closures of the e(P) form a locally finite cover of the boundary $\partial \overline{X}$, whose nerve is the Tits building [BS73, Thm. 8.4.1]. The nerve of a locally finite cover of a space is homotopy equivalent to the space itself by [BS73, Thm. 8.2.2], so we have (b). \Box

3.3. Proof of Theorem 8. We are now ready to prove Theorem 8. Recall that A is the ring of integers in a number field F, and P is a finitely-generated projective module over A.

Let **G** be the general linear group, such that $\mathbf{G}(F) = \mathrm{GL}(V)$, where $V = P \otimes_A F$. By [BS73, Thm. 8.2.2], $\partial \overline{X}$ has the homotopy type of the Tits building T associated to $\mathrm{GL}(V)$. In our case, there is a natural isomorphism $V \to T$ where the simplex $W_0 \subsetneq \cdots \subsetneq W_p$ of V corresponds to the reverse chain of stabilizers of each space in $\mathrm{GL}(V)$. Its homology is then described by Theorem 2.

Now we can compute the cohomology (with compact support) of \overline{X} :

Proposition 10 ([BS73, Thm. 8.6.5]). The groups $H_c^i(\overline{X})$ are 0 for $i \neq d - \ell$, where $d = \dim X$. The group $H_c^{d-\ell}(\overline{X})$ is free abelian, and is isomorphic to $\operatorname{st}(V)$.

Proof. If $\ell = 0$, $\overline{X} = X$, hence is a orientable manifold, and Poincaré duality gives that

$$H_c^i(\overline{X}) \cong H_{d-i}(\overline{X})$$

and the result follows by contractibility of \overline{X} .

For $\ell \geq 1$, since \overline{X} is contractible, the long exact sequence of the pair gives isomorphisms $\widetilde{H}_j(\partial \overline{X}) \cong H_{j+1}(\overline{X}, \partial \overline{X})$. Then, Poincaré duality for manifolds with boundary [Hat02, Thm. 3.35] gives isomorphisms

$$H_c^i(\overline{X}) \cong H_{d-i}(\overline{X}, \partial \overline{X}) \cong H_{d-i-1}(\partial \overline{X})$$

and the result follows by Theorem 2 and Theorem 9.

Now consider the arithmetic subgroup $\operatorname{GL}(P)$ of $\operatorname{GL}(V) = \mathbf{G}(F)$. It has a finite index torsion-free subgroup Γ by Minkowski's theorem (see [Sou07, Thm. 8] for a proof). Then, \overline{X}/Γ is a classifying space $B\Gamma$, hence we can calculate the cohomology of Γ by calculating the cohomology of this space. We then have the following

Theorem 11 (Duality, [BS73, Thm. 11.4.2]). There is an isomorphism

$$H^{d-\ell-i}(\Gamma, \mathbf{Z}) \cong H_i(\Gamma, \mathrm{st}(V))$$

for each i.

Proof. General facts about classifying spaces in, say, [BE73, n^o 6.3] imply the isomorphisms

$$H^{i}(\Gamma, \mathbf{Z}[\Gamma]) \cong H^{i}(\overline{X}/\Gamma, \mathbf{Z}[\Gamma]) \cong H^{i}_{c}(\overline{X}, \mathbf{Z})$$

hence $H^i(\Gamma, \mathbf{Z}[\Gamma]) = 0$ for all $i \neq d - \ell$, and $H^{d-\ell}(\Gamma, \mathbf{Z}[\Gamma]) \cong \operatorname{st}(V)$ is free abelian by Proposition 10. Γ is thus a duality group in the sense of [BE73, Thm. 4.5], and the isomorphism follows. \Box

By [BS73, n^o 11.1], $H^{d-\ell-i}(\Gamma, \mathbb{Z})$ is finitely generated for each *i*, hence by the Duality theorem above, $H_i(\Gamma, \operatorname{st}(V))$ is as well. Finally, the homology spectral sequence

$$H_p(\mathrm{GL}(P)/\Gamma, H_q(\Gamma, \mathrm{st}(V)) \Rightarrow H_{p+q}(\mathrm{GL}(V), \mathrm{st}(V))$$

implies that since $\operatorname{GL}(V)/\Gamma$ is finite, the groups $H_i(\Gamma, \operatorname{st}(V))$ are finitely generated.

We finally note that while it is beyond the scope of this talk, we know the ranks of the K-groups $K_i A$:

Theorem 12 ([Bor74]). The ranks are given by the formula

$$\operatorname{rk} K_i A = \begin{cases} r_1 + r_2 & \text{if } n \equiv 1 \pmod{4} \\ r_2 & \text{if } n \equiv 3 \pmod{4} \\ 0 & \text{otherwise} \end{cases}$$

where r_1, r_2 are the numbers of real and complex places in A, respectively.

On the other hand, the torsion parts of $K_i A$ were not known until recently; see [Wei05].

References

- [BE73] R. Bieri and B. Eckmann. "Groups with homological duality generalizing Poincaré duality." *Invent. Math.* 20 (1973), pp. 103–124.
- [Bor06] A. Borel. "Introduction to the cohomology of arithmetic groups." Lie groups and automorphic forms. Vol. 37. AMS/IP Stud. Adv. Math. Providence, RI: Amer. Math. Soc., 2006, pp. 51–86.
- [Bor74] A. Borel. "Stable real cohomology of arithmetic groups." Ann. Sci. École Norm. Sup. (4) 7 (1974), pp. 235–272.
- [Bor75] A. Borel. "Cohomology of arithmetic groups." Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 1. Montreal, Que.: Canad. Math. Congress, 1975, pp. 435–442.
- [BS73] A. Borel and J.-P. Serre. "Corners and arithmetic groups." Comment. Math. Helv. 48 (1973). Avec un appendice: Arrondissement des variétés à coins, par A. Douady et L. Hérault, pp. 436–491.
- [DF04] D. S. Dummit and R. M. Foote. Abstract algebra. Third ed. Hoboken, NJ: John Wiley & Sons Inc., 2004.
- [Gor05] M. Goresky. "Compactifications and cohomology of modular varieties." Harmonic analysis, the trace formula, and Shimura varieties. Vol. 4. Clay Math. Proc. Providence, RI: Amer. Math. Soc., 2005, pp. 551–582.
- [Gra82] D. R. Grayson. "Finite generation of K-groups of a curve over a finite field (after Daniel Quillen)." Algebraic K-theory, Part I (Oberwolfach, 1980). Vol. 966. Lecture Notes in Math. Berlin-New York: Springer, 1982, pp. 69–90.
- [GZ67] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. New York: Springer-Verlag, 1967.
- [Hat02] A. Hatcher. Algebraic topology. Cambridge: Cambridge University Press, 2002.
- [Hat04] A. Hatcher. "The Serre spectral sequence." Spectral sequences in algebraic topology. Draft of unfinished book, available at http://www.math.cornell.edu/~hatcher/SSAT/ SSATpage.html. Jan. 2004.
- [Kah05] B. Kahn. "Algebraic K-theory, algebraic cycles and arithmetic geometry." Handbook of K-theory. Vol. 1. Berlin: Springer, 2005, pp. 351–428.
- [Lic73] S. Lichtenbaum. "Values of zeta-functions, étale cohomology, and algebraic K-theory." Algebraic K-theory, II: "Classical" algebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972). Vol. 342. Lecture Notes in Math. Berlin: Springer, 1973, pp. 489–501.
- [Qui10] D. Quillen. "Finite generation of the groups K_i of rings of algebraic integers." Cohomology of groups and algebraic K-theory. Vol. 12. Adv. Lect. Math. (ALM). Reprint of [Qui73a]. Somerville, MA: Int. Press, 2010, pp. 479–488.
- [Qui73a] D. Quillen. "Finite generation of the groups K_i of rings of algebraic integers." Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972). Vol. 341. Lecture Notes in Math. Berlin: Springer, 1973, pp. 179–198.

- [Qui73b] D. Quillen. "Higher algebraic K-theory. I." Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972). Lecture Notes in Math. 341. Berlin: Springer, 1973, pp. 85–147.
- [Sam70] P. Samuel. Algebraic theory of numbers. Translated from the French by Allan J. Silberger. Boston, Mass.: Houghton Mifflin Co., 1970.
- [Sap03] L. Saper. "On the cohomology of locally symmetric spaces and of their compactifications." *Current developments in mathematics*, 2002. Somerville, MA: Int. Press, 2003, pp. 219–289.
- [Sol69] L. Solomon. "The Steinberg character of a finite group with BN-pair." Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968). New York: Benjamin, 1969, pp. 213–221.
- [Sou07] C. Soulé. "An introduction to arithmetic groups." Frontiers in number theory, physics, and geometry. II. Berlin: Springer, 2007, pp. 247–276.
- [Wei05] C. Weibel. "Algebraic K-theory of rings of integers in local and global fields." Handbook of K-theory. Vol. 1. Berlin: Springer, 2005, pp. 139–190.