
POINCARÉ HOMOLOGY SPHERES AND EXOTIC SPHERES

FROM LINKS OF HYPERSURFACE SINGULARITIES

TAKUMI MURAYAMA

Abstract. Singularities arise naturally in algebraic geometry when trying to classify algebraic
varieties. However, they are also a rich source of examples in other fields, particularly in topology.
We will explain how complex hypersurface singularities give rise to knots and links, some of which
are manifolds that are homologically spheres but not topologically (Poincaré homology spheres), or
manifolds that are homeomorphic to spheres but not diffeomorphic to them (exotic spheres). The
talk should be accessible to anyone with some basic knowledge of differential and algebraic topology,
although even that is not strictly necessary.

We list some references:

(1) For a general overview on exotic spheres and the technical background necessary for some
proofs, see [Ran12], who also lists many useful references.

(2) For plane curve singularities, see [BK12].
(3) The speaker first learned this material from attending a course on the topology of algebraic

singularities [Ném14].
(4) For an introduction on singularities in higher dimensions, see [Kau87, Ch. XIX].
(5) For a technical reference on singularities in higher dimensions, see [Mil68].

1. Motivation

Our goal for today is to see why singularities are interesting. In geometry, we are mostly interested
in smooth objects, such as smooth manifolds or smooth varieties. However, there are two ways in
which singularities naturally arise in algebraic geometry:

(1) In moduli theory, to obtain a compact moduli space, you want to include “limits” of spaces,
which inevitably become singular.

(2) In the minimal model program, performing various surgery operations leads to spaces with
terminal singularities.

One might ask why one should care about singularities for reasons external to algebraic geometry,
and indeed, we have the following:

(3) Complex algebraic singularities give rise to interesting smooth manifolds. For example,
(a) Some curve singularities in C2 give rise to algebraic knots K1,
(b) A surface singularity in C3 gives rise to the Poincaré homology sphere K3, and
(c) A fourfold singularity in C5 gives rise to an exotic sphere K7,

which satisfy the following properties:

K1 ∼=
diffeo

S1 but (K1 ⊂ S3) 6∼=
isotopy

(S1 ⊂ S3),

H∗(K
3,Z) ∼=

groups
H∗(S

3,Z) but K3 6∼=
homeo

S3,

K7 ∼=
homeo

S7 but K7 6∼=
diffeo

S7.

We will spend today constructing these examples. We will also explain some of the ideas and
constructions used in showing the claims in both columns, although we cannot give full proofs.
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2. Hypersurface singularities and their associated links

All of our examples today will be hypersurface singularities, i.e., singularities defined by one
equation in complex affine space. Before we begin, we recall what a singularity is in the first place.

Definition 2.1. Let f ∈ C[z0, z2, . . . , zn], which defines a function

f : Cn+1 −→ C.

Then, the vanishing locus of f is

V (f) := f−1(0) ⊂ Cn+1.

The vanishing locus V (f) is singular at P ∈ V (f) if the (complex) gradient

∇f :=

[
∂f

∂z0
,
∂f

∂z1
, · · · , ∂f

∂zn

]
vanishes at P , and is smooth at P if ∇f(P ) 6= 0.

Remark 2.2. This condition on the gradient is known as the Jacobian criteron. In higher codimension,
the condition is that the matrix (∂fi/∂zj) has full rank. In differential topology, the fact that V (f)
is a smooth manifold is sometimes known as the preimage theorem [GP10, p. 21].

We will be interested in the following special case:

Setup 2.3. Suppose V (f) has an isolated singularity at ~0, i.e., suppose ~0 is a singular point of

V (f) and V (f) is smooth in a punctured neighborhood of ~0.

Given such an isolated singularity, we can associate a smooth manifold to it that can be used to
study the singularity. This was first done for curve singularities by Brauner in 1928 [BK12, p. 223].

Definition 2.4. Given an isolated singularity V (f), the link of f is the intersection

K(f) := V (f) ∩ S2n+1
ε ,

where S2n+1
ε is the (2n+ 1)-dimensional sphere of radius ε > 0 centered at ~0 ∈ Cn+1.

Figure 1. The link of an isolated singularity (from [Kau96, Fig. 14.1]).
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We implicitly used the following corollary of Sard and Ehresmann’s theorems in our definition:

Fact 2.5 (see [Mil68, Cor. 2.9]). If V (f) is an isolated singularity, then the diffeomorphism type of
K(f) does not depend on ε for 0 < ε� 1, and is a (2n− 1)-dimensional smooth manifold.

3. Knots from plane curve singularities

We now start studying a 1-dimensional example.

Example 3.1. Let f = x3 + y5. Then,

∇f =
[
3x2, 5y4

]
vanishes only at the origin, and so we have an isolated singularity. Let us compute what this looks
like (up to diffeomorphism). First,

S3 = ∂B3 ∼=
diffeo

∂

{
|x| ≤ 1

|y| ≤ 1

}
=

{
|x| = 1

|y| ≤ 1

}
∪

{
|x| ≤ 1

|y| = 1

}
,

an we will replace S3 with the boundary of a polydisc for simplicity. Since

|f | ≥
∣∣∣|x|3 − |y|5∣∣∣ > 0

on the interior of the first component of this decomposition, we only need to consider the second
component. Parametrizing y by eiθ, we obtain that x = ζ3e

i5θ/3, where ζ3 is a cube root of −1.
Thus, K(f) is the (3, 5)-torus knot, and in particular, it is diffeomorphic to S1.

432 

s1 x s1 = { (x,y) I lxl = o, IYI = n} C T+ 

and winds m times in direction and n times in the other. 

is a picture for the example above, (m,n) 

I 

I 

(3. 5) 

Here 

Such knots are called torus knots, and we have already seenin 5.3 

that such knots appear in the topological description of singularities. 

The "winding around" can be made precise as follows. We consider the 

two projections 

w. : s1 x s1 • s1 , 
l. 

i = 1,2 

of the factors of s1 x s1. .. 
l. 

Then the restriction to K c s1 x s1 

yields coverings of the circle s1 by the circle K of degree m for 

i = 1 resp. n for i = 2, and in this way the winding numbers are 

characterised. In general, for any circle KC sl X sl, one can define 

two mappings .. : K + sl 
l. 

by restriction of the projections, and with 

them two numbers, m and n, which are the degrees of these mappings. 

One can prove that for such a knot K there is a homeomorphism of 

s1 x s1, homotopic to the identity, which carries K into the standard 

Figure 2. The torus knot (3, 5) (from [BK12, p. 432]).

A similar analysis shows the following:

Fact 3.2. If gcd(p, q) = 1, then K(xp + yq) is the torus knot (p, q), and all right-handed torus knots
can be obtained in this way.

More complicated polynomials give more complicated knots, but these are well-understood.

Remark 3.3. If gcd(p, q) 6= 1, then K(xp + yq) is a disjoint union of torus knots that are linked
together in S3. Using Newton diagrams and the theory of Puiseux pairs, one can show that more
complicated equations give rise to iterated torus knots; see [BK12, §8.3].



4 TAKUMI MURAYAMA

4. The Alexander polynomial

To finish Example 3.1, we want to show that the (3, 5)-torus knot is not isotopic to the unknot
S1 ⊂ R3. The invariant we will use to distinguish these is the Alexander polynomial, which has a
purely knot-theoretic definition in terms of skein relations when n = 1 [Lic97, Ch. 6].

We will not define the Alexander polynomial, but we list the properties that we will need:

Theorem 4.1 (see [Lic97, Ch. 6]; [Mil68, §§8,10]). There is a Laurent polynomial ∆f (t) associated
to the link K(f) of an isolated singularity, such that

(i) If n = 1 and if K(f) is the unknot, then ∆f (t) = 1;
(ii) ∆f (t) is invariant under isotopy;

(iii) ∆f (1) = ±1 if and only K(f) is a homology sphere.

Definition 4.2. The Laurent polynomial in Theorem 4.1 is (the higher-dimensional version of) the
Alexander polynomial.

Remark 4.3. We give a brief description of how to construct the Alexander polynomial. First, the
mapping f : Cn+1 → C gives rise to a map

φ : S2n+1
ε rK(f) −→ S1

z 7−→ f(z)

|f(z)|
This is a smooth fiber bundle [Mil68, Thm. 4.8] with fiber F , called the Milnor fiber; see Figure 4 for
a visualization. The monodromy action on S1 induces an action on Hn(F,Z), and the characteristic
polynomial of this action is the Alexander polynomial.

Lemma 4.4 [Mil68, Thm. 9.1]. Let

f = za00 + zan1 + · · ·+ zann .

In this case,

∆f (t) =
∏

0<ik<ak

(
t− ξi00 ξ

i1
1 · · · ξ

in
n

)
where ξk = e2πi/ak .

All of our examples will be of this form; the V (f) are called Brieskorn varieties.

Example 4.5. We return to the (3, 5)-torus knot from Example 3.1. The Alexander polynomial is

∆(t) =
(t15 − 1)(t− 1)

(t5 − 1)(t3 − 1)
,

and ∆(1) = 1. Thus, K(x3 + y5) is homeomorphic to S1, but is not the unknot.

5. Higher-dimensional examples

We are now ready to discuss the promised higher-dimensional examples: the Poincaré homology
sphere, and some exotic spheres.

Example 5.1 (The Poincaré homology sphere). Consider

K3 = K(x3 + y5 + z2).

The Alexander polynomial is

∆(t) =
(t30 − 1)(t5 − 1)(t3 − 1)(t2 − 1)

(t15 − 1)(t10 − 1)(t6 − 1)(t− 1)
,

and ∆(1) = 1. Thus, K3 is a homology sphere. To show it is not homeomorphic to S3, we have:
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Figure 3. The Poincaré homology sphere as a dodecahedral space (from [TS31, Fig. 11]).

Proposition. K3 is homeomorphic to S3/Ĝ, where Ĝ is the inverse image of the dodecahedral

group via the projection π : SU(2)→ SO(3). In particular, π1(K3) ' Ĝ.

Idea of Proof. Consider the action of SU(2) on C[x, y], given by

f(x, y) ·
[
a b

−b a

]
= f(ax+ by,−bx+ ay).

The invariants of Ĝ under this action are

RĜ ' C[x, y, z]

(x3 + y5 + z2)
.

Taking spectra and intersecting with S3, we obtain that K3 is homeomorphic to S3/Ĝ. �

The group Ĝ is called the binary dodecahedral group. For more details, see [Mil68, Ex. 9.8],
[Kau87, Ex. 19.6], and [Mil75]. One can also compute the fundamental group of K3 algebraically
via resolution of singularities for surfaces. For this argument, see [Mum61], who showed that π1 is
trivial if and only if V (f) is smooth; see also [Hir63].

Example 5.2 (Some exotic spheres). Consider

K2n−1 = K(z3
0 + z5

1 + z2
2 + z2

3 + · · ·+ z2
n)

for n ≥ 4. The Alexander polynomial can be computed as before to obtain that ∆(1) = 1, i.e.,
K2n−1 are homology spheres. Since they are simply connected by [Mil68, Thm. 5.2], Whitehead’s
theorem implies K2n−1 are homotopy-equivalent to S2n−1.∗ Furthermore, by Smale and Stalling’s
proof of the Poincaré conjecture in dimensions ≥ 5, this implies K2n−1 is homeomorphic to S2n−1.

The case when n = 4 gives Milnor’s original exotic sphere, which he constructed using S3-bundles
over S4. Similarly, the case n = 5 gives Kervaire’s exotic 9-sphere. Since it is a bit hard to show
these are not diffeomorphic to spheres, we will consider a higher-dimensional example.

∗The non-trivial homology class in H2n−1(K2n−1,Z) corresponds to a degree one map S2n−1 → K2n−1, which
induces isomorphisms on homology, hence is a homotopy equivalence.
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Figure 4. The Milnor fiber (from [Mil68, Fig. 2]).

We will consider when n = 6, so that K11 is an 11-manifold. Then, K11 is the boundary of a
12-manifold F (the Milnor fiber from Remark 4.3), whose non-trivial homology lives in H6(F,Z)
[Mil68, Lem. 6.4]. The Hirzebruch signature formula [MS74, Thm. 19.4] says

σ(X) =
1

33 · 5 · 7
(62p3 − 13p2p1 + 2p3

1) ∈ Z,

where the left-hand side is the signature of the manifold X,† and the cohomology classes pi(X) ∈
H4i(X,Z) are the Pontrjagin classes. The Mayer–Vietoris sequence says that H4(X,Z) = H4(F,Z) =
0 and H8(X,Z) = H8(F,Z) = 0. Thus, we have p1 = p2 = 0, hence

σ(X) =
62p3

33 · 5 · 7
∈ Z.

Note that p3 ∈ H12(X,Z) ' Z, and so we have the divisibility relations 33 · 5 · 7 | p3 and 62 | σ(X).
But for this example, one can show σ(X) = σ(F ) = −8 (see, e.g., [Hir66, p. 19]), a contradiction.

6. Other applications

We conclude with some other examples of using topological methods to study algebraic varieties.

(1) The Abhyankar–Moh theorem says that if C ↪→ C2 is a closed embedding defined by
polynomials p(t), q(t) ∈ C[t], then either deg p | deg q or deg q | deg p. This theorem can be
proved by studying the “knot at infinity” of this embedding; see [Rud82], or the speaker’s
talk in this seminar from last year [Mur16]. The knot at infinity is obtained by intersecting
the image of C with a sphere S3

R ⊂ C2 where R� 0.
(2) The so-called Zariski cancellation problem asks if there exist non-isomorphic complex varieties

X and Y such that X ×C and Y ×C are isomorphic. One positive answer to this question
was given by Danielewski, who showed using “fundamental groups at infinity” that such
a pair exists. The speaker has written about this on Mathematics Stack Exchange; see
[Mur15] and the references therein.

†The signature of a smooth manifold of even dimension is the signature of the intersection form on the middle
homology group.
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