
ASCENT OF FINITENESS OF FLAT DIMENSION

TAKUMI MURAYAMA

Abstract. The main focus of this talk is to prove ascent of finiteness of flat dimension through local
homomorphisms. Descent is known classically, e.g., it is in Cartan–Eilenberg’s book on homological algebra,

but the corresponding ascent property is surprising because of the need to use derived categories. We present
a short proof of ascent due to Dwyer–Greenlees–Iyengar, and discuss the main ingredient of the proof, which
is the classification due to Hopkins and Neeman of thick subcategories of the category of perfect complexes

over a commutative noetherian ring R. At the end, we discuss other directions these ideas of Hopkins and
Neeman lead, in particular Balmer’s result that says one can reconstruct a scheme from its derived category.

The main sources for this talk are [Iye06] and [DGI06]. For basic results on unbounded complexes of
modules at a (hopefully) accessible level, and for more thorough proofs for many of the preliminary results
we do not prove here, we point the reader to [BN93], and a previous note by the author [Mur15].

1. Introduction: Homological algebra in commutative algebra

Let (R,m, k) be a (noetherian) local ring. Recall that we say R is regular if m is generated by a regular
sequence, which is equivalent to saying m is generated by dimR elements.

Regular local rings are important in algebraic geometry because of their role as local rings of algebraic
varieties, and they had been studied thoroughly by the 1950s, as can be seen in, e.g., Zariski–Samuel’s
Commutative Algebra [ZS60], Vol. II. The issue at the time, as pointed out by [BH93, p. 86], however, was
that there were two major gaps in the theory at the time:

(1) Is the localization of a regular local ring regular?
(2) Are regular local rings UFD’s?

Nowadays, a graduate student would know these facts are true from a homological algebra course, as a
consequence of the following

Theorem 1 (Auslander–Buchsbaum–Serre [BH93, Thm. 2.2.7]). R is regular if and only if the residue field
k has finite projective dimension over R.

This theorem was a breakthrough for commutative algebra, because it showed that homological algebra,
something that arose out of topology, could be made useful to prove statements purely about the theory of
commutative rings.

Now we want to share the main idea from [DGI06]. We can turn this statement into one about the derived
category of R as follows:

• Since finiteness of projective dimension pdR(k) is detected by Ext•R(k,M), regularity can be detected
on the level of derived categories;

• This finiteness can be turned into the structural statement that k is quasi-isomorphic to a perfect
complex, that is, a finite complex consisting of finitely generated projective modules.

It is even true that in Theorem 1, there is no need to choose k in particular, and the Theorem can be
reformulated as follows:

Theorem 1*. R is regular if and only if every homologically finite complex M is quasi-isomorphic to a
perfect complex.

The main goal of [DGI06] is to reformulate questions about commutative rings to ones about derived
categories, and solve them in that setting. We will mainly be interested in following result:

Theorem 2 ([FI03, Thm. IV]). Let (R,m, k) and (Q, q, h) be local rings, and let ψ : Q → R be a local
homomorphism, i.e., a ring homomorphism such that ψ(q) ⊆ m. Then, for any finitely generated R-module
M , if the flat dimension of M over Q is finite, then the flat dimension of R over Q is finite.
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We want to point out how this theorem is interesting. Classically [CE56], it is known that qualitative
information about homological dimension descends through local homomorphisms, i.e., the following statement
is known: if fdQR and fdRM are both finite, then so is fdQM (essentially, you can take the tensor product
of flat resolutions F• → R→ 0 over Q and F ′• →M → 0). On the other hand, this theorem is much more
surprising: it says that information about homological dimension ascends, and that we can choose any M to
do our check.

It is also interesting to note that this gives a characterization of regular rings of characteristic p, which
extends results of [Kun69]. Denote ϕn

F for an R-module F to be F with the R-module structure on F
induced by restriction of scalars along ϕn.

Theorem 3 ([FI03, Thm. V]). Let R be a local ring of characteristic p, and let ϕ : R→ R be the Frobenius
endomorphism of R. Then, the following are equivalent:

(1) R is regular;
(2) ϕn is flat for each integer n ≥ 0;
(3) there exists a positive integer n and a nonzero finitely generated R-module F such that both fdR F

and fdR(ϕ
n

F ) are finite.

To prove this theorem, it turns out that this theorem is a consequence of general facts about thick
subcategories of the derived category of a noetherian ring R. So we begin with some preliminary results
about the derived category of modules over a noetherian ring R. Local cohomology serves a key role in the
proof what is the main ingredient in the proof of the theorem.

2. Preliminaries on the derived category

We start with some preliminaries about the derived category of chain complexes over a ring R. We follow
[BN93], whose ideas are primarily topological in origin.

2.1. Resolutions. Recall that the derived category D(R) of R is constructed by inverting quasi-isomorphisms
in the homotopy category K(R) of chain complexes over R. We give a brief overview of how to construct
resolutions of chain complexes.

First, recall that any single module M has a projective resolution:

· · · −→ Pq −→ Pq−1 −→ · · · −→ P1 −→ P0 −→M −→ 0.

Moreover, even if we replace M by a bounded below chain complex M•, we can combine all resolutions of the
Mp at once to get a double complex

· · · Pp• Pp−1,• · · · P1• P0• 0

· · · Mp Mp−1 · · · M1 M0 0

0 0 0 0

such that the induced map on the totalization Tot⊕(P••) → M• is a quasi-isomorphism; this is called a
Cartan–Eilenberg resolution [Wei94, §5.7].

It was an open question until [AJS00; Ser03] how to construct analogous unbounded resolutions for
arbitrary Grothendieck abelian categories, but luckily in our setting, we have

Theorem 4 ([BN93]). Every chain complex over R is quasi-isomorphic to an object in K(R)proj, the
subcategory generated by chain complexes of projective modules. Moreover, the composition K(R)proj ↪→
K(R)→ D(R) is in fact an equivalence.

Proof Sketch. The idea is to take brutal truncations τ≥nM• of our chain complex, and use the Cartan–
Eilenberg resolution there. Then, we can combine them into a larger chain complex by using a homotopy
colimit. See [Mur15, no 1.1] for details. The second statement is by general results in [BK90, §1]. �

Dualizing we also get that



ASCENT OF FINITENESS OF FLAT DIMENSION 3

Theorem 4* ([BN93]). Every chain complex over R is quasi-isomorphic to an object in K(R)inj, the
subcategory generated by chain complexes of injective modules. Moreover, the composition K(R)inj ↪→
K(R)→ D(R) is in fact an equivalence.

Using both equivalences, we can construct derived functors in the unbounded setting:

Theorem 5. There is a right derived functor RHom: D(R)op ×D(R)→ D(R) and a left derived functor
⊗L : D(R)×D(R)→ D(R) satisfying all reasonable good properties.

Proof. Both RHom and ⊗L can be defined easily on K(R) as the totalizations of the Hom and tensor product
bicomplexes [Wei94, 2.7.1, 2.7.4]. But now using Propositions 4 and 4*, we can define RHom as the functor
K(R)opproj ×K(R)inj → D(R) and ⊗L as the functor K(R)proj ×K(R)proj → D(R) by restricting the functors

on K(R). �

3. The flat dimension theorem

Our main goal was a result on flat dimension, so we give a generalized definition of flat dimension that
works for complexes here:

Definition 6. The flat dimension of a chain complex M• over R is defined to be the integer

fdRM• := inf

{
n ∈ Z

∣∣∣∣ there is a flat complex F• with

F• 'M•, and Fi = 0 for i ≥ n+ 1

}
.

With this definition, we can state the version of Theorem 2 we will prove:

Theorem 2* ([DGI06, Thm. 5.5]). Let (R,m, k) and (Q, q, h) be local rings, and let ψ : Q→ R be a local
homomorphism, i.e., a ring homomorphism such that ψ(q) ⊆ m. Then, for any perfect complex M• of
R-modules, if fdQM• <∞, then fdQR <∞.

Recall that a perfect complex is a finite complex consisting of finitely generated projective modules, which
we will denote by Db(R)proj.

The proof in [DGI06] breaks down into a couple of easy steps. Note this is in contrast to the proof in
[FI03], which seems to be a much more complicated commutative algebra proof.

Step 1. fdQR <∞ if and only if sup(h⊗L
Q R) := sup{n | Hn(h⊗L

Q R) 6= 0} <∞.

Proof. ⇒ is clear. For the converse, let P• → R→ 0 be a minimal free resolution over Q; then, sup(h⊗L
QR) <

∞ implies h⊗P• = (h⊗P )• is eventually zero, and so P• was eventually zero, i.e., fdQR ≤ pdQR <∞. �

Step 2. The full triangulated subcategory {X• ∈ D(R) | sup(h⊗L
Q X•) <∞} of D(R) is thick, that is, it is

closed under taking direct summands.

Proof. This is a straightforward check: for the direct summand condition, we see that taking a direct summand
should decrease the number sup(h ⊗L

Q X•), and that if two objects have finite sup(h ⊗L
Q X•), then their

mapping cone would also have finite sup(h⊗L
Q X•) by using the long exact sequence on homology. �

Step 3. Let K• be the Koszul complex on a finite set of elements in R, and let Y• be a complex of R-modules
such that Hn(Y•) is finitely generated for each n. Then, if sup(Y• ⊗L

Q K•) is finite, then sup(Y•) is finite.

Proof. We induce on the number of elements used to define the Koszul complex. For one element, since K•
is the mapping cone of the morphism R

x→ R, we have the short exact sequence of complexes

0 −→ Y• −→ Y• ⊗L
Q K• −→ Y [−1] −→ 0.

The long exact sequence on homology and Nakayama’s lemma imply that when sup(Y• ⊗L
Q K•) is finite, so is

sup(Y•), as claimed. For multiple elements used to define the Koszul complex, it suffices to notice that the
corresponding Koszul complex is an iterated mapping cone. �

Now if we take for granted the following theorem, we can prove our result on flat dimension. First, denote

SuppR(M•) := {p ∈ Spec(R) |M• ⊗L κ(p) 6= 0},
where κ(p) is the residue field Frac(R/p) ∼= Rp/pRp at p.
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Theorem 7 ([Nee92a]). If M• and N• are perfect complexes such that SuppRM• ⊆ SuppRN•, then M• is

in the thick subcategory of Db(R)proj generated by N•.

Step 4. Theorem 2, assuming Theorem 7.

Proof. Let K• be the Koszul complex on a finite set of generators for m. Then, since m is the unique closed
point of SpecR, and SuppRM• is a closed subset of SpecR, we see that Theorem 7 implies that K• is in the
thick subcategory generated by N•. We then have the chain of implications:

fdQM• <∞
(1)

=⇒ sup(h⊗L
Q M•) <∞

=⇒ sup((h⊗L
Q R)⊗L

R M•) <∞
(2)

=⇒ sup((h⊗L
Q R)⊗L

R K•) <∞
(3)

=⇒ sup(h⊗L
Q R) <∞

(1)
=⇒ fdQR <∞,

where the implications are marked with their corresponding steps above. The second implication is just by
associativity of the tensor product, and the fourth is by applying (3) to Y• = h⊗L

Q R. �

We therefore see that once we have a handle of what the thick subcategories of Db(R)proj look like, we

would get Theorem 2* with minimal effort.

4. Thick subcategories of Db(R)proj and their classification

We now want to give an idea for how the statement in Theorem 7 is proved. Recall that a subcategory of
a triangulated category D is thick if it is closed under direct summands.

Recall that the derived category of perfect complexes is the full subcategory of D(R) consisting of complexes

quasi-isomorphic to bounded complexes of finitely generated projective modules, and is denoted by Db(R)proj.

The main statement about thick subcategories of Db(R)proj is actually stronger than Theorem 7:

Theorem 8. There is an inclusion-preserving bijection of sets{
Thick subcategories

of Db(R)proj

} {
Specialization closed

subsets of Spec(R)

}
f

g

where

f(L) = {p ∈ Spec(R) | ∃X• ∈ L with X• ⊗L κ(p) 6= 0},
g(P ) = {X• | Supp(X•) ⊂ P}.

The main outline of a proof of this Theorem is as follows:

(1) First, we classify localizing subcategories of D(R), that is, thick subcategories that are also closed
under direct sum:

Theorem 9. There is an inclusion-preserving bijection of sets{
Localizing subcategories

of D(R)

} {
Subsets

of Spec(R)

}
f

g

where

f(L) = {p ∈ Spec(R) | ∃X• ∈ L with X• ⊗L κ(p) 6= 0},
g(P ) = the smallest localizing category containing κ(p), for all p ∈ P .

A word about the proof of this: the idea is to characterize when an object of D(R) is in a localizing
subcategory by writing it as a complex consisting of injectives, each of which is a direct sum of copies
of Ip, the injective hulls of R/p for p ∈ Spec(R), and then using the derived version of the local
cohomology RΓZ/Z′(−) functor.
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(2) Since we are only interested in Theorem 7 here, we will sketch that. If SuppRM• ⊂ SuppRN•, then
M• is in the localizing subcategory of D(R) generated by N•. But since M• and N• are both in

Db(R)proj, they are compact objects in D(R), and so a result of Neeman [Nee92b, Lem. 2.2] implies

M• is in fact in the thick subcategory of Db(R)proj generated by N•.

Finally, we want to mention an interesting consequence of Theorem 8.
First, out of the category Db(R)proj, we can construct some sort of spectral space (in the sense of Hochster

[Hoc69]) Spc(Db(R)proj), where the construction is basically taking the spectrum of the Grothendieck ring of

Db(R)proj. Then, Theorem 8 can show

Theorem 10 ([Bal05]). There is a homeomorphism ϕ : Spec(R)
∼→ Spc(Db(R)proj), with

ϕ(p) = {X• ∈ Db(R)proj | p /∈ Supp(X•)}.

In fact, this can be turned into an isomorphism of locally ringed spaces; see [Bal05, Thm. 6.3]. The idea is
to translate conditions for a subset to be closed in the statement of Theorem 8.

We end with some notes about how much this result can be generalized. In [Bal05], the main result is
that this theorem holds for X a quasi-compact quasi-separated scheme, and it is known [Bal05, Rem. 5.7]
that it has no possibility of holding for a scheme that is not quasi-compact and quasi-separated (since the
construction of Spc always gives a quasi-compact and quasi-separated space). On the other hand, if we do not
start with the derived category of a scheme, and instead start with an arbitrary (tensor) triangulated category,
it is unknown how the original triangulated category and the ring R such that SpecR is homeomorphic to
the Spc construction are related; see [Bal10b] for a survey, and [Bal10a] for recent commentary and examples
of applications of this construction Spc in other contexts.
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