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Course Description

A fundamental problem in algebraic geometry is to determine which varieties are rational, that is,
birational to the projective space. Several important developments in the field have been motivated by
this question. The main goal of the course is to describe two recent directions of study in this area.
One approach goes back to Iskovskikh and Manin, who proved that smooth, 3-dimensional quartic
hypersurfaces are not rational. This relies on ideas and methods from higher-dimensional birational
geometry. The second approach, based on recent work of Claire Voisin and many other people, relies on a
systematic use of decomposition of the diagonal and invariants such as Chow groups, Brauer groups, etc.
to prove irrationality. Both directions will give us motivation to introduce and discuss some important
concepts and results in algebraic geometry.

The following is a rough outline of the course:
Introduction

1. Rationality in dimension 2 (Castelnuovo’s criterion).
Part I

2. Introduction to Chow groups and intersection theory.
3. Decomposition of the diagonal and non-stable-rationality.
4. Examples of classes on non-stably-rational varieties.

Part II
5. Introduction to singularities of pairs and vanishing theorems.
6. Birational rigidity of Fano hypersurfaces of index 1.

Mircea Mustaţă’s own lecture notes are available at:

http://www-personal.umich.edu/~mmustata/lectures_rationality.html
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1 January 5

The theory of rationality centers around the question: Which varieties are rational, i.e., birational to the
projective space Pn? This theory is very interesting because it uses vastly different methods. On one hand,
showing something is rational usually requires a lot of explicit geometric constructions that are classical in
flavor. On the other hand, showing something is not rational requires more complicated invariants like Chow
groups, etc., many of them arising from birational geometry.

We first give a brief outline of the course:
Introduction: Some definitions and easy properties; examples

In particular, we will study surfaces (Castelnuovo’s rationality criterion), cubic three-folds and quartic
three-folds, and the unirationality of hypersurfaces of small degree. Note that for these last examples, it
is already hard to show they are not rational. These examples will build intuition and help you develop
tools to study more complicated cases.

Part I: Stable rationality
We will review some things about Chow groups and intersection theory, and then study the theory of
“decomposition of the diagonal” and how it relates to stable rationality, following ideas of Voisin and
others.

Part II: Birational rigidity of certain Fano varieties
A key example here is that of hypersurfaces of degree n in Pn, which are “extremal” Fano varieties.
Birationally rigid varieties are those for which birational self-maps can all be extended to automorphisms;
for the aforementioned hypersurfaces, the group of birational self-maps will be finite, and so they cannot
be rational. The main ideas in this theory come from Mori theory, and so we will need to talk about
invariants of singularities and vanishing theorems.

Time and interest permitting, we may also discuss rationally connected varieties, and other methods for
showing non-rationality via intermediate Jacobians.

1.1 The Lüroth problem and its solution for curves

Today we work over an arbitrary field k. Note that for most of the time in this course, we will assume k
to be algebraically closed; sometimes we will need to discuss the non-closed case, and often we will need to
restrict to the case when char(k) = 0. Also, while we will state results in the greatest generality they are
known, we will often only prove things under some assumptions.

Let X be a variety over k, i.e., an integral scheme that is separated and of finite type over k. Let n denote
the dimension of X.

Definition 1.1. X is rational if it is birational to Pn
k over k. Equivalently, X is rational if its function field

K(X) is isomorphic to k(x0, . . . , xn) as an extension of k.

Remark 1.2. When studying rationality, we may always replace X by any Y birational to X. For example, we
can assume that X is affine, but it is more useful to assume that X is projective, so that geometric methods
are available.

If char k = 0, then by Hironaka’s resolution of singularities, we may also assume that X is smooth. This
will be useful in Part II, when we will need to consider singular varieties, in which case it will be important
to understand what their resolutions of singularities look like.

Definition 1.3. X is unirational if there is a dominant rational map PN 99K X.

Remarks 1.4.
(1) Clear: If X and Y are birational, then X is unirational if and only if Y is unirational.
(2) If X is unirational, then there is a rational dominant map Pn 99K X, where n := dimX.

Proof when k is infinite. The idea is to keep replacing PN by a general hyperplane. If PN 99K X is a
rational dominant map, then there exists a commutative diagram

PN X

U
open

⊆

f
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where N ≥ n. If N > n, then consider a general fiber f−1(x) of f , which is of dimension N − n. Now
choose a general hyperplaneH ⊆ PN

k , which satisfiesH∩U 6= ∅ and dim
(
H∩f−1(x)

)
< dim f−1(x). The

map H 99K X is still rational dominant, for otherwise all fibers would have dimension ≥ (N−1)−(n−1),
which is not the case for H ∩ f−1(x). Now repeat.

This remark is still true if k is finite.
(3) Clear: rationality implies unirationality.

This last remark prompts the following question about its converse:

Classical Question 1.5 (Lüroth’s problem). Does unirationality imply rationality? Equivalently, given
field extensions k ⊆ K ⊆ k(x1, . . . , xN ), is K purely transcendental over k?

Note that the latter question is equivalent to the former since K is a finitely generated field extension of
k (it is a subfield of k(x1, . . . , xN )), and so the existence of the second inclusion K ⊆ k(x1, . . . , xN ) implies
there is a rational dominant map from Pn to X, where X is some variety with function field K. Note that
the finite generation statement fails pretty badly for rings, but is okay for fields!

Theorem 1.6 (Lüroth). The answer is “yes” in dimension one: a unirational curve is automatically rational.

We will give two arguments. The first is a geometric argument that works over an algebraically closed
field of characteristic zero. We will also give an algebraic argument without these restrictions.

Argument 1 (geometric) [Har77, Ch. IV, Ex. 2.5.5]. Assume that k = k, and char(k) = 0. Suppose that X/k
is a unirational curve; we may assume that X is a smooth projective curve (by completion and normalization).
Then, by assumption, there is a rational dominant map P1 99K X, which in fact extends to a morphism
P1 → X, which is separable since char(k) = 0. By the Riemann–Hurwitz formula [Har77, Ch. IV, Prop. 2.3],

KP1 ∼ f∗(KX) + Ram(f)︸ ︷︷ ︸
effective

.

Taking degrees, we obtain

−2 = deg f · (2gX − 2) + deg(Ram(f)) ≥ deg f · (2gX − 2).

This implies that gX = 0, and so X ' P1.

It is also instructive to see an elementary argument, in the way they would’ve done it in the 19th century.
This works over an arbitrary ground field k.

Argument 2 (algebraic). We show that if k ⊆ K ⊆ k(t) is a sequence of field extensions such that trdegkK = 1,
then K ' k(X). Since trdegkK = 1, it is enough to find some a ∈ K such that K = k(a).

First, the second extension K ⊆ k(t) must be algebraic, so t is algebraic over K. Let

f(X) = Xn + a1X
n−1 + · · ·+ an ∈ K[X]

be the minimal polynomial of t over K. Since t is transcendental over k, we cannot have all ai ∈ k, and
so there is some i such that ai ∈ K r k. We will show that in this case, K = k(ai). We know that the
ai ∈ K ⊆ k(t), and so we may write

ai =
u(t)

v(t)
,

where u, v ∈ k[t] are relatively prime, and where at least one of them of positive degree. Now consider the
following polynomial:

F (X) = u(X)− aiv(X) ∈ K[X].

Since F (t) = 0, we have that f(X) | F (X) in K[X] by minimality of f(X), and so

u(X)− aiv(X) = f(X)g(X). (1.1)

where g ∈ K[X]. We then claim the following:
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Claim 1.7. g ∈ K.

Showing the Claim would conclude the proof, for then we have a sequence of extensions

k ↪→ k(ai) ↪→ K ↪→ k(t)

where [k(t) : K] = [k(t) : k(ai)] by the Claim, which implies K = k(ai).
To prove the Claim, the first step is to get rid of all denominators: by multiplying (1.1) by a suitable

nonzero element of k[t], we get a relation

c(t)
(
u(X)v(t)− v(X)u(t)

)
= f1(t,X)g1(t,X),

where f1(t,X), g1(t,X) ∈ k[t,X] are obtained from f resp. g by multiplication by an element in k[t]. Note
that k[t,X] is a UFD, and so we can get rid of c(t) by successively dividing by prime factors of c(t) to get a
relation

u(X)v(t)− v(X)u(t) = f2(t,X)g2(t,X), (1.2)

where now f2(t,X), g2(t,X) ∈ k[t,X] are obtained from f, g by multiplication by a nonzero element in k(t).
The trick is now to look at the degrees in t on both sides. First,

degt
(
u(X)v(t)− v(X)u(t)

)
≤ max

{
deg u(t),deg v(t)

}
,

Letting f2(t,X) = γ0(t)Xn + · · ·+ γn(t), we see that

γi(t)

γ0(t)
= ai(t) =

u(t)

v(t)
,

where u(t), v(t) were relatively prime. This implies that in fact,

degt
(
f2(t,X)

)
≥ max

{
deg u(t),deg v(t)

}
.

By looking at degrees in t on both sides of the relation (1.2), we have that degt(g2(t,X)) = 0, hence g2 ∈ k[X].
Now we claim that g2 ∈ k. For sake of contradiction, suppose that g2 /∈ k. Then, there is a root γ ∈ k

such that g2(γ) = 0, which implies that u(γ)v(t) = v(γ)u(t). But since u(t) and v(t) are relatively prime,
and are not both constants, we must have u(γ) = 0 = v(γ). This contradicts that u, v are relatively prime,
and so g2 ∈ k. Finally, since g ∈ K[X] and g = g2 · (element of k(t)), we have that g ∈ K.

One interesting thing to point out is that Colliot-Thélène and others do a lot of concrete computations
like this one to prove (uni)rationality.

This settles the Lüroth problem in dimension one. Already, for surfaces the situation is a bit more
complicated, and here the results are only one-hundred years old. We’ll see that the answer to the Lüroth
problem in dimension two is still “yes” in characteristic zero, but “no” in positive characteristic (because of
inseparable phenomena). The answer is also “no” in dimensions ≥ 3. We will come to the higher-dimensional
case later; for now, we want to understand surfaces.

1.2 Birational invariance of plurigenera

What we want to do now is to discuss the first invariants that allow one to show a variety is not rational.
These invariants are elementary, and are constructed in terms of the canonical divisor. This will allow us to
see explicit examples of non-rational varieties.

General Goal 1.8. Find invariants that agree on varieties that are birational to each other, but take on
different values for a given example when compared to Pn.

Definition 1.9. Let X be a smooth complete variety over k. The plurigenera of X are

pm(X) = dimkH
0(X,ω⊗mX )

for each positive integer m.
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Proposition 1.10 [Har77, Ch. II, Ex. 8.8]. The plurigenera pm(X) are birational invariants for smooth
complete varieties, for all m ≥ 1.

The argument is exactly the same as the case when m = 1, which is [Har77, Ch. II, Thm. 8.19]. We give
an argument here, since we will need a variation of the argument later.

Proof. Suppose that there is a map X 99K Y that is a birational map of smooth complete varieties. Since
X is normal and Y is complete, this extends to a morphism f : U → Y for U ⊆ X open, such that
codim(XrU,X) ≥ 2. Now we just have to compare forms on X to those on U : there is a canonical morphism
f∗Ω1

Y → Ω1
U given by pulling back forms, which is an isomorphism over an open subset of U (e.g., where f is

an isomorphism). Taking top exterior powers and mth tensor powers, we obtain a morphism

f∗(ΩnY )⊗m −→ (ΩnU )⊗m,

which is still generically an isomorphism. Since both sheaves are locally free, they are both torsion-free, and
so the morphism is actually an injective map of sheaves. Thus, we have the following commutative diagram:

H0(U, f∗(ΩnY )⊗m) H0(U, (ΩnU )⊗m)

H0(Y, (ΩnY )⊗m) H0(X, (ΩnX)⊗m)

rest ∼

where the left vertical arrow is injective since f is dominant, and the right vertical arrow is an isomorphism
since codim(X r U,X) ≥ 2, (ΩnX)⊗m locally free, and X normal (S2). This shows that pm(Y ) ≤ pm(X) for
all m ≥ 1, hence by symmetry, you get equality.

Remark 1.11.
(1) The same argument also works to show that the dimensions h0(X, (ΩjX)⊗m) are birational invariants for

smooth complete varieties for all j ≥ 0,m ≥ 1. These invariants for m = 1 are called Hodge numbers.
(2) The same argument implies that if f : X 99K Y is a dominant, separable (i.e., generically étale, which

breaks down in positive characteristic) rational map between smooth complete varieties of the same
dimension, then pm(Y ) ≤ pm(X).

(3) dimkH
i(X,OX) are birational invariants for smooth complete varieties.

Proof. If char(k) = 0, then you can use Hodge symmetry, which says

hi(X,ΩjX) = hj(X,ΩiX) (1.3)

for all i, j (this fails in positive characteristic in general). Thus, hi(X,OX) = h0(X,Ωi
X), which is a

birational invariant by (1). In positive chararacteristic, the argument due to Chatzistamatiou–Rülling
[CR11] is much more involved, and very recent.

Corollary 1.12. If X is a rational smooth complete variety, then pm(X) = 0 for all m ≥ 1, and hi(X,OX) =
0 for all i ≥ 1.

Proof. This is the case for Pn: the statement for plurigenera follows since ωX is negative, and hi(X,OX) = 0
by the cohomology of projective space [Har77, Thm. 5.1].

This gives us first examples of non-rational varieties.

Example 1.13. Let X ⊆ Pn be a smooth hypersurface of degree d ≥ n+ 1. Then, X is not rational. More
generally, if X ⊆ Pn is a smooth complete intersection of type (d1, . . . , dr) with d1 + · · ·+ dr ≥ n+ 1, then
X is not rational.

Proof. By the adjunction formula, you can write down what the canonical bundle is explicitly:

ωX ' OX(d1 + · · ·+ dr − n− 1).

Then, h0(X,ωX) 6= 0 under our assumption, hence X is not rational.
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These are cheap examples of non-rational varieties; varieties in the other range are more interesting.

Remark 1.14. It is important that we assume that X is smooth.

Example 1.15. Suppose that X ⊆ Pn
k is a hypersurface of degree d, and suppose that p ∈ X(k) is a rational

point. Then, multpX ≤ d, and equality holds if and only if X is a cone with vertex p over a hypersurface in
Pn−1.

If multpX = d− 1, then X is rational. The idea is simple: you parametrize Pn−1 by the lines of Pn that
pass through p, which gives a generically one-to-one map since lines through p intersect X at at most one
more point. We will write this out carefully next time.

If d = 2, then the condition multpX = d− 1 = 1 says that the point p is smooth. The upshot is that if X
is a smooth quadric hypersurface such that X(k) 6= ∅, then X is rational. Note that this is a statement we
will use even when k is not algebraically closed.

Next time, we will discuss related rationality properties, specifically that of stable rationality and
uniruledness. We will then start discussing cubic surfaces. In particular, we will prove that all cubic surfaces
are rational, which is not proved in [Har77, Ch. V, §4]. This uses Castelnuovo’s criterion for rationality, and
the proof will be useful for arguments later.

2 January 10

2.1 Birational invariance of plurigenera (continued)

Last time, we showed in Proposition 1.10 that if X 99K Y is a rational separable dominant map, and if X,Y
are smooth projective varieties of the same dimension, then

h0(X, (ΩqX)⊗m) ≥ h0(Y, (ΩqY )⊗m).

In particular, these are birational invariants. This is most used when q = dimX = dimY , in which case we
have pm(X) = h0(X,ω⊗mX ), and in characteristic zero, h0(X,ΩqX) = hq(X,OX) (Remark 1.11).

Remark 2.1. The quantities h0(X, (ω−1
X )⊗m) are not birational invariants. For example, if f : Y = BlpX → X

is the blowup of a smooth projective surface X at a point p with exceptional divisor E, then ωY ' f∗ωX(E),
and global sections do not change. However,

H0(Y, ω−1
Y ) ' H0(X,ω−1

X ⊗Ip) ( H0(X,ω−1
X )

as long as p is not in the base locus of the complete linear system associated to ω−1
X , even for X = P2.

Knowing these are birational invariants, we can use them to show that certain spaces are not rational,
since we saw that for rational varieties, we have pm(X) = 0 for all m ≥ 1, and hi(X,OX) = 0 for all i ≥ 1,
since these hold for projective space (Corollary 1.12).

Exercise 2.2. Show that if X is a smooth projective variety that is rational, then

h0(X, (ΩqX)⊗m) = 0

for all m, q > 0.

Proof by notetaker. By Remark 1.11(1), it suffices to show that h0(Pn, (Ωq
Pn)⊗m) = 0. Fix q > 0; we will

induce on m > 0. First suppose that m = 0. Consider the Euler exact sequence [Har77, Ch. II, Thm. 8.13]

0 −→ ΩPn −→ OPn(−1)⊕(n+1) −→ OPn −→ 0.

By taking the qth exterior power as in [Hir95, Thm. 4.1.3*], we obtain the short exact sequence

0 −→ ΩqPn −→ O
⊕(n+1

q )
Pn (−q) −→ Ωq−1

Pn −→ 0. (2.1)

Taking global sections, we then obtain

H0(Pn,ΩqPn) ⊆ H0(Pn,OPn(−q))⊕(n+1
q ) = 0

9



for all q > 0 by the cohomology of projective space [Har77, Thm. 5.1(a)].
It now remains to consider the case when m > 0. By tensoring the exact sequence (2.1) by (ΩqPn)⊗(m−1),

and then by taking global sections, we obtain the injection

H0(Pn, (ΩqX)⊗m) ⊆ H0(Pn, (ΩqX)⊗(m−1)(−q))⊕(n+1
q ) ⊆ H0(Pn, (ΩqX)⊗(m−1))⊕(n+1

q ) = 0

by inductive hypothesis on m.

Remark 2.3. In characteristic zero, the same invariants vanish even if X is just unirational, since the dominant
rational map from projective space is separable, and then by applying Remark 1.11(2).

There were two questions from last time: first, whether the characteristic zero assumption is necessary in
this Remark, and second, to what degree smoothness is necessary in Proposition 1.10.

For the first question, recall that we saw in Example 1.13 that if X ⊂ Pn is a smooth projective
hypersurface of degree d ≥ n+ 1, then X is not rational or even unirational in characteristic zero. On the
other hand, in characteristic p, we will see unirational surfaces in P3 of large degree can be unirational [Shi74,
Prop. 1]. For the second question, we make the following:

Remark 2.4. The invariant h0(X,ωX) is not a birational invariant in general if X is not smooth, since a
resolution f : Y → X will have a canonical divisor of the form f∗KX +

∑
aiEi, where the ai could be negative.

Demanding that ai ≥ 0 is exactly the condition that says X has canonical singularities. Moreover, a high
degree hypersurface that is singular can still be rational, but have sections, as we will see below.

Example 2.5. Let X ⊂ Pn
k be a hypersurface of degree d, and let p ∈ X(k). After changing coordinates, we

may assume that
p = (1, 0, 0, . . . , 0) ∈ U = (x0 6= 0) ' An

k .

If X = (f = 0), then X ∩ U = (g = 0) ⊆ U , where g = f(1, x1, . . . , xn). Now write

g =
∑
i≤d

gi where gi are homogeneous of degree i,

and where multpX = min{i | gi 6= 0} ≤ d. Then, the multpX = d if and only if f ∈ k[x1, . . . , xn], i.e., X is
a cone with vertex p over a hypersurface in Pn−1.

Now we claim that if X is a variety such that multpX = d− 1, then X is rational. The geometric idea is
that lines through the point p are parametrized by Pn−1, and intersect X at at most one more point. We
define a birational map

Pn−1 = {lines in Pn through p} 99K X

as follows. Given (λ1, λ2, . . . , λn) ∈ kn, we want to look at X ∩ {(tλ1, tλ2, . . . , tλn) | t ∈ k}, which is given by

g(tλ1, tλ2, . . . , tλn) = td−1(gd−1(λ) + tgd(λ)) = 0.

By assumption, gd−1 6= 0 (by multiplicity condition), and gd 6= 0 (otherwise, f = x0g is not irreducible).
Define a map

Pn−1 r {gd = 0} ϕ−→ X

(λ1, λ2, . . . , λn) 7−→
(

1,−gd−1(λ)

gd(λ)
λ1, . . . ,−

gd−1(λ)

gd(λ)
λn

)
and in the other direction,

(X ∩ U) r {p} ψ−→ Pn−1

(1, λ1, . . . , λn) 7−→ (λ1, . . . , λn)

You can check that ϕ,ψ are inverse to each other.
An important special case is that if d = 2, i.e., X ⊂ Pn

k is an integral quadric such that (Xsm)(k) 6= ∅,
then X is rational. We will use this even if k is not algebraically closed, but in the algebraically closed case,
this says that all integral quadrics are rational.
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Remark 2.6. If k is infinite, and X is unirational, then X(k) 6= ∅, since any open subsets in Pn have rational
points.

Remark 2.7. This is okay even if k is finite and X is complete by Nishimura’s Lemma, which says that if
Y 99K X is a rational map, where X is complete, and Y is smooth with Y (k) 6= ∅, then X(k) 6= ∅. See
[KSC04, Sol. to Exc. 1.12] for a proof.

2.2 Other properties close to rationality

Before moving on, we will discuss two more classes of varieties which are close to being rational. One will
come up often, and the other encompass the varieties we just saw as examples.

2.2.1 Stably rational varieties

Definition 2.8. A variety X/k is stably rational if X ×Pn
k is rational for some n.

• It is clear that if X and Y are birational, then X is stably rational if and only if Y is stably rational.
• Rational =⇒ stably rational =⇒ unirational. For the last implication, we have

PN Pm ×X

X

birat

dominant

This breaks up the Lüroth problem into two parts, which are both known to not be equivalences:
• Artin–Mumford examples [AM72] are unirational but not stably rational.
• Beauville, Colliot-Thélène, Sansuc, and Swinnerton-Dyer [Bea+85] found a complex threefold X such

that X ×P3 is rational, but X is not rational.
It is hard to show varieties are not stably rational. There is no good way to show that a variety is not
unirational.

2.2.2 Uniruled varieties

These show up in birational geometry; we may discuss them when we discuss rationally connected varieties.

Definition 2.9. A variety X over k is uniruled if there is a variety Y of dimension dimX−1 and a dominant
rational map Y ×P1 99K X.

• It is clear that this is a birational property.
• A point is not uniruled, but in higher dimensions, unirational =⇒ uniruled:

Pn Xn

Pn−1 ×P1

dominant

bir

• Uniruledness is much weaker than unirationality, and is much better behaved. It is well-understood due
to Mori’s theory about deformations of rational curves.

Remark 2.10. Uniruled varieties are far from being unirational, e.g., C ×P1, where C is an elliptic curve, is
uniruled but not unirational.

Remark 2.11. All examples we saw of non-(uni)rational varieties are not uniruled because of the following:

Proposition 2.12. Suppose X is a smooth projective variety in characteristic zero. If X is uniruled, then
pm(X) = 0 for all m ≥ 1.

11



Proof. We have by definition a map ϕ : Y n−1 ×P1 99K Xn that is dominant. Since we are in characteristic
zero, we may assume that Y is also smooth and projective by Hironaka’s resolution of singularities, and that
the map is separable. Then, we saw last time that pm(X) ≤ pm(Y ×P1). Now consider the two projection
maps

Y ×P1

Y P1

p q

Since the tangent bundle of the product is the direct sum of those of the two factors, we have ωY×P1 ∼=
p∗ωY ⊗ q∗O(−2). Thus, by the Künneth formula, H0(ω⊗mY×P1) ' H0(Y, ω⊗mY )⊗H0(P1,OP1(−2m)) = 0.

The reason why this is actually interesting is that we expect the converse to be true:

Conjecture 2.13. If char(k) = 0, and X/k is a smooth projective variety, and if pm(X) = 0 for all m ≥ 1,
then X is uniruled. (This is known if dimX ≤ 3.)

This gives a purely numerical criterion for uniruledness. While people have looked for a similar purely
numerical criterion for rationality for a long time, such a criterion probably does not exist.

2.3 Cubic surfaces

For the next few weeks, we will discuss examples of unirational and stably rational varieties. The first thing
to discuss is cubic surfaces.

Goal 2.14. Every smooth cubic surfaces in P3
k where k = k is rational.

In Hartshorne’s book, he shows that general cubics satisfy this by showing that a general smooth cubic
surface is isomorphic to the blowup of P2 at six points. This is indicative of this field in general, where it is
usually much easier to show that a property holds for objects that are general in moduli. Showing a property
holds for all objects, however, tends to be a bit tricker.

We will show the following:

Theorem 2.15. Every hypersurface X ⊂ P3 of degree 3 contains a line.

Note 2.16. There are such X that contain infinitely many lines: nonreduced ones, or cones over elliptic curves
in P2.

Theorem 2.17. If X is smooth, then
(1) X contains precisely 27 lines;
(2) X contains two disjoint lines.

The idea is to setup an incidence correspondence that parametrizes lines that lie in X.

Proof of Theorem 2.15. Let P be the projective space parametrizing cubic hypersurfaces of degree 3 in P3,

which is isomorphic to P(3+3
3 )−1 = P19. Let G be the Grassmannian parametrizing lines in P3, which is

isomorphic to G(2, 4), which is a smooth projective variety of dimension 4. Let

M P×G

{(X,L) ∈ P×G | L ⊂ X}

P G

p q

Claim 2.18. M is closed in P×G.

12



Proof of Claim. Consider the open subset V ⊂ G which consists of those lines L which are spanned by the
rows of the matrix (

1 0 a1 a2

0 1 b1 b2

)
.

Suppose X is a hypersurface corresponding to fc =
∑
cαx

α, where c = (cα), α = (α0, . . . , α3), and
α0 + · · · + α3 = 3. If L is the line corresponding to the matrix above, then L ⊂ X if and only if
fc(s(1, 0, a1, a2) + t(0, 1, b1, b2)) = 0 for all s, t. Write

fc(s, t, sa1 + tb1, sa2 + tb2) =

3∑
i=0

Fi(a, b, c)︸ ︷︷ ︸
linear in c

sit3−i.

Hence, M ∩ (P× V ) ⊂ P× V is cut out by (F0, . . . , F3), and so M ∩ (P× V ) is closed. Finally, since open
subsets of the form V cover G, we see that M is closed in P×G.

The next step is to understand the projection map q. The incidence correspondence will allow us to
deduce that p is then surjective.

Claim 2.19. Locally on G, the projection map q is trivial with fiber P15.

Proof of Claim. We can check this on V (other charts in G are of a similar form). M is cut out by four
equations F0, . . . , F3, and since the equations are linear in c, it is enough to check that for all L ∈ G, the
fiber q−1(L) ⊆ P has codimension 4. Choose coordinates such that L = (x2 = x3 = 0). Then, L ⊂ V (fc) if
and only if the coefficients of x3

0, x
2
0x1, x

1
0x

2
1, x

3
1 in fc are zero.

This implies that M is smooth, irreducible, and of dimension 15 + 4 = 19.
Now consider p : M → P, which is a morphism between projective varieties of dimension 19. For

Theorem 2.15, we need to show that p is surjective. Since p is proper (hence closed), we only need p to be
dominant. So it is enough to find a zero-dimensional fiber by the theorem on dimension of fibers. We check
this explicitly for our favorite cubic:

Example 2.20 (char(k) 6= 3). Consider the Fermat cubic Q: x3
0 + x3

1 + x3
2 + x3

3 = 0. This is smooth (e.g.,
by the Jacobian criterion), and by symmetry, we can consider lines L of the form x0 = αx2 + βx3 and
x1 = γx2 + δx3. Then, L ⊂ Q if and only if

(αx2 + βx3)3 + (γx2 + δx3)3 + x3
2 + x3

3 = 0

in k[x2, x3]. This gives the system of equations

α3 + γ3 + 1 = 0, (2.2)

α2β + γ2δ = 0, (2.3)

αβ2 + γδ2 = 0, (2.4)

β3 + δ3 + 1 = 0. (2.5)

If α, β, γ, δ 6= 0, then (2.3) implies

δ = −α
2β

δ2
.

Combined with (2.4), we have that
α3 + γ3 = 0,

which contradicts (2.2). Thus, one of α, β, γ, δ must be zero.
If α = 0, then γδ = 0, but γ3 = −1 and so we must have δ = 0 and β3 = −1. Thus, L is given by

x0 = βx3 and x1 = γx2. There are nine such lines corresponding to different choices of roots of −1.
By symmetry, there are two more sets of nine lines, corresponding to the two other choices of two variables

out of x0, x1, x2, x3.
We note for later that our explicit description above says that there are pairs of disjoint lines.
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Exercise 2.21. Show that for every line L ⊂ Q, there are precisely ten lines that meet it.

There are two ways to study lines on a cubic surface. If you know the description of a cubic surface
as a blowup of P2 at six points, then it is relatively easy to show Theorems 2.15 and 2.17; see [Har77,
Ch. V, §4]. On the other hand, our proof of Theorem 2.15 just required understanding the Fermat cubic well.
Theorem 2.17 says that any smooth cubic surface has exactly 27 lines, which corresponds to the fact that the
projection map p : M → P is étale. We also need to show that there are two disjoint lines. The ultimate goal
is to use these lines to get a birational map to projective space.

3 January 12

Three administrative comments:
1. Since this is a topics course, there will be no exam at the end.
2. There will not be homework to be turned in. However, there will be exercises and facts to check given in

class, which you are encouraged to do. Mircea will fill in proofs of these statements in his lecture notes.
3. Office hours will be by appointment.

3.1 Cubic surfaces (continued)

We return to what we were discussing last time. Recall that we work over an algebraically closed filed k = k.
So far, we have shown the following:

Theorem 2.15. Every hypersurface X ⊂ P3 of degree 3 contains a line.

We remind ourselves of the setup, since we need to use it for some proofs today.
Recall that P = P19 parametrizes all hypersurfaces of degree 3 in P3, and that the Grassmannian

G = G(P1,P3) is a four-dimensional, smooth projective variety that parametrizes lines in P3. We then
considered the incidence correspondence

M = {(X,L) ∈ P×G | L ⊂ X}

P G

p q

We showed that q is a projective bundle of relative dimension 15, and so M is smooth and irreducible
of dimension 19. In Example 2.20, we gave an explicit example (when char(k) 6= 3) of a smooth surface
containing precisely 27 lines, some of which are not disjoint. Since the first projection p above therefore has
one fiber which is finite, we see that that p is surjective by the theorem on dimension of fibers, i.e., for every
cubic hypersurface X ∈ P, we have that p−1(X) 6= ∅.

We now want to show the following:

Theorem 2.17. If X is smooth, then
(1) X contains precisely 27 lines;
(2) X contains two disjoint lines.

The basic idea is that we want to prove that the first projection p is étale after restricting to the locus of
U ⊆ P of smooth hypersurfaces:

Proposition 3.1. The induced map p−1(U)→ U is étale and finite.

Proof of Theorem 2.17(1) assuming Proposition 3.1. Since p−1(U) → U is finite, we see that any smooth
cubic hypersurface in P3 has only finitely many lines. Moreover, since U is connected, we have that all fibers
of p over U have the same number of points, that is, every smooth cubic hypersurface in P3 contains the
same number of lines. Since we already gave a point in U where the fiber of p had degree 27 in Example 2.20,
we conclude that all smooth cubic surfaces in P3 have 27 lines.
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Proof of Proposition 3.1. We first recall how we wrote down equations for the lines that lie on a given surface
X. Recall that we covered G by affine opens V , which consisted of lines that are given as the span of the
rows of (

1 0 a1 a2

0 1 b1 b2

)
The condition that the lines lie on the cubic surface give equations F0, . . . , F3 for M ∩ q−1(V ), where

fc(s, t, a1s+ b1t, a2s+ b2t) =

3∑
i=0

Fi(a, b, c)s
it3−i, (3.1)

and X = (fc = 0).
Since p−1(U)→ U is proper, we only need to check it is étale, since a proper étale map is finite. To check

that p−1(U)→ U is étale at some point (x, L) ∈ U × V , it is equivalent to show that the Jacobian matrix

A =
∂(F0, F1, F2, F3)

∂(a1, a2, b1, b2)
(x, L)

has rank 4 by the Jacobian criterion. We need to differentiate (3.1) with respect to different variables. First,
we may assume (after changing coordinates) that L corresponds to (a1, a2, b1, b2) = 0. Then, we apply the

partial derivative ∂
∂a1

∣∣∣
(c,0)

to (3.1) to obtain

s
∂fc
∂x2

(s, t, 0, 0) =

3∑
i=0

∂Fi
∂a1

(0, 0, c)sit3−i.

The first column of A is then given by the coefficients of the left-hand side. Similarly, the other columns of A
correspond to the coefficients of the partial derivatives

s
∂fc
∂x3

(s, t, 0, 0) t
∂fc
∂x2

(s, t, 0, 0) t
∂f

∂x3
(s, t, 0, 0).

Suppose the matrix A has rank < 4, so there is a non-trivial linear combination of the columns that is zero,
i.e., there exist λ1, λ2, µ1, µ2 ∈ k, not all zero, such that

∂fc
∂x2

(s, t, 0, 0)(λ1s+ µ1t) +
∂fc
∂x3

(s, t, 0, 0)(λ2s+ µ2t) = 0. (3.2)

Since fc has degree 3, its partial derivatives are homogeneous of degree 2 in s, t. Moreover, since we are over
an algebraically closed field, these partial derivatives are products of linear factors. The equality (3.2) then
says that ∂fc

∂x2
(s, t, 0, 0) and ∂fc

∂x3
(s, t, 0, 0) must have a common factor. In other words, there is a common root

(s0, t0) 6= (0, 0), such that
∂fc
∂x2

(s0, t0, 0, 0) = 0 =
∂fc
∂x3

(s0, t0, 0, 0).

Finally, we claim that the other partial derivatives also vanish automatically at (s0, t0). By assumption, the
line L is contained in X = (fc = 0), so we have that fc(s, t, 0, 0) = 0. Thus,

∂fc
∂x0

(s0, t0, 0, 0) = 0 =
∂fc
∂x1

(s0, t0, 0, 0),

and the point (s0, t0, 0, 0) ∈ L ⊂ X is in fact a singular point of X, which is a contradiction.

We are now ready to prove Theorem 2.17(2). The idea is to imitate what we did so far. We know one
smooth cubic surface has disjoint lines, so we want to show all of them have disjoint lines, using incidence
correspondences.
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Proof of Theorem 2.17(2). Consider the following:

p−1(U)×U p−1(U)

{
(X,L1, L2)

∣∣∣∣∣ X smooth

L1, L2 ⊆ X

}

U

étale, finite

Let W be the set of all triples that correspond to lines in X that are disjoint:

W =

(X,L1, L2)

∣∣∣∣∣∣∣
X smooth

L1, L2 ⊆ X
L1 ∩ L2 = ∅

 .

We want to show that W is a union of connected components of p−1(U)×U p−1(U). This would imply all
fibers of W → U have the same number of elements, and so since Example 2.20 is an example of a smooth
cubic surface with two disjoint lines, the assertion of Theorem 2.17(2) will follow.

Our method will be to understand the locus corresponding to lines that do intersect, that is, we want to
understand the incidence correspondence

R =

{
(X,L1, L2) ∈ P×G×G

∣∣∣∣∣ L1, L2 ⊆ X
L1 ∩ L2 6= ∅

}

P Z = {(L1, L2) ∈ G×G | L1 ∩ L2 6= ∅}

α β

Note that the condition L1 ∩ L2 6= ∅ is a closed condition, so R is a closed subscheme of P×G×G.
We first show that Z is irreducible of dimension 7. We will need the following:

Parenthesis 3.2 [Sha13, Thm. 1.26]. If f : A→ B is a morphism of schemes over k such that
(1) f is proper,
(2) B is irreducible, and
(3) all fibers of f are irreducible of the same dimension,

then A is irreducible.

Now note that Z is an incidence correspondence with two projection maps:

Z

G G

f g

where f−1(L) are lines that intersect L. The fibers

f−1(L) = {L′ ∈ G | L ∩ L′ 6= ∅}

fit into another incidence correspondence

T = {(P,L′) | P ∈ L, L′ ∈ G, P ∈ L′}

L f−1(L)

where the map to f−1(L) is surjective. The fibers of the map to L are isomorphic to P2, which implies that
T is irreducible of dimension 3. The map to f−1(L) has general fiber equal to a single point, which therefore
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implies that f−1(L) is irreducible of dimension 3. We therefore conclude that Z is irreducible of dimension 7,
since G has dimension 4.

Finally, to get information about R, we have to understand the fibers of β. Let (L1, L2) ∈ Z, and
consider β−1(L1, L2), where we may assume that L1 = (x0 = x1 = 0) and L2 = (x0 = x2 = 0), after a
change of coordinates. Then, L1, L2 ⊂ (f = 0), so we must have that the coefficients of x3

2, x
2
2x3, x2x

2
3, x

3
3

and x3
1, x

2
1x3, x1x

2
3 in f are all zero. Thus, the fiber β−1(L1, L2) ⊂ P19 is a linear subspace of codimension

7. But Z has dimension 7, so we see that R is irreducible, and dimR = dim P = 19. Note that we have an
embedding

R ↪→M ×P M,

where over U , the right-hand side is of dimension 19. Thus, the subscheme of R lying over U is equal to
a connected component of p−1(U), and so the component W we are interested in is a union of the other
connected components.

What’s important for us is that any smooth cubic surface over k = k contains two disjoint lines.

3.2 Some rational cubic hypersurfaces

We will now prove a rationality criterion for higher dimensional cubic hypsurfaces in projective space, that
works for even-dimensional cubics of a certain form.

Theorem 3.3. If X ⊆ P2m+1 is a smooth cubic hypersurface that contains two disjoint m-dimensional linear
subspaces (over the ground field), then X is rational.

The condition on linear subspaces is restrictive: it is a closed condition, and for example for fourfolds, it
is a codimension 2 condition. We will discuss more about what this locus looks like later.

Corollary 3.4. Every smooth cubic surface in P3 over k = k is rational.

Let Λ1,Λ2 ⊆ X be the two disjoint linear subspaces. Before proving Theorem 3.3, we show the following:

Claim 3.5. For all P ∈ P2m+1 r (Λ1 ∪ Λ2), there is a line LP containing P , such that LP intersects both Λ1

and Λ2. Moreover, the assignment

P2m+1 r (Λ1 ∪ Λ2) −→ Λ1 × Λ2

P 7−→ (LP ∩ Λ1, LP ∩ Λ2)
(3.3)

is a morphism.

This is straightforward if we write things down in coordinates.

Proof of Claim 3.5. Choose coordinates such that

Λ1 = (x0 = · · · = xm = 0),

Λ2 = (xm+1 = · · · = x2m+1 = 0),

and choose points

Q1 = (0, . . . , 0, a0, . . . , am) ∈ Λ1,

Q2 = (b0, . . . , bm, 0, . . . , 0) ∈ Λ2.

Then,
Q1Q2 =

{
sQ1 + tQ2 = (tb0, . . . , tbm, sa0, . . . , sam)

∣∣ (s, t) ∈ P1
}
.

Suppose P /∈ Λ1 ∪ Λ2, with coordinates P = (λ0, . . . , λ2m+1). Then, P ∈ Q1Q2 if and only if there exist
s, t 6= 0 such that (λ0, . . . , λm) = t(b0, . . . , bm), and (λm+1, . . . , λ2m+1) = s(a0, . . . , am). This implies the
existence and uniqueness of LP , and the map is given by

(λ0, . . . , λ2m+1) 7−→ ((λ0, . . . , λm), (λm+1, . . . , λ2m+1)) ∈ Λ1 × Λ2.
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We can now prove Theorem 3.3.

Proof of Theorem 3.3. Restricting the map (3.3) to our cubic hypersurface X, we get a map

X r (Λ1 ∪ Λ2)
ϕ−→ Λ1 × Λ2 ' Pm ×Pm.

The target space is rational. Now for a general point (P1, P2) ∈ Λ1 × Λ2, we see that P1P2 6⊆ X; otherwise,
X would be the whole projective space, a contradiction. Thus, for such P1, P2, the line P1P2 intersects X in
a scheme of length 3. By assumption, this scheme contains P1, P2, and so there is at most one other point,
that is, every fiber of ϕ contains at most one other point. If char(k) = 0, this shows that ϕ is birational.

Exercise 3.6. Write down an explicit formula for ϕ−1 to check birationality also in characteristic p.

The moral of the story is that over k = k, any smooth cubic surface is rational.

Remark 3.7. If X is a smooth cubic surface in P3, choosing two disjoint lines L1, L2 in X gives a rational
map

X r (L1 ∪ L2) −→ P1 ×P1.

This map in fact extends to X, and exhibits X as the blowup of P1 ×P1 at five points.

Exercise 3.8. Show that the blowup W → P1 ×P1 at one point is isomorphic to the blowup Bl{P,Q}P2,

and that under this isomorphism the exceptional divisor corresponds to the strict transform of PQ.

This implies that any smooth cubic surface in P3 is isomorphic to the blowup of P2 at six points. The six
points must be general (not on a conic, no three on a line): If we denote f : X → P2 to be the blowup map,
then ωX ' f∗O(−3)⊗O(−E1 − · · · − E6). But X is a cubic surface in P3, so ω−1

X = OX(1) is (very) ample.
If the blown up points were not general, then the strict transform of a special curve would contradict the
positivity of ω−1

X .

Fact 3.9. If Y is the blowup of Y as six general points, then ω−1
Y is very ample, and embeds Y as a cubic

surface in P3 [Har77, IV, Cor. 4.7].

This concludes what we wanted to say for cubic surface.
We next want to understand the condition that a cubic hypersurface of dimension 2m in P2m+1 contains

two disjoint linear subspaces of dimension m. The idea is to look at an appropriate incidence correspondence,
although the fibers of the projections will be difficult to understand.

Proposition 3.10. Let X ⊂ Pn be a hypersurface of degree ≥ 2.
(1) If Λ ⊂ X is a linear subspace of dimension r, then r ≤ n−1

2 .
(2) If r = n−1

2 , and X is smooth, then X contains only finitely many such subspaces.

The first is simple, but the second is more subtle: we have to use the fact that linear subspaces are
parametrized by the Hilbert scheme. We will then discuss the proof that all cubic hypersurfaces are unirational,
and then discuss unirationality for higher degree hypersurfaces.
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4.1 Some rational cubic hypersurfaces (continued)

Last time, we saw that if X ⊆ P2m+1 is a smooth cubic hypersurface containing two disjoint m-planes, then,
X is rational.

Example 4.1. If the ground field k = k, and m = 1, then X is always rational.

Question 4.2. How many such X do we have for m ≥ 2?

As before, the idea is to setup the correct incidence correspondence, and compute dimensions. First,
however, we will prove the following result about what linear subspaces could possibly live in X:

18



Proposition 4.3. Let L be an r-dimensional plane contained in the smooth locus of X, where X ⊆ Pn is a
hypersurface of degree d ≥ 2.

(1) r ≤ n−1
2 ;

(2) If r = n−1
2 and d ≥ 3, then there are only finitely many such r-planes in Xsm.

In the second part, we will need some facts about Hilbert schemes (Facts 4.4 and 4.5) that we will only
show next week (strictly speaking, we will only show it for linear subspaces in a hypersurface, using incidence
correspondences).

Proof. For (1), suppose L is cut out by (`1, . . . , `n−r = 0). Let X = (f = 0). Since L ⊆ X, we have that

f =

n−r∑
i=1

`ifi, (4.1)

where fi ∈ Γ(Pn,O(d− 1)). Let gi = fi|L ∈ Γ(L,OL(d− 1)).
We first claim that for all P ∈ L, there is some fi that does not vanish at P . If not, then (4.1) gives that

multP X ≥ 2, contradicting that L ⊆ Xsm.
To finish (1), suppose that r > n−1

2 , which is equivalent to 2r ≥ n. Then, we have that dimL = r ≥ n− r,
and so by the intersection theory on L ∼= Pr, we have that the polynomials g1, . . . , gn−r of degree d− 1 ≥ 1
have a common solution in L. This contradicts that the fi do not have a common zero in L, which we saw in
the previous paragraph. Thus, r ≤ n−1

2 , giving (1).
For (2), suppose that n = 2r + 1 above. Note that g1, . . . , gn−r ∈ S, the homogeneous coordinate ring of

L. These form a regular sequence: in Spec(S), their zero locus is just the origin, since they have no common
solution on L. We then need the following general fact about parameter spaces of subschemes:

Fact 4.4. If X ⊆ Pn is a scheme, then the subschemes of X with fixed Hilbert polynomial are parametrized
by a projective scheme HilbP .

In particular, taking P to be the Hilbert polynomial of an r-plane, that is,

P (T ) =

(
T + r

r

)
,

then HilbP parametrizes r-dimensional linear subspaces of X. We also need:

Fact 4.5. If X,Y are smooth, then

T[Y ] HilbP = H0(Y,NY/X),

where NY/X is the normal bundle.

It is therefore enough to show that for all linear subspaces L ⊆ Xsm, where dimL = r, and n = 2r + 1,
we have that H0(L,NL/X) = 0. This would show that the corresponding point [L] ∈ HilbP is an isolated,
reduced point.

Since L,Pn are smooth, and L ⊂ Xsm, we have the short exact sequence of normal bundles

0 −→ NL/X −→ NL/Pn −→ NX/Pn |L −→ 0.

Note that NX/Pn = OX(d).

Parenthesis 4.6.
(1) Let E be locally free on Y smooth, rank m, and let s ∈ Γ(Y,E ) such that the zero locus Z(s) ⊆ Y of

s has pure codimension m. Locally, if E ' O⊕mY , then s corresponds to an m-tuple (g1, . . . , gm) such
that g1, . . . , gm form a regular sequence. The section s : OY → E gives a map E ∨ → OY by dualizing,
and we have the corresponding Koszul complex:

0 ∧mE ∨ · · · ∧2E ∨ E ∨ OY 0

IZ(s)
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Since s is locally defined by a regular sequence, the above complex gives a resolution of IZ(s):

∧2E ∨ −→ E ∨ −→ IZ(s) −→ 0

Tensoring by OZ(s), we obtain

∧2E ∨|Z(s)
0−→ E ∨|Z(s) −→ IZ(s)|Z(s) −→ 0

so that NZ(s)/Y ' E |Z(s).
(2) If Pn = P(V ),1 then a linear subspace is given by a quotient V � V/W , which induces an inclusion

P(V/W ) ↪→ P(V ). On V , there is a canonical map

W ⊗OP(V ) ↪→ V ⊗OP(V ) � OP(V )(1),

which defines a section of s ∈ Γ(P(V ),W ∗ ⊗OP(V )(1)), such that Z(s) = P(V/W ). This satisfies the
condition in (1), and so it follows that NP(V/W )/P(V ) 'W ∗ ⊗OP(V/W )(1).

In our case, NL/Pn '
⊕n−r

i=1 OL(1). You can then check that the map

n−r⊕
i=1

OL(1) −→ OL(d)

is defined by g1, . . . , gn−r. We then see

H0(L,NL/X) = ker
(
H0(L,OL(1))⊕(n−r) (g1,...,gn−r)−−−−−−−−→ H0(L,OL(d))

)
. (4.2)

Since the gi’s form a regular sequence, the Koszul complex on g1, . . . , gn−r is exact, and so the relations on
the gi are generated in degrees ≥ d− 1 = 2. This implies that H0(L,NL/X) = 0, since the kernel of the map
in (4.2) is zero.

This calculation allows us to show the following:

Proposition 4.7. Let P be the projective space parametrizing cubic hypersurfaces in P2m+1. Then, the
subset of P corresponding to smooth cubic hypersurfaces containing two disjoint m-planes is constructible,
irreducible, and of dimension (m+ 1)2(m+ 4)− 1.

Proof. The idea is to setup the correct incidence correspondence. Let

G := G(m+ 1, 2m+ 2) = Grassmannian of m-linear subspaces in P2m+1,

which is smooth, projective, and of dimension (m+ 1)2. Let

U := {(L1, L2) ∈ G×G | L1 ∩ L2 = ∅} ⊆
open

G×G,

which is an open subset of G×G since the condition on linear subspaces is given by the non-vanishing of
certain minors.

Now let V ⊆ P be the open subset of the
(

2m+4
3

)
-dimensional space P corresponding to smooth cubic

hypersurfaces. Now consider the incidence correspondence below:

MV p−1(V ) M
{

(X,L1, L2) ∈ P× U
∣∣ L1, L1 ⊆ X

}

V P U

:=

p p q

1Note that we use the Grothendieck convention that P(−) denotes the projective space/bundle of hyperplanes.
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We want to calculate the fibers of q. Let (L1, L2) ∈ U , and suppose after change of coordinates that

L1 = (x0 = · · · = xm = 0) L2 = (x1 = · · · = x2m+1 = 0).

Then, L1, L2 ⊆ V (f) if and only if

f ∈ (x0, . . . , xm) ∩ (xm+1, . . . , x2m+1) = (xixj | 0 ≤ i ≤ m, m+ 1 ≤ j ≤ 2m+ 1),

and therefore q−1(L1, L2) is a projective space of dimension (m+ 1)2(m+ 2)− 1. By Parenthesis 3.2, we see
that M is irreducible, and that

dimM = 2(m+ 1)2 + (m+ 1)2(m+ 2)− 1 = (m+ 1)2(m+ 4)− 1,

since G×G is 2(m+ 1)2-dimensional, and U ⊆ G×G is open.
It remains to show that MV is nonempty, for if this were the case, then MV would be dense and therefore

have the same dimension as M . It suffices to exhibit one smooth cubic hypersurface in P2m+1 that contains
two disjoint m-planes:

Example 4.8. If char(k) 6= 3, then the hypersurface X3
0 + · · ·+X3

2m+1 = 0 contains two disjoint m-linear
subspaces, using a similar argument to Example 2.20. Hence, MV 6= ∅ in char 6= 3.

Finally, the set p(MV ) of smooth hypersurfaces containing two disjoint m-linear subsapces is constructible
by Chevalley’s theorem [Har77, Ch. II, Exc. 3.19], and is irreducible since it is the image of the irreducible set
M . This set is also of dimension = dimM since by Proposition 4.3(2), the map MV → P has finite fibers.

So the story for even-dimensional cubic hypersurfaces containing two disjoint linear subspaces is pretty
clear. We describe the story for cubic fourfolds:

Example 4.9. Let m = 2, so we are considering cubic hypersurfaces in P5. Then,

dim P =
2m+ 4

3
− 1 = 55.

The space of (smooth) cubics containing two disjoint 2-planes is 53-dimensional. This has codimension 2 in
P. It is easy to check that the set

D =

{
smooth cubics in

P5 containing 2-planes

}

is a divisor in V . Hassett (in his thesis [Has99]) gave an infinite family of divisors in D such that for each
of them, the general element gives a rational cubic fourfold. This description uses Hodge theory and facts
about derived categories of cubic fourfolds. It is conjectured that there are countably many divisors in V
whose general elements correspond to rational cubic fourfolds, and that the complement of these divisors
corresponds to non-rational cubic fourfolds.

Remark 4.10. In contrast to the even-dimensional case, there are no known examples of smooth odd-
dimensional cubic hypersurfaces that are rational.

4.2 Unirationality of cubic hypersurfaces

We now move on to unirationality results for cubic hypersurfaces, namely the following:

Goal 4.11. If X ⊆ Pn is a smooth cubic hypersurface containing a line, then X is unirational (this is always
the case if k = k).

The exact geometric condition is necessary to make inductive arguments work. The idea is to project
from the given line in X.
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4.2.1 Review of projections

Let P = P(V ) be a projective space over a field k, and fix a linear subspace P(V/W ) ↪→ P(V ) corresponding
to the short exact sequence

0 −→W −→ V −→ V/W −→ 0.

The inclusion W ↪→ V defines a rational map

ϕ : P(V ) r P(V/W ) −→ P(W ),

which is called the projection with center P(V/W ).
To describe this map more geometrically, choose a splitting of W ↪→ V , which gives an embedding

P(W ) ↪→ P(V ) such that P(W ) ∩P(V/W ) = ∅. Then, ϕ is defined by

ϕ(P ) =

{
linear span of

P(V/W ) and P

}
∩P(W ).

If we choose coordinates such that P(W ) = (xr+1 = · · · = xn = 0) and P(V/W ) = (x0 = · · · = xr = 0), then
ϕ(x0, . . . , xn) = (x0, . . . , xr).

Goal 4.12. If
BlP(V/W ) P(V )

P(V ) P(W )
ϕ

there is a lift BlP(V/W ) P(V )→ P(W ) of ϕ that realizes BlP(V/W ) P(V ) as a projective bundle over P(W ).

We’ll start by describing the projective bundle. Fix a splitting of W ↪→ V , so that there is an isomorphism
V ' W ⊕ V/W . On P(W ), consider E = OP(W )(1) ⊕ (V/W ⊗ OP(W )). Consider the projective bundle
associated to E

B := P(E )

P(W )

g

and let L = OB(1). Note that E is globally generated since OP(W )(1) is, and since the other summands are
trivial. Thus, we have a surjection

H0(P(W ),E )⊗OP(W ) E

(H0(OP(W )(1))⊕ V/W )⊗OP(W )

(W ⊕ V/W )⊗OP(W )

V ⊕OP(W )

We therefore get a corresponding closed embedding

P(E ) P(V ⊗OP(W )) P(V )×P(W )

P(W )

j

g pr2

By composing j with the first projection, we get a map h : P(E )→ P(V ), which we will show next time is
actually the blowup map BlP(V/W ) P(V )→ P(V ).
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Remark 4.13. You can check that
• h∗OP(V )(1) ' L ;
• h is defined by the map H0(B,L ) = H0(P(W ),E ) ∼= V ; and
• there is a surjection H0(B,L )⊗OB � L .

What we need to do first next time is to understand the exceptional divisor of the map h. We will then
prove a unirationality criterion for quadric bundles, which will be the key ingredient necessary to achieve
Goal 4.11.
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5.1 Unirationality of cubic hypersurfaces (continued)

The goal of today is to prove the following result about unirationality:

Theorem 5.1. If X ⊂ Pn is a smooth cubic hypersurface over k where n ≥ 3 and char(k) = 0, and X
contains a line, then X is unirational.

We will use the smoothness and characteristic assumption when we use generic smoothness.
As a direct corollary, we show the following:

Corollary 5.2. If k = k and char(k) = 0, and X ⊂ Pn, n ≥ 3 is a smooth cubic hypersurface, then X is
unirational.

Proof of Corollary 5.2. If Λ ⊆ Pn is a three-dimensional plane not contained in X, then the intersection
Λ∩X ⊆ Λ ' P3 is a cubic surface. Thus, Λ∩X contains a line by Theorem 2.15, and X therefore contains a
line, hence X is rational by Theorem 5.1.

We start with some preparations.

5.1.1 Projections

Suppose V is a vector space over k, and W ( V is a proper subspace inducing an inclusion P(V/W ) ↪→ P(V )

and the projection P(V ) r P(V/W )
ϕ→ P(W ). Recall that in this setting, we wanted to show the following:

Goal 5.3. ϕ gives a morphism BlP(V/W ) P(V ) → P(W ), which realizes BlP(V/W ) P(V ) as a projective
bundle over P(W ).

This can be proved in local coordinates, but then it is complicated to identify what vector bundle gives
rise to the projective bundle structure on BlP(V/W ) P(V ). We will therefore give a more formal argument.

Choose a splitting of W ↪→ V , so that there is a canonical isomorphism V ∼= W ⊕ V/W . Then, on P(W ),
consider the vector bundle E = OP(W )(1)⊕ (V/W ⊗OP(W )). Let

B := P(E )

P(W )

g

and L = OB(1). Then, E is globally generated, so there is a canonical surjection

H0(P(W ),E )︸ ︷︷ ︸
=V

⊗OP(W ) E
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so h : P(E )→ P(V ) realizes P(E ) as a projective subbundle of the projective bundle P(V )×P(W )→ P(V ):

P(V )

B = P(E ) P(V )×P(W )

P(W )

i

h

g

We denote g to be the projection from P(E ) onto the second component of the larger projective bundle
P(V )×P(W ). Last time, we wanted to show the following:

Claim 5.4. h is the morphism defined by L = OB(1) and the surjection

H0(B,L )︸ ︷︷ ︸
=V=H0(P(W ),E )

⊗OB L

Proof. First, on P(W ) the surjection
E V/W ⊗OP(W ) (5.1)

gives a diagram

E := P(V/W )×P(W ) P(E ) = B

P(W )

g

so P(V/W )×P(W ) is a projective subbundle of P(E ) over P(W ). We then claim that E = P(V/W )×P(W )
is the exceptional divisor of a blowup. Note that E is a smooth irreducible divisor on B; to see that it is a
divisor, note that the surjection (5.1) realizes V/W ⊗OP(W ) as a codimension 1 quotient of E .

First, we have an isomorphism L |E ' pr∗1OP(V/W )(1), which implies that we have a cartesian square

E B

P(V/W ) P(V )

pr1

y
h

We then claim that h−1(P(V/W )) = E. To do so, we use the following general fact:

Note 5.5. If ϕ : E1 � E2 is a surjective morphism of locally free sheaves on Y , then there is an embedding
P(E2) ↪→ P(E1). The subscheme is the zero locus of the morphism of vector bundles

π∗(kerϕ) π∗E1 O(1),

where π : P(E1)→ Y .

In particular, we can apply this Note to say that P(V/W ) is the zero locus of

W ⊗OP(V ) V ⊗OP(V ) OP(V )(1),

and so h−1(P(V/W )) is the zero locus of the pullback of this morphism, i.e., the zero locus of the composition

W ⊗OB V ⊗OB h∗OP(V )(1) = L .

Similarly, E is the zero locus of

g∗OP(W )(1) g∗E L .
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These two morphisms are not exactly the same, but there is a commutative diagram

W ⊗OB V ⊗OB L

g∗OP(W )(1) g∗E L

Since the left vertical map is surjective, we see that the two horizontal compositions have the same zero loci,
which implies Claim 5.4.

Proposition 5.6. h is the blowup of P(V ) along the subspace P(V/W ) with exceptional divisor E. Moreover,
g ◦ h−1 is the projection map ϕ : P(V ) r P(V/W )→ P(W ).

Proof. We have the commutative diagram

P(V )

B = P(E ) P(V )×P(W )

P(W )

i

h

g

A point x ∈ B is given by the following data:
• a point y = g(x) in P(W ), i.e., a nonzero map y : W → k; and
• a nonzero map

E(y) k

OP(W )(1)(y) ⊕ V/W

W/ ker(y)⊕ V/W

The point h(x) corresponds to a nonzero morphism

W ⊕ V/W = V k

W/ ker(y)⊕ V/W

proj x

Exercise 5.7. This implies that as a subset of P(V )×P(W ), B is the graph of the rational map ϕ. (To
check this, recall that ϕ takes a point V → k to the composition W → V → k.)

In particular, the map h is an isomorphism over P(V ) r P(V/W ). Thus, by the universal property of the
blowup (see Remark 5.8 below), we must have that h factors through BlP(V/W ) P(V ), i.e., we have

B BlP(V/W ) P(V ) P(V )

F = exceptional divisor

α

⊆

Then, Claim 5.4 implies that α∗F = E, and that α is an isomorphism over the complement of F . This implies
that α has no exceptional divisor, and so α is an isomorphism.
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Remark 5.8. Recall that the universal property of the blowup [Har77, Ch. II, Prop. 7.14] says the following:
If Z ⊂ X is a closed subscheme of a noetherian scheme X and β : Y → X is any morphism such that β−1(Z)
is an effective Cartier divisor, then there is a unique morphism Y → BlZ X making the diagram

Y BlZ X

X
β

commute.

Remark 5.9. Let a splitting V ∼= W ⊕ V/W be given as before, and let Q ∈ P(W ). Then, g−1(Q) ⊆ P(V )
is the linear span of P(V/W ) and Q by the geometric description of the projection map ϕ, and consider
E∩g−1(Q). This closed subscheme is identified with P(V/W )×{Q} under the identification P(V/W )×P(W ).
We can fit these objects into the diagram below:

P(V/W )×P(W ) E B

P(V/W )× {Q} E ∩ g−1(Q) g−1(Q) P(W )

P(W ) P(V )

∼

h

g

∼

ϕ

Remark 5.10. Suppose Λ1,Λ2 ⊆ P(V ) are two linear subspaces such that

Λ1 ∩ Λ2 = ∅ and dim Λ1 + dim Λ2 = n− 1.

Then, denoting Λ1 = P(V/W1) and Λ2 = P(V/W2), we have

W1 +W2 = V and dimW1 + dimW2 = dimV.

This implies that V = W1 ⊕W2, and so we can apply the previous discussion.

5.1.2 Quadric bundles

We also need some facts about quadric bundles before proving Theorem 5.1.

Definition 5.11. A morphism of varieties f : X → S is a quadric bundle if there exists a factorization

X Pn × S

S

f

where n ≥ 2, such that f−1(s) ↪→ Pn
k(s) is a quadric that is smooth for general s. A quadric bundle is a conic

bundle if n = 2. A rational quadric bundle is a rational map ϕ : X 99K S such that there exist open subsets
U ⊆ X,V ⊆ S such that ϕ is represented by a quadric bundle U → V .

Remark 5.12. Given a morphism

X Pn × S

S

f

we have that f is a rational quadric bundle if and only if the generic fiber

Xη Spec k(S)

Spec k(S)

is a smooth quadric. Moreover, smoothness is automatic if X itself is smooth and char(k) = 0.
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Proposition 5.13. Let f : X 99K S be a rational quadric bundle and Y ↪→ X a subvariety. Then,
(1) If f induces a birational map Y 99K S and S is rational, then X is rational.
(2) If Y 99K S is dominant, and Y is unirational, then X is unirational.

The hypothesis in (1) says that there is a rational section; the hypothesis in (2) (if dimY = dimS) says
that there is a multisection.

Proof. By replacing X,S with open subsets, we may assume that f is a quadric bundle.
For (1), we have the cartesian square below, where Xη is a smooth quadric in Pn

k(S):

Spec k(Y ) Y

Xη X

Spec k(S) S

'
f

The birational map Y 99K S induces the isomorphism on spectra of their generic points, and so by using the
universal property of the fiber product, we obtain a k(S)-rational point on Xη. Thus, Xη is rational over
k(S), i.e., birational to some Pm

k(S). We can therefore find some open subset U ⊆ S such that f−1(U) is
birational to U ×Pm

k . But U is rational by assumption, since it is an open subset of S, and so X is rational.
For (2), we know that Y is unirational, so there exists a dominant morphism g : Z → Y , where Z is

rational. Now consider the diagram below:

Z ×Pn S ×Pn

X ×S Z X

Z Y S

h f

g

dominant

i◦g

i

f |Y

The generic fiber of h is the base change of Xη via k(S) ↪→ k(Z), and so (X ×S Z)η is a smooth quadric over
k(Z). Thus, after replacing Z by an open subset, we may assume that X ×S Z is a variety. The map i ◦ g
gives a section of h, by the same argument as in (1), and since Z is rational, (1) implies that X ×S Z is
rational. Since Z → S is dominant, we have that X ×S Z → X is dominant, and so X is unirational.

5.1.3 Proof of Theorem 5.1

We can now prove our main goal from today.

Proof of Theorem 5.1. Let L ⊂ X be the given line in X, where X is a smooth cubic hypersurface in Pn.
Choose Λ ⊂ Pn which is a linear subspace of dimension n−2 such that Λ∩L = ∅, and consider the projection

f : Pn r L −→ Λ,

which induces a morphism g : X r L→ Λ. As before, denote B = BlL Pn; we have an induced morphism

f̃ : B −→ Λ.

We also denote X̃ ' BlLX to be the strict transform of X in B, in which case we have an induced morphism

g̃ : X̃ −→ Λ.
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These morphisms fit into the following commutative diagram:

E B

Λ

Y = E ∩ X̃ X̃

L Pn

L X

f̃

g̃

Since Y = E ∩ X̃ is a projective bundle over L, we know that Y is smooth and rational.
Next time, we will show that g̃ : X̃ → Λ is a rational conic bundle, and that we have a diagram

Y X̃

Λ
dominant

g̃

and so Proposition 5.13(2) implies X̃ is unirational, hence X is also unirational.

Next, we will consider when hypersurfaces contain projective linear subspaces of larger dimension. We
will then prove Castelnuovo’s criterion, and then introduce more sophisticated tools.

6 January 24

6.1 Unirationality of cubic hypersurfaces (continued)

6.1.1 Proof of Theorem 5.1 (continued)

We want to finish the proof from last time.
Recall our setup: char(k) = 0, and X ⊂ Pn is a smooth cubic hypersurface containing a line Λ ⊂ X.

We wanted to show that X is unirational. This implies over any algebraically closed field, a smooth cubic
hypersurface is unirational; for induction reasons, however, we will need this more general formulation.

Proof of Theorem 5.1. Recall P(W ) ⊂ Pn is a (n − 2)-dimensional projective linear subspace such that
Λ ∩P(W ) = ∅. We considered the projection with center Λ:

ϕ : Pn r Λ −→ P(W ).

We saw last time that ϕ lifts to a morphism f : P̃n → P(W ), where π : P̃n → Pn is the blowup along Λ, and
so we have the following commutative diagram:

E ∩ X̃ X̃

E P̃n

Λ X

Λ Pn P(W )

π

ϕ

f
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We also showed (in Remarks 5.9 and 5.10) that i = (f, π) : P̃n ↪→ Pn ×P(W ) realizes P̃n as a sub-projective
bundle of Pn ×P(W ) over P(W ). Thus, for Q ∈ P(W ), we have the diagram

f−1(Q) Pn × {Q}
E ∩Pn × {Q}

〈Λ, Q〉 Pn

Λ

i

∼ ∼

∼

Let X̃ be the strict transform of X on P̃n, let Y = X̃ ∩ E, and consider the inclusion

Y X̃ ' BlΛX

which identifies Y as the exceptional divisor of the blowup of X along Λ. Then, both X̃ and Y are smooth
and irreducible, and since Y is a projective bundle over Λ, it is rational.

Let g = f |X̃ : X̃ → P(W ). We claim that this is a rational conic bundle. To prove this, it suffices to

check that it becomes a rational conic bundle after replacing k with k. Since we are in characteristic zero,
we have that for general Q ∈ P(W ), the fiber g−1(Q) is smooth, and is contained in f−1(Q) ' P2. Thus,
g−1(Q) is connected (it is a smooth plane curve), and we claim that it is a conic. Note that for general Q, the
intersection X ∩ 〈Λ, Q〉 of X and the linear span of Λ and Q is not completely contained in Λ, which implies

g−1(Q) = g−1(Q) r E.

Now X ∩ 〈Λ, Q〉 is a curve of degree 3 containing the line Λ that is also embedded in 〈Λ, Q〉 ' P2, and so

g−1(Q) ⊆ 〈Λ, Q〉 is a smooth conic. This shows g : X̃ → P(W ) is a rational conic bundle. Now we have a
commutative diagram

Y X̃

P(W )

g|Y
g

where g|Y is a 2-to-1 finite map: for Q ∈ P(W ) general,

g−1(Q) ∩ Y ∼= Λ ∩ (〈Λ, Q〉 ∩X) = two points.

Since Y is rational, Proposition 5.13(2) implies X̃ is unirational, so X is unirational.

This finishes the story about cubic hypersurfaces: all cubic hypersurfaces (over an algebraically closed
field) are unirational, and some are rational in even dimension. It is also known that general cubic threefolds
are not rational; this relies on Hodge theory.

We next want to discuss what happens for higher degree hypersurfaces in projective space. For example,
rationality of quartic threefolds in P4 is completely open. We will see, however, that if the degree is fixed
and the dimension of the ambient space is large enough, then similar arguments from before will still allow us
to deduce (uni)rationality of these hypersurfaces.

Before this, however, we need to talk more about incidence correspondences; in particular, we want to
prove the promised results about tangent spaces. This will allow us to answer the following:

Question 6.1. What is the necessary and sufficient condition for any hypersurface to contain an r-dimensional
linear projective space?

6.2 More on incidence correspondences

Let Pn be fixed, and let r < n. Let G be the Grassmannian parametrizing r-dimensional linear subspaces of
Pn. This is a smooth, irreducible variety of dimension (r + 1)(n− r). Let d ≥ 2, and let P be the projective
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space parametrizing hypersurfaces of degree d in Pn = P(V ). If V = H0(Pn,O(1)), then Pn = P(Symd(V )∗)
has dimension

(
n+d
n

)
− 1. Consider the following incidence correspondence:

I =
{

(X,Λ) ∈ P×G
∣∣ Λ ⊆ X

}
↪→ P×G

P G

p q

Recall that we may find equations for I as a subscheme of P×G as follows. Let V ⊆ G be the open affine
chart consisting of linear subspaces generated by the rows of the matrix

1 0 · · · 0 a0,r+1 · · · a0n

0 1 · · · 0 a1,r+1 · · · a1n

...
...

. . .
...

...
. . .

...
0 0 · · · 1 ar,r+1 · · · arn


If X is defined by fc =

∑
cαx

α = 0, where c = (cα) and α = (α0, . . . , αn) satisfies
∑
αi = d, then

Λ ⊆ (fc = 0) ⇐⇒ fc(s0L0 + · · ·+ srLr) = 0 in k[s0, . . . , sr].

Explicitly, we may write the equation on the right-hand side as

fc(s0L0 + · · ·+ srLr) = fc

(
s0, . . . , sr,

r∑
i=0

ai,r+1si, . . . ,

r∑
i=0

ai,nsi

)
=
∑
β

Fβ(c, a)sβ

where β = (β0, . . . , βr) and
∑
βi = d. Then, the ideal (Fβ(c, a))β defines the subscheme I ∩ (P×V ) in P×V .

Proposition 6.2. The second projection q : I → G realizes I as a projective subbundle of P×G of codimension(
r+d
r

)
over G. In particular, I is smooth and irreducible, and

dim I = (r + 1)(n− r) +

(
n+ d

n

)
−
(
r + d

r

)
− 1.

Proof. Since all coordinate charts of G look like that of the open subset V ⊆ G (after change of coordinates),
it suffices to check that over V , we have that I ↪→ P × V is cut out by

(
d+r
d

)
equations, linear in the c

variables. Moreover, for each Λ ∈ G, we must show that the fiber q−1(Λ) is a projective space in P of the right
codimension. To see this, choose coordinates such that Λ = (xr+1 = · · · = xn = 0), so that Λ ⊂ V (

∑
cαx

α)
if and only if the coefficients in fc =

∑
cαx

α of the monomials in k[x0, . . . , xr] of degree d are all zero.

Now we want to study what happens on the level of tangent spaces.

Definition 6.3. If X ⊆ Pn is a hypersurface of degree d, then the Fano scheme of r-dimensional linear
subspaces on X is p−1([X]) ↪→ G, where p−1 denotes the scheme-theoretic fiber. We denote the Fano scheme
by Fr(X).

If K/k is a field extension, then the K-valued points of Fr(X) are in bijection with the K-linear subspaces
on XK . We may also think of Fr(X) as the Hilbert scheme parametrizing r-dimensional linear subspaces on
X, which we note have the same Hilbert polynomial. Note that in principle, the Fano scheme might have
non-reduced structure.

Goal 6.4.
(1) Describe T[Λ]Fr(X).
(2) Give a sufficient condition for p to be smooth at ([X], [Λ]), so that in particular, Fr(X) is smooth at [Λ].
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Both can be deduced from properties of Hilbert schemes, but we want to give a direct proof.
Fix (X,Λ) ∈ I. Choose linear generators `1, . . . , `n−r for the ideal of Λ in Pn, and choose an equation

f for X. Since Λ ⊂ X, we can write f =
∑n−r
i=1 `ifi. Recall Pn = P(V ) and f ∈ Symd(V ), so that

fi ∈ Symd−1(V ) = H0(Pn,O(d− 1)). Let gi = fi|Λ ∈ H0(Λ,OΛ(d− 1)). Note that the gi’s do not depend on
the choice of fi’s, since if

∑
`ifi =

∑
`if
′
i , then fi − f ′i ∈ (`1, . . . , `n−r) because `1, . . . , `n−r form a regular

sequence.
Now consider the map

Φ = ΦX,Λ : H0
(
Λ,OΛ(1)

)
⊗ kn−r H0

(
Λ,OΛ(d)

)
u ⊗ ej ugj

where e1, . . . , en−r is a basis for kn−r.

Exercise 6.5. Show that if we replace kn−r by H0(Pn,IΛ/Pn(1))∗ where ej 7→ `∗j , then the resulting map
only depends on the choice of f .

Theorem 6.6.
(i) TΛFr(X) ' ker(Φ).

(ii) If Φ is surjective, then p : I → P is smooth at (X,Λ). In particular, Fr(X) is smooth at Λ.

Proof. For (i), we have

fc

(
x1, . . . , xr,

r∑
i=0

ai,r+1xi, . . . ,

r∑
i=0

ai,nxi

)
=

∑
β=(β0,...,βr)

Fβ(c, a)xβ . (6.1)

Choose coordinates such that Λ = (aij = 0). We will need to understand the partial derivatives of Fβ in
variables ai,j . Differentiating (6.1) with respect to ai,j and comparing at (c, 0) gives

∂Fβ
∂ai,j

(c, 0) = coefficient of xi
∂fc
∂xj

(x0, . . . , xr, 0, . . . , 0) in xβ .

Choosing coordinates such that Λ = (xr+1 = · · · = xr = 0), and f =
∑n−r
i=1 xr+ifi, we have

xi
∂fc
∂xj

(x0, . . . , xr, 0, . . . , 0) = xifj−r(x0, . . . , xr, 0, . . . , 0) = xigj−r(x0, . . . , xr).

Recall that

TΛFr(X) =

{
(ui,j)0≤i≤r

r+1≤j≤n

∣∣∣∣ ∑
i,j

∂Fβ
∂ai,j

(c, 0) · ui,j = 0 ∀β
}
.

This condition is equivalent to ∑
i,j

ui,jxigj−r(x1, . . . , xr) = 0.

Now if αj =
∑
i ui,jxj , then

(ui,j) ∈ TΛFr(X) ⇐⇒
∑
j

αjgj−r = 0 ⇐⇒ (αr+1, . . . , αn) ∈ ker(Φ).

For (ii), we have that P is smooth at (X,Λ) if and only if the map dpX,Λ in the diagram

T(X,Λ)I TXP

TXP× TΛG

dpX,Λ

pr1

is surjective. We will need the following linear algebraic lemma:
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Lemma 6.7. A linear map ϕ : km ⊕ kn → km given by a matrix A ∈Mm,m+n(k) induces a surjective map

ker(ϕ) km ⊕ kn

km

if and only if the first m columns of A are in the linear span of the last n columns of A. In particular,
ker(ϕ)→ km is surjective if the last n columns of A span km.

Exercise 6.8. Prove this.

Lemma 6.7 implies dp is surjective at P if
∑
β
∂Fβ
∂aij

(c, 0)xβ is spanned by the space of degree d homogeneous

polynomials in k[x0, . . . , xr]. This latter condition is equivalent to xigj−r(x0, . . . , xr) spanning the space
H0(Λ,OΛ(d)). This holds if and only if Φ is surjective.

We now connect this to our previous description using normal bundles:

Recall 6.9. If Λ = (xr+1 = · · · = xn = 0) and f =
∑
xifi, gi = fi|Λ, then we have an exact sequence

0 −→ NΛ/X −→ NΛ/Pn −→ NX/Pn |X −→ 0,

where we assume Λ ⊂ Xsm. The surjection here is the map

n⊕
i=r+1

OΛ(1)
(gr+1,...,gn)−−−−−−−−→ OX(d).

Taking global sections, we obtain the map

H0(NΛ/Pn) −→ H0(NX/Pn |X),

which is the map Φ from before. Then, ker Φ = H0(NΛ/X) and coker Φ = H1(NΛ/X) since H1(Λ,OΛ(1)) = 0.

Next time, we will use Theorem 6.6 to determine when p is surjective. There is a näıve guess using a
diumension count; this condition will end up being sufficient, but the proof is a bit subtle. We will then talk
about low degree hypersurfaces in projective space.

7 January 26

7.1 Comments on Theorem 5.1

In our discussion of the projection away from a line on a cubic hypersurface, we needed to check that the
residual intersection of a plane passing through the given line was a conic, resulting in a conic bundle over
what we called P(W ) (see §6.1.1). However, a priori we must check that the intersection of the plane and
the cubic is not of multiplicity > 1 along the line. This can be done in local coordinates, and we will do the
calculation next time when we discuss unirationality of general hypersurfaces in Pn of degree d� n.

Moreover, our proof in §6.1.1 actually tells us the degree of the dominant rational map from projective
space:

Exercise 7.1. Let X be a cubic hypersuface in Pn which contains a line. Show that our proof from last
time that X is unirational in fact shows that there exists a degree 2 rational dominant map Pn−1 99K X.
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7.2 Varieties containing linear subspaces

Recall 7.2. We had a smoothness criterion for the projection morphism from an incidence correspondence.
Suppose X ⊂ Pn is a hypersurface of degree d, Λ ⊂ Pn is an r-dimensional linear subspace, and choose
generators `1, . . . , `n−r for H0(IΛ(1)). If f is the equation of X, then we can write f =

∑n−r
i=1 `ifi where

deg fi = d− 1. Writing gi = fi|Λ ∈ H0(Λ,OΛ(d− 1)), the linear span of the gi is independent of choices. Let

Φ: H0
(
Λ,OΛ(1)

)
⊗ kn−r H0

(
Λ,OΛ(d)

)
u ⊗ ej ugj

We showed the following:

Theorem 6.6. Consider the incidence correspondence

I =
{

(X,Λ) ∈ P×G
∣∣ Λ ⊆ X

}

P G

p q

where P is the projective space parametrizing degree d hypersurfaces in Pn, and G is the Grassmannian of
r-dimensional linear subspaces of Pn. Then;

(i) ker(Φ) ' T([X],[Λ])p
−1([X]).

(ii) If Φ is surjective, then p is smooth at ([X], [Λ]).

Note 7.3. We want to determine when p is dominant, that is, under what numerical conditions a general
degree d hypersurface always contain a linear subspace. It is tricky to determine the image of p in general.

Remark 7.4. The incidence correspondence I can be defined over any field; this definition is also compatible
with ground field extension. In particular, the fact that I → P is a projective bundle, as well as the
smoothness criterion in Theorem 6.6 apply over any ground field. We will need to use this later when we
discuss unirationality again later.

One restriction for p to be surjective is that dim I ≥ dim P:

Recall 7.5 (Proposition 6.2). We have dim I = dim P + (r+ 1)(n− r)−
(
d+r
d

)
, so dim I ≥ dim P if and only

if (r + 1)(n− r) ≥
(
d+r
d

)
.

This condition suffices for p to be surjective.

Theorem 7.6. Given r ≤ n and d ≥ 2, the morphism p is surjective if and only if
(1) (r + 1)(n− r) ≥

(
d+r
d

)
if d ≥ 3; and

(2) 2r + 1 ≤ n if d = 2.

Proof. By the dimension count in Proposition 6.2, the condition in (1) holds if p is surjective. On the other
hand, if X is a smooth hypersurface of degree d ≥ 2 that contains an r-dimensional subspace, then 2r+ 1 ≤ n,
and so the condition in (2) holds if p is surjective as well.

For the converse, we may assume that k is algebraically closed by replacing k with k: fibers over a point
cannot become nonempty after base change. Moreover, it suffices to show p is dominant, since p is proper.

We first consider (2). We restrict to the case when char(k) 6= 2, and leave the char(k) = 2 case as an
exercise. We want to show that every smooth quadric contains an r-dimensional plane if r ≤ n−r

2 . By the
classification of quadratic forms (or completing the square), we can write f =

∑
x2
i . By changing coordinates

again, we may assume that f is one of the following:

Case 1. f =

k∑
i=0

x2ix2i+1 if n = 2k + 1.

Case 2. f = x2
2k +

k−1∑
i=0

x2ix2i+1 if n = 2k.
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Now consider
L = (x0 = x2 = · · · = x2k = 0) ⊆ (f = 0).

Then, dimL = n− (k + 1), and you can check that n− (k + 1) ≥ r since r ≤ n−1
2 .

Now consider when d ≥ 3, and suppose (r+ 1)(n− r) ≥
(
d+r
d

)
. It suffices to find a pair ([X], [Λ]) ∈ I such

that p is smooth at this point, since this implies the map p is dominant. By Theorem 6.6(ii), it moreover
suffices to show that the map Φ is surjective. Note that for any subspace of H0(Λ,OΛ(d− 1)) generated by
g1, . . . , gn−r, we have the commutative diagram

Φ: H0(OΛ(1))⊗ kn−r H0(Λ,OΛ(d))

H0(Λ,OΛ(1))⊗ 〈g1, . . . , gn−r〉
ψ

and so by commutativity, it suffices to show that there is some choice of gi that makes the map ψ surjective,
since lifting the gi to f1, . . . , fn−r ∈ H0(Pn,OPn(d− 1)) would define a hypersurface X = (f =

∑
`ifi = 0)

such that the map Φ is surjective.
We translate this into the language of linear algebra. Let W = H0(Λ,OΛ(1)). We want to show that

there exists a subspace U ⊆ Sd−1(W ) generated by n− r elements such that the multiplication map

W ⊗ U −→ Sd(W )

surjective. This is clearly okay if n − r ≥ dimSd−1(W ); otherwise, we are done by Lemma 7.7, which we
prove below.

Lemma 7.7. Let k = k, and let W be a k-vector space of dimension r + 1. If d ≥ 3 and ` ≤ dimSd−1(W )
are such that `(r + 1) ≥

(
r+d
d

)
, then there exists U ⊆ Sd−1(W ) of dimension ` such that the map

W ⊗ U −→ Sd(W ) (7.1)

is surjective.

Proof. Note first that given U ⊆ Sd−1(W ), the surjectivity of (7.1) fails if and only if there exists ϕ : Sd(W )→
k that vanishes on the image of W ⊗ U .

Suppose now that ϕ is fixed. This map ϕ gives a map

W ⊗ Sd−1(W ) −→ Sd(W )
ϕ−→ k

by composition. Giving such a morphism is equivalent to giving a morphism

W
αϕ−→ (Sd−1(W ))∗.

Given U ⊆ Sd−1(W ), the map ϕ vanishes on the image of W ⊗ U if and only if the composition

W (Sd−1(W ))∗

U∗

αϕ

is zero, which is equivalent to saying that U∗ is a rank ` quotient of coker(αϕ). Now consider Wϕ = ker(αϕ).
Then, by definition, ϕ vanishes on the image of Wϕ ⊗ Sd−1(W ). The exact sequence

Wϕ ⊗ Sd−1(W ) −→ Sd(W ) −→ Sd(W/Wϕ) −→ 0,

implies that ϕ induces a nonzero map Sd(W/Wϕ)→ k.
We will translate this into the langauge of algebraic geometry: the set of subspaces U that do not satisfy

the condition in the theorem is the union of images of algebraic varieties Zm, where each Zm corresponds to
those ϕ such that dimkWϕ = m.
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Fix m such that 0 ≤ m ≤ r + 1 = dimW . Let A = Am be the Grasmannian variety parametrizing
m-dimensional subspaces of W . On A, we have the short exact sequence

0 −→ S −→W ⊗OA −→ Q −→ 0,

where S is the tautological subbundle. On A, consider B = Bm = PA(Sd(Q)). A point in B is given by a
subspace W ′ ↪→W and a nonzero map ϕ : Sd(W/W ′)→ k that factors ϕ:

Sd(W )

Sd(W/W ′) k

ϕ

ϕ

On B, we have the morphism of locally free sheaves

α : W ⊗OB −→ (Sd−1(W ))∗ ⊗OB ,

which over a point (W ′, ϕ) is given by αϕ. Inside B, let B′ be the open subset where α has rank (r + 1)−m.
Suppose B′ 6= ∅; when it is empty, we are okay. Otherwise, on B′, ker(α) is the pullback of S from the
Grassmannian, and coker(α) is locally free of rank

(
r+d−1
d−1

)
− (r + 1−m).

Let C = Cm be the Grassmannian bundle on B′ parametrizing rank ` quotients of coker(α), and let G be
the Grassmannian variety parametrizing `-dimensional subspaces of Sd−1(W ), which are the same thing as
`-dimensional quotients of (Sd−1(W ))∗. There is a morphism

Cm −→ G(
W ′, ϕ, coker(α)

ρ
� R

)
7−→

(
Sd−1(W )∗ → coker(α)(W ′,ϕ)

ρ→ R(W ′,ϕ)

)
where R is a rank ` quotient of coker(α), and the subscripts on the right-hand side denote fibers of the vector
bundles over the point corresponding to (W ′, ϕ) in B′.

By the discussion at the beginning of the proof, we want to show that the complement of the union of the
images of the Cm is nonempty. Hence it is enough to show that dim(Cm) < dim(G) for all m. Note

dim(G) = `

((
r + d− 1

d− 1

)
− `
)

dim(Cm) = m(r + 1−m) +

(
d+ r −m

d

)
− 1 + `

((
r + d− 1

d− 1

)
− (r + 1−m)− `

)
.

Comparing the two, we see that dim(Cm) < dim(G) for all 0 ≤ m ≤ r + 1 if and only if(
d+ r −m

d

)
≤ (`−m)(r + 1−m) (7.2)

for 0 ≤ m ≤ r + 1. Note that for m = r + 1, both sides are zero, and the inequality for m = 0 is exactly the
inequality in the hypothesis of the Lemma.

Exercise 7.8. If d ≥ 3, then the condition for m = 0 implies the condition for m = 1.

By replacing m by r −m in the statement of Exercise 7.8, we see that the inequality (7.2) for m implies
the same inequality (7.2) for m+ 1. Thus, (7.2) holds for all 0 ≤ m ≤ r + 1.

We note that this an interesting example of an algebro-geometric proof of a purely linear algebraic
statement. We also note that the assumption that k is algebraically closed is used to show that the
complement of a proper closed subvariety contains a k-valued point; this only requires that k is infinite.
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7.3 Unirationality of hypersurfaces of higher degree

We now want to show the statement for unirationality of higher degree hypersurfaces that we promised before.

Goal 7.9. Given any d ≥ 4, if n� d, a general hypersurface of degree d on Pn is unirational.

The idea is to use the same approach as for the case of cubics. Given a hypersurface X ⊆ Pn containing a
suitable linear subspace Λ, projecting away from Λ gives a rational map X 99K P(W ). As before, we blowup

X along Λ to get an actual morphism X̃ = BlΛX
g→ P(W ), where the exceptional divisor of X̃ → X is Y .

Now an easy computation shows that the generic fiber of g is a hypersurface of degree d− 1 in Pn
k(P(W )). By

induction, we would then be done, as long as we can find a linear subspace in the generic fiber of g. This will
be possible if we are in a situation where the general fibers of g|Y are hypersurfaces of degree d− 1 in Λ. This
will allow us to get a linear subspace on the generic fiber of Y , after a possible (controllable) field extension.

Suppose X ⊂ Pn
k is a hypersurface of degree d, and let Λ ⊂ X be an r-dimensional linear subspace, which is

defined by (`1, . . . , `n−r). Then, we can writeX = (f = 0), where f =
∑
`ifi and gi = fi|Λ ∈ H0(Λ,OΛ(d−1)).

We will say that (X,Λ) satisfies condition (∗) if g1, . . . , gn−r span H0(Λ,OΛ(d− 1)). This is a very strong
condition: it implies smoothness of the projection p at that point ([X], [Λ]) by Theorem 6.6(ii). In particular,
condition (∗) requires n− r to be very large:(

r + 1

d− 1

)
≤ n− r.

Definition 7.10. For d ≥ 3, we define nd recursively such that

n3 = 3 nd = nd−1 +

(
nd−1 + 1

d− 1

)
.

Theorem 7.11. If k = k and X ⊆ Pn is a general hypersurface of degree d in an n-dimensional projective
space where n ≥ nd, then X is unirational.

This will finish the study of unirationality; we will start Castelnuovo’s criterion afterward.

8 January 31

There is no class next week.

8.1 General statements about (uni)rationality

We start with some general remarks that we probably should have stated when we defined (uni)rationality.

Remarks 8.1.
(i) If X/k is a rational variety, and K/k is a field extension, then XK = X ×Spec k SpecK is irreducible

and rational (with the reduced structure).

Proof. There is an open subset U ⊆ X such that there is an open immersion U ↪→ An
k for some n.

Then, UK ↪→ An
K is also an open immersion, and since UK is irreducible and UK ↪→ XK is dominant,

we see that XK is irreducible and rational.

(ii) If X/k is a unirational variety, then XK is irreducible and unirational (with the reduced structure).

Proof. If there exists a dominant map Y → X, where Y is rational over k, then its base change
YK → XK is dominant. This scheme YK is irreducible and rational by (i), so XK is irreducible and
unirational.

We also pick out the following statement from our previous statements about quadric bundles:

Proposition 8.2. Let f : X → Y be a dominant morphism of varieties over k.
(1) If Y is rational and the generic fiber Xη is rational over k(Y ), then Y is X is rational.
(2) If Y is unirational and the generic fiber Xη is unirational over k(Y ), then X is unirational.
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Thus, to get information about the variety Y , you just need information about the total space of a
fibration (e.g., a quadric bundle) and the generic fiber of the fibration. Note here that the generic fiber is
always reduced, but when we ask for it to be rational, we are also demanding that it is irreducible.

Proof. Consider the following cartesian diagram:

Xη X

Spec k(Y ) Y

f

Xη is rational, so Xη is birational to An
k(η), for some n. Thus, there exists V ⊆ Y open such that f−1(V )

is birational to V ×An. But since V is birational to some Am, we see that f−1(V ) (and therefore X) is
birational to Am+n.

Now suppose Y is unirational, so there exists a dominant morphism Z → Y where Z is a rational variety.
Consider the following commutative diagram with cartesian squares:

(Xη)k(Z) X ×Y Z X

Spec k(Z) Z Y

y y
f

Now Xη is unirational, and so the extension (Xη)k(Z) is irreducible and unirational by Remark 8.1(ii). Let
W be the closure of the image of (Xη)k(Z) in X ×Y Z. Then, (Xη)k(Z) is the generic fiber of W → Z. Since
it is unirational, there exists a dominant morphism V → (Xη)k(Z), where V is rational over k(Z). Thus,
there exists Z0 ⊆ Z open and a dominant rational map Z0 ×An → X ×Y Z0 such that Z0 ×An dominates
the irreducible component W of X ×Y Z, which dominates X. Rationality of Z0 implies we get a dominant
rational map An+m 99K X.

8.2 Unirationality of hypersurfaces of higher degree (continued)

We are now ready to prove unirationality of hypersurfaces of degree d in n-dimensional projective space,
where n� d.

Recall 8.3. Suppose X ⊆ Pn is a hypersurface, and suppose Λ ⊂ X is a linear subspace. We want a
condition that makes an inductive argument work.

Let Λ = (`1 = · · · = `n−r = 0), X = (f = 0) where f =
∑n−r
i=1 `ifi, and gi = fi|Λ ∈ H0(Λ,OΛ(d − 1)).

We will say that (X,Λ) satisfies (∗) if g1, . . . , gn−r span H0(Λ,OΛ(d− 1)).

Remarks 8.4.
(1) There exists U ⊆ I, where I is the incidence correspondence, such that for all K/k, and a K-valued

point (XK ,ΛK) of I, we have that (XK ,ΛK) ∈ U if and only if (XK ,ΛK) satisfies (∗), since the
condition is open. This set U is nonempty if and only if n− r ≥

(
r+d−1
d−1

)
.

(2) Suppose that L ⊂ Pn is another linear subspace such that
• Λ ⊂ L;
• L 6⊆ X.

Put Y = X ∩ L. Then, (X,Λ) satisfies (∗) if and only if (Y,Λ) satisfies (∗). This follows since Y ↪→ L
is also cut out by f , and so the linear spans of the gi’s for the two pairs are the same.

Definition 8.5. We define inductively the numbers n(d) for d ≥ 3:

n(3) = 3 n(d) = n(d− 1) +

(
nd−1 + 1

d− 1

)
.

Convention: n(2) = 1.
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Theorem 8.6 (Morin [Mor42]). Suppose our ground field k is of characteristic 0. If d ≥ 3 and X ↪→ Pn is
a hypersurface of degree d containing Λ, which is a linear subspace of dimension n(d− 1) such that (X,Λ)
satisfies condition (∗) and n ≥ n(d), then X is unirational.

Corollary 8.7. If k = k and char(k) = 0, then a general hypersurface of degree d in Pn with n ≥ n(d) is
unirational.

Proof of Corollary 8.7. Let U be the open subset of the incidence correspondence from Remark 8.4(1) with
r = n(d− 1). Then, U is nonempty since n ≥ n(d), and moreover, the projection p : I → P is smooth at all
points of U (since (∗) implies the hypothesis for Theorem 6.6(ii)). In particular, the map p is dominant.
Thus, a general hypersurface in Pn contains a linear subspace Λ as in Theorem 8.6, hence is unirational.

Note the bound for d = 4 is n(4) = 3 +
(

6
3

)
= 23. It is expected that a general quartic hypersurface in P4

should not be unirational, but it is unclear where they start being unirational.

Remark 8.8. Harris, Mazur, and Pandharipande [HMP98] showed that if n � d, then every smooth
hypersurface of degree d in Pn is unirational. This is closer to the statement we had for smooth cubics.

Proof of Theorem 8.6, following [PS92]. The idea is to project away from Λ and look at the residual inter-
section with X. We will do so by induction on d ≥ 3. If d = 3, every cubic hypersurface in Pn for n ≥ 3 is
unirational if it contains a line by Theorem 5.1.

Now suppose d > 3. We proceed as in the case of cubic hypersurfaces. Let Λ ⊂ X, and choose P(W ) ⊂ Pn

such that Λ ∩P(W ) = ∅ and dim Λ + dim P(W ) = n − 1. We then get a projection Pn 99K P(W ), which

becomes a morphism on the blowup BlΛ Pn = P̃n along Λ. Consider the strict transform X̃ of X, and let

E ⊂ P̃n be the exceptional divisor. Let Y = X̃ ∩ E, so X̃ = BlΛX with exceptional divisor Y , and in
particular, both X̃ and Y are smooth. These spaces fit into the following diagram:

Λ×P(W ) Pn ×P(W )

E P̃n

Y X̃

P(W )

h

g

Claim 8.9. There is an open subset U of P(W ) such that for all field extensions K/k and for all K-valued

points y : SpecK → U such that g−1(y) ⊆ 〈Λ, y〉 ' P
n(d−1)+1
K and h−1(y) ⊆ ΛK are hypersurfaces of degree

d− 1, with g−1(y) smooth.

Proof of Claim. Given any point y : SpecK → P(W ), we first describe XK ∩ 〈ΛK , y〉. Denote r = n(d− 1),
and choose coordinates on Pn such that

Λ = (xr+1 = · · · = xn = 0)

P(W ) = (x0 = · · · = xr = 0)

Then, y corresponds to a point (λr+1, . . . , λn), where λi ∈ K. On 〈ΛK , y〉, we have coordinates a0, . . . , ar, ar+1

such that Λ = (ar+1 = 0) and

XK ∩ 〈ΛK , y〉 = (f(a0, . . . , ar, ar+1λr+1, . . . , ar+1λn) = 0).

Let f =
∑n
i=r+1 xifi. Then,

f(a0, . . . , ar, ar+1λr+1, . . . , ar+1λn) = ar+1 ·
n∑

i=r+1

λifi(· · · )︸ ︷︷ ︸
restriction to Λ is given by∑n

i=r+1 λigi=0
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We conclude that

U =

{
(λr+1, . . . , λn)

∣∣∣∣ n∑
i=r+1

λigi 6= 0

}
⊆ P(W )

is open, and if y is a K-valued point of U , then XK ∩ 〈ΛK , y〉 = ΛK + Z, where Z|ΛK is defined by
∑
λigi.

Since X̃ is smooth and char(k) = 0, we can use generic smoothness so that after replacing U by a smaller
subset, each fiber g−1(y) is smooth for all K-valued points y of U . Since g−1(y) is a hypersurface in Pn,
smooth implies irreducible, and so the hypersurface

g−1(y) = g−1(y) r E = XK ∩ 〈ΛK , y〉r Λ

is of degree d− 1 in Pn(d−1)+1. Also, h−1(y) ⊂ Λ is defined by
∑
λigi = 0, hence is also of degree d− 1.

The idea now is to use Proposition 8.2: it suffices to show that the generic fiber of g : X̃ → P(W ) is
unirational. To do so, we need to find a linear subspace of the generic fiber of the fibration g to apply the
inductive hypothesis. Such a linear subspace may not exist; we need to enlarge the ground field so it does.

Let Ps be the projective space parametrizing hypersurfaces of degree d − 1 in Λ. Letting U be as in
Claim 8.9, we have a morphism q : U → Ps and a cartesian diagram

h−1(U ) H

U Ps

y
h

q

where H is the universal family of hypersurfaces.
We now look at the incidence correspondence V , which consists of those degree d − 1 hypersurfaces

parametrized by U that contain a linear space of dimension n(d− 2); this is the pullback of the incidence
correspondence I from before to U . We therefore have the following commutative diagram:

V I

G

U Ps

y

q

Since I is a projective bundle over G rational, I is rational. The map q is a linear projection map
(λr+1, . . . , λn) 7→

∑
λigi restricted to an open set, and the assumption (∗) implies q is dominant. Since q is a

projection, V is irreducible, reduced, and birational to I × (affine space), and is therefore rational. Note also
that V → U is dominant since I → Ps is dominant.

We now will base change to k(V ), and apply induction. Note that a K-valued point of V is equivalent
to giving a K-valued point z : SpecK → U and a linear subspace of h−1(z). We then have a commutative
diagram with cartesian squares

Y ′ V ×U h−1(U ) h−1(U )

X ′ V ×U g−1(U ) g−1(U )

Spec k(V ) V U

Let L = k(V ); then, X ′ ↪→ Pn
L is a smooth hypersurface of degree d− 1, and Y ′ ↪→ ΛL is a hypersurface of

degree d−1. Thus, Y ′ contians an n(d−2) linear subspace corresponding to the canonical map Spec k(V )→ V .
Moreover, the pair (Y ′,Λ′) satisfies condition (∗) since the map SpecL → V → I is dominant, hence the
generic point of V maps to the generic point of I, and the image of the closed point lies in the open subset U
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in Remark 8.4(1). Remark 8.4(2) implies (X ′,Λ′) satisfies (∗). By induction, we conclude that X ′ ↪→ Pn
L is

unirational. If W is the image of X ′ → V ×U g−1(U ), we still have that X ′ is the generic fiber of the map

W

V = rational

which implies W is unirational by Proposition 8.2(2). Then, since W dominates X, we see X is unirational.

A similar argument works for complete intersections, but is messier to write down.
This completes Part I of the course. We will next prove Castelnuovo’s rationality criterion, and then

present Artin and Mumford’s example of a unirational threefold that is not rational. But first, we will spend
some time with preliminaries on singular cohomology of algebraic varieties and Brauer groups.

9 February 2

As a reminder, there is no class next week.

9.1 Overview of topology of algebraic varieties

We will give a brief review of aspects of algebraic topology that we will use to study algebraic varieties.

9.1.1 Singular (co)homology

We first review some basic things about singular cohomology.
Let A be an abelian group. One can define covariant functors

Hi(−, A) : Top −→ Ab

called homology, and contravariant functors

Hi(−, A) : Top −→ Ab

called cohomology. Thus, if f : X → Y is a continuous map, then there are maps

f∗ : Hi(X,A) −→ Hi(Y,A)

f∗ : Hi(Y,A) −→ Hi(X,A)

More generally, one can define covariant functors

Hi(−,−, A) :

{
pairs of

topological spaces

}
−→ Ab

where a pair of topological spaces is a pair (X,Y ) where Y ⊂ X is a subspace. One can also define
contravariant functors

Hi(−,−, A) :

{
pairs of

topological spaces

}
−→ Ab

The homology and cohomology functors satisfy the following properties:
(1) If X = {∗}, then

H0(X,A) ' A ' H0(X,A),

Hp(X,A) = 0 = Hp(X,A) for p > 0.
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(2) If X =
∐
i∈I Xi, then

Hp(X,A) '
⊕
i∈I

Hp(Xi, A),

Hp(X,A) '
∏
i∈I

Hp(Xi, A).

(3) (Homotopy invariance) If f : X → Y and g : X → Y are homotopic, then f∗ = g∗ and f∗ = g∗.
(4) Given a pair (X,Y ), there are long exact sequences

· · · Hi(Y,A) Hi(X,A) Hi(X,Y,A) Hi−1(Y,A) · · ·

· · · Hi(X,Y,A) Hi(X,A) Hi(Y,A) Hi+1(X,Y,A) · · ·

(5) (Excision) If (X,Y ) is a pair and U ⊂ X is such that U ⊆ Int(Y ), then the inclusion map induces
isomorphisms

Hi(X r U, Y r U,A)
∼−→ Hi(X,Y,A)

Hi(X,Y,A)
∼−→ Hi(X r U, Y r U,A)

(9.1)

Note that for the spaces we are interested in, we will be able to describe singular cohomology in terms of sheaf
cohomology; see Remark 9.12. However, it is difficult to discuss cohomology of pairs using sheaf cohomology,
although it is possible [Bre97, Ch. II, §12].

Easy Properties 9.1. H0(X,A) ' A⊕|π0(X)|, and H0(X,A) ' A
∏
|π0(X)|, where π0(X) denotes the set of

path-connected components of X. In particular, there is a degree map

deg : H0(X,A) −→ A

which is an isomorphism if X is path-connected.

We will now state some theorems we will use relating (co)homology groups with coefficients other than
Z to the integral (co)homology groups. In the sequel, we restrict our coefficient abelian group A to one of
Z,Q,R,C.

Universal Coefficient Theorem 9.2. For every X, we have functorial short exact sequences:

0 Hp(X,Z)⊗Z A Hp(X,A) TorZ1
(
Hp−1(X,Z), A

)
0

0 Ext1
Z

(
Hp−1(X,Z), A

)
Hp(X,A) HomZ

(
Hp(X,Z), A

)
0

which are non-canonically split.

Consequences 9.3.
• Let A = Z in the second short exact sequence. Since Ext1

Z(B,Z) is torsion for any abelian group B,
and HomZ(B,Z) is torsion-free for any abelian group B we have

Hp(X,Z)tors
∼= Ext1

Z

(
Hp−1(X,Z),Z

)
Hp(X,Z)

/
tors

∼= HomZ

(
Hp(X,Z),Z

)
The case when p = 1 is especially important to show that H3

tors is a birational invariant: Let f : X → Y
be a blowup of a subvariety Z. Then, H1(Z,Z) is torsion-free by the discussion above, since H0(Z,Z)
is free. On the other hand, H3(X,Z) has contributions from H3(Y,Z) and also from H1(Z,Z), and so
the torsion part does not change.

• If K is a field containing Q, we have

Hp(X,K) = Hp(X,Z)⊗Z K

Hp(X,K) = Hp(X,K)∗
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Now suppose R is a ring. Then, the abelian group

H∗(X,R) :=
⊕
p≥0

Hp(X,R)

has a multiplicative structure defined by the cup product

Hp(X,R)×Hq(X,R) Hp+q(X,R)

(α, β) α ∪ β

This product is graded and graded-commutative. Also, we have the cap product

Hp(X,R)×Hq(X,R) Hq−p(X,R)

(α, β) α ∩ β

which makes H∗(X,R) :=
⊕

p≥0Hp(X,R) a module over H∗(X,R). Compatibility between the two is given
by the following:

Projection Formula 9.4. If f : X → Y is a continuous map of topological spaces, then

f∗
(
f∗(α) ∩ β

)
= α ∩ f∗(β)

for all α ∈ H∗(Y ) and β ∈ H∗(X).

We now state the Künneth theorem, which describes the (co)homology of a product space in terms of the
(co)homology of its factors:

Künneth formula 9.5. If X,Y are topological spaces, then we have a functorial short exact sequence

0 −→
⊕

p+q=m

(
Hp(X,Z)⊗Hq(Y,Z)

)
−→ Hm(X × Y,Z) −→

⊕
p+q=m−1

TorZ1
(
Hp(X,Z), Hq(Y,Z)

)
−→ 0,

which is non-canonically split.
If all Hp(X,Z) are finitely generated abelian groups, then we have a short exact sequence

0 −→
⊕

p+q=m

(
Hp(X,Z)⊗Hq(Y,Z)

) α−→ Hm(X × Y,Z) −→
⊕

p+q=m−1

TorZ1
(
Hp(X,Z), Hq(X,Z)

)
−→ 0,

which is non-canonically split if also Hi(Y,Z) is finitely generated for all i.

Note 9.6. In the second exact sequence, α(u⊗ v) = pr∗1(u) ∪ pr∗2(v).

The restriction on homology groups in the cohomological Künneth formula are fulfilled in the setting we
will usually be in:

Fact 9.7. If X is a compact manifold, all homology groups Hi(X,Z) are finitely generated.

Poincaré Duality 9.8. Suppose X is a real compact manifold of dimension n. Then, if X has an orientation,
there is a fundamental class µX ∈ Hn(X,Z), such that the map

Hi(X,Z) Hn−i(X,Z)

α α ∩ µX

is an isomorphism.
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Note that there is no duality statement here!
Now we note that the Poincaré duality isomorphism is compatible with the cup and cap products, that is,

the following diagram commutes:

(α, β) deg
(
(α ∪ β) ∩ µX

)
Hi(X,Z) ×Hn−i(X,Z) Z

Hi(X,Z) ×Hi(X,Z) Z

(α, β) deg(α ∩ β)

∼ PD

The Universal Coefficient Theorem 9.2 implies that after killing torsion, we get a perfect pairing

Hi(X,Z)
/

tors × Hn−i(X,Z)
/

tors −→ Z.

In particular, applying −⊗Q gives a perfect pairing

Hi(X,Q)×Hn−i(X,Q) −→ Q.

9.1.2 Complex algebraic varieties

We now specialize to the case of complex algebraic varieties, which is the setting we are interested in.
Let X be a variety (not necessarily irreducible) over C. We have a topological space Xan, which has the

same underlying set as X, but has the “classical” topology. If X is affine, then we have a closed embedding
X ↪→ An

C = Cn, and so we can define

Xan := (X, subspace topology coming from Cn with the Euclidean topology).

This is independent of the embedding.
If X is arbitrary and X =

⋃r
i=1 Ui is an affine cover, then we can glue Uan

i to get Xan. We therefore
obtain a functor {

complex

algebraic varieties

}
−→ Top.

When we talk about the singular (co)homology of X, we really mean that of Xan.

Properties 9.9.
(1) If X is irreducible (more generally, connected), then Xan is connected [SGA1, Exp. XII, Prop. 2.4].
(2) Since X is separated, Xan is Hausdorff [GAGA, Prop. 2].
(3) If X is complete, then Xan is compact [GAGA, Prop. 6]. This holds more generally for morphisms

f : X → Y : if f is proper, then fan is proper in the topological sense [SGA1, Prop. 3.2(v)].
(4) If X is smooth of dimension n, then Xan is a complex manifold of dimension n (e.g., by the Jacobian

criterion). In particular, Xan is a real manifold, and comes with a canonical orientation. [SGA1,
Exp. XII, Prop. 2.1(iv)]

In fact, Xan also carries a sheaf OXan of holomorphic functions on X.

Definition 9.10. If X is affine, and X ↪→ An
C = Cn is a closed embedding, a function on an open subset of

X is holomorphic if locally, it is the restriction of a holomorphic function on an open subset of Cn.
• The definition is independent of the embedding.
• The definition of OXan is given by gluing the corresponding sheaves on affine open subsets.

This makes (Xan,OXan) a locally ringed space, and we have a morphism of locally ringed spaces

(Xan,OXan)
ι−→ (X,OX).
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The map on topological spaces is just the identity, which is continuous since the topology on Xan is finer
than that on X, and is a map on structure sheaves since algebraic functions are analytic by definition. In
particular, for all x ∈ X, there is a morphism

OX,x −→ OXan,x

which induces an isomorphism after completion along their maximal ideals. For example, if x ∈ X is smooth
of dimension n, then OX,x is hard to describe, but OXan,x ' C{z1, . . . , zn} is the ring of convergent power
series; after completion, they are both isomorphic to the ring CJz1, . . . , znK of formal power series.

Theorem 9.11 [GAGA, no 12; SGA1, §4]. If F ∈ Coh(X), then F an := ι∗F is a coherent sheaf of
OXan-modules. If X is projective (or even complete), this gives an equivalence of categories{

coherent sheaves of

OX-modules

}
∼−→

{
coherent sheaves of

OXan-modules

}
which preserves the subcategories of locally free sheaves. In particular, the canonical morphism Pic(X) →
Pic(Xan) ' H1(Xan,O∗Xan) is an isomorphism. Moreover, if F ∈ Coh(X), then we have a canonical
isomorphism

Hi(X,F )
∼−→ Hi(Xan,F an).

One more remark about singular cohomology:

Remark 9.12. Since Xan is a nice topological space, for all abelian groups A, we have a canonical isomorphism

Hi(Xan, A) ' Hi(Xan, A),

where A denotes the constant sheaf with values in A, and the right-hand side denotes sheaf cohomology.

Exponential Sequence If X is any complex algebraic variety, we have a short exact sequence

0 Z OXan O∗Xan 0

ϕ exp(2πiϕ)

of sheaves on Xan. Note the surjectivity of exp(2πi−) comes from the existence of logarithms (locally). The
long exact sequence on cohomology contains the sequence

H1(X,Z) H1(Xan,OXan) Pic(Xan) H2(X,Z)

Pic(X)

c1(−)

where c1(−) is the first Chern class map for line bundles.

Fundamental Class If X is a complete irreducible complex algebraic variety of dimension n, then we
have a class µX ∈ H2n(X,Z). If X is smooth, then X is a real manifold of dimension 2n with canonical
orientation, and in this case µX is the one from before.

If X is not smooth, then by Hironaka’s resolution of singularities [Hir64], we have a proper birational
morphism f : Y → X such that Y is smooth. Then, we can define µX := f∗µY .
• This is independent of choice of f .
• If g : Z → X is a dominant, generically finite morphism of complete varieties, then g∗µZ = deg(f) · µX .
• There is a symmetric multilinear map on X, defined by

H2(X,Z)× · · · ×H2(X,Z)︸ ︷︷ ︸
n times

Z

(α1, . . . , αn) α1 · · ·αn

deg
(
(α1 ∪ · · · ∪ αn) ∩ µX

):=
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This is compatible with intersection numbers of line bundles: if L1, . . . , Ln ∈ Pic(X), then

(L1 · · ·Ln) = c1(L1) · · · c1(Ln) ∈ Z.

• If X is a complete complex algebraic variety, then Xan admits a finite triangulation; moreover, if
Y ↪→ X is a closed subset, then there are compatible triangulations of X and Y [Hir75]. This is useful
to show that the finiteness of Betti numbers for any complex algebraic variety Z.
Recall that the ith Betti number bi(Z) is the rank of Hi(Z,Z). By Nagata compactification, there is an
open embedding Z ↪→ X where X is complete. Then, both X and XrZ have compatible triangulations,
and a suitable long exact sequence can be used to show Hi(Z,Z) is of finite rank for all i.

Next time, we will talk about the Hodge decomposition. We can then discuss Castelnuovo’s criterion for
rationality; we will also talk about a result of Noether and Enriques on when a fibration over a curve is a
(birationally) ruled surface. We will also do some calculations on the cohomology of a blowup.

10 February 14

10.1 Overview of topology of algebraic varieties (continued)

Last time we discussed background on the topology of algebraic varieties. We will need two more things:

Hodge decomposition If X is a smooth projective variety over C, then

Hi(X,Z)⊗Z C = Hi(X,C) =
⊕
p+q=i

Hp,q where Hp,q ' Hq(X,ΩpX). (10.1)

Here, Hq(X,Ωp
X) can be either the algebraic or analytic sheaf cohomology by GAGA (Theorem 9.11).

Moreover, the conjugation on C gives an automorphism on the left-hand side, which induces an automorphism
on the right-hand side mapping Hp,q to Hq,p, i.e., there is a symmetry when you interchange p and q.

Noether’s formula If X is a smooth projective complex surface, then

χ(OX) =
1

12

(
(K2

X) + χtop(X)
)
, (10.2)

where χ(OX) is the sheaf-cohomological Euler characteristic, and where

χtop := b0 − b1 + b2 − b3 + b4

= 2− 2b1 + b2

= 2− 4q + b2

is the topological Euler characteristic. Note the first equality is by Poincaré duality 9.8, and the second is by
the Hodge decomposition (10.1). Noether’s formula (10.2) comes from Hirzebruch–Riemann–Roch [Ful98,
Cor. 15.2.1], which a priori gives the formula

χ(OX) =
1

12

(
(K2

X) + deg c2(TX)
)
,

and we can replace deg c2(TX) with χtop(X); see [Ful98, Ex. 15.2.2]. There is also version in positive
characteristic using `-adic cohomology to define the topological Euler characteristic.

10.2 Rationality and unirationality for surfaces

We will now spend today and next time discussing (uni)rationality for surfaces. This has a different flavor
from previous material, using tools such as the adjunction formula and Riemann–Roch. The goal is the
following:
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Theorem 10.1 (Castelnuovo). If X is a smooth projective surface over k = k, then X is rational if and
only if p2(X) = 0 = q(X), where p2(X) = h0(X,ω⊗2

X ), and the irregularity is q(X) = h1(X,OX).

We will only prove this in characteristic zero; in positive characteristic, see [Băd01, Ch. 13; Mil80, Thm.
3.30]. Note the proof in positive characteristic is more complicated than just replacing singular cohomology
with étale cohomology.

The point of Theorem 10.1 is that for surfaces, there is a nice cohomological criterion for rationality, and
so rationality is fairly well understood, in contrast to the higher-dimensional case.

Remark 10.2. Theorem 10.1 gives a positive answer to Lüroth’s problem for surfaces in characteristic zero:
If X is a smooth projective unirational surface in characteristic zero, then pm(X) = 0 for all m ≥ 1 by
Proposition 1.10, and hi(X,OX) = 0 for all i ≥ 1 by Remark 1.11(3). Theorem 10.1 then implies that X is
rational.

However, we will show next time that the answer to Lüroth’s problem is “no” in positive characteristic:
Shioda produced examples of unirational but non-rational surfaces in positive characteristic [Shi74].

Remark 10.3. Since p2(X) = 0 implies p1(X) = 0, it is tempting to ask if p1(X) = 0 = q(X) implies
rationality. This is false: Enriques surfaces and Godeaux surfaces (the latter of which are of general type)
give counterexamples.

Remark 10.4. Let X be a Del Pezzo surface, i.e., a smooth projective surface such that −KX is ample
(in higher dimensions, these are called Fano varieties). Then, p2(X) = 0, and in characteristic zero,
h1(X,OX) = h1(X,ωX ⊗ ω−1

X ) = 0 by Kodaira vanishing, since ω−1
X is ample and then by applying Kodaira

vanishing. By Theorem 10.1, we deduce that X is rational.
In fact, you do not need characteristic zero here: it is a classical result that if X is a Del Pezzo surface,

then X is either P1 ×P1 or the blowup of P2 at ≤ 8 points [Kol96, §III.3]. At least for the cubic surface,
however, you can compute cohomology directly since it a cubic surface is a divisor in P3, so you do not need
Kodaira vanishing. Thus, Theorem 10.1 gives another proof of the fact that a smooth cubic surface in P3 is
rational.

Today, we will prove some preliminary results toward Castelnuovo’s theorem. We first recall the following
basic facts about geometry on surfaces:
Riemann–Roch on surfaces [Har77, Ch. V, Thm. 1.6] For any divisor D,

χ
(
OX(D)

)
= χ(OX) +

1

2

(
(D2)− (D ·KX)

)
. (10.3)

Adjunction formula [Har77, Ch. V, Exc. 1.3] If D is an irreducible effective divisor on X, then

2pa(D)− 2 = (D2) + (D ·KX). (10.4)

The idea for the proof of Theorem 10.1 is that we will write down a map to P1 whose general fiber is P1,
and then show it is a P1-bundle using the following:

Theorem 10.5 (Noether–Enriques). Let X be a smooth projective surface, and let C be a smooth projective
curve. If f : X → C is a morphism such that f−1(x) ' P1 for some x ∈ C, then there is an open neighborhood
U of x such that f−1(U) ' U ×P1 over U .

This means that X is ruled: X is birational to U ×P1.

Proof. The proof proceeds in three steps.

Step 1. h2(X,OX) = 0.

Let F = f−1(x) ' P1. Then, since F is a fiber of f , we have that F 2 = 0. By the adjunction formula (10.4),

−2 = 2pa(F )︸ ︷︷ ︸
0

− 2 = (F 2)︸︷︷︸
0

+ (F ·KX) = F ·KX .

Thus, by Serre duality, h2(X,OX) = h0(X,OX(KX)). If this is not zero, then there exists some divisor
D ≥ 0 such that D ∼ KX . Then, D satisfies D · F ≥ 0 since D is effective, and F is an irreducible divisor
such that F 2 ≥ 0. This contradicts that (D · F ) = −2.
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Step 2. There exists a divisor H on X such that (H · F ) = 1.

The idea is that this divisor H will correspond to the Serre bundle O(1) for the ruled surface U ×P1.
We assume here that k = C. The exponential sequence

0 −→ Z −→ OXan −→ O∗Xan −→ 0

gives

H1(X,OXan) Pic(Xan) H2(X,Z) H2(X,OXan)

H1(X,OX) Pic(X) H2(X,OX) 0

c1

Step 1

where the vertical equalities are by GAGA (Theorem 9.11). Step 1 implies H2(X,OXan) = 0, and so the first
Chern class map

c1 : Pic(X) −→ H2(X,Z) (10.5)

is surjective. Therefore, it is enough to find h ∈ H2(X,Z) such that h · b = 1, where b = c1
(
OX(F )

)
, and

h · b = deg
(
(h ∪ b) ∩ ηX

)
.

We also know from Poincaré duality 9.8 that the map

H2(X,Z)
/

tors × H2(X,Z)
/

tors Z

(α, β) α · β
(10.6)

is a perfect pairing. So we need to find something that pairs to get 1 with b. Let

I =
{
a · b ∈ Z

∣∣ a ∈ H2(X,Z)
}
⊆ Z,

which is an ideal in Z. It cannot be the zero ideal, since b is the class of a fiber, hence h · b > 0 if
h = c1(ample line bundle). Then, I = dZ for some d > 0, since Z is a PID. Now consider the map

H2(X,Z)
/

tors Z

a
1

d
(a · b)

Poincaré duality 9.8 implies that in fact, there exists β ∈ H2(X,Z) such that

1

d
(a · b) = (a · β)

for all a ∈ H2(X,Z), so b− dβ is torsion by Poincaré duality 9.8 since the pairing in (10.6) is perfect. Thus,

b · κ = −2 = d(κ · β) (b2) = 0 = (β2),

where we write κ = c1(ωX). Moreover, for any α ∈ H2(X,Z), the quantity (α2) + (α · κ) is even, since
• (α2) + (α · κ) is linear modulo 2;
• Surjectivity of c1 in (10.5) implies it is enough to check the assertion for α ∈ im(c1) = H2(X,Z);
• By the adjunction formula (10.4), it is okay for c1

(
O(D)

)
, where D is an irreducible curve.

Applying this for α = β, we obtain that (κ · β) is even, and so d = 1. This implies there exists H such that
(H · F ) = 1.

Step 3. Standard application of semicontinuity and base change theorems
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The map f : X → C is flat by [Har77, Ch. III, Prop. 9.7]. We know f is smooth over x, and so since
smoothness is an open property [Har77, Ch. III, Exc. 10.2], there exists U 3 x such that f is smooth over U .
Now let Fy = f−1(y) denote the fiber over y ∈ U . Then, by the semicontinuity theorem,

h0(Fy,OFy ) ≤ h0(Fx,OFx) = 1

h1(Fy,OFy ) ≤ h1(Fx,OFx) = 0

which imply that Fy is connected and that Fy ' P1 for all y ∈ U , respectively.
Now let H be the divisor on X obtained from Step 2, and let E = f∗OX(H). We will apply base change

to this sheaf E . Note for every y ∈ U , (H · Fy) = (H · F ) = 1, and so OX(F )|Fy ' OP1(1). In particular,
h0
(
OX(H)|Fy

)
= 2. By Grauert’s theorem [Har77, Ch. III, Cor. 12.9], we see that E |U is locally free of rank

2, and commutes with base change in the sense that for every y ∈ U , the canonical map

Ey ⊗ k(y)
∼−→ H0

(
Fy,OX(H)|Fy

)
is an isomorphism.
• The canonical map f∗E → OX(H) is surjective on f−1(U): By Nakayama’s lemma (cf. [Har77, Ch. II,

Exc. 5.8]), it is enough to check surjectivity after restricting to each Fy for all y ∈ U . Note Fy fits into
the cartesian square

Fy X

Spec k(y) Y

and so by flat base change [Har77, Ch. III, Prop. 9.3], we have a natural isomorphism

(Ey ⊗ k(y))⊗OFy ∼= H0(OX(H)|Fy )⊗OFy .

Thus, the map

(Ey ⊗ k(y))⊗OFy OX(H)|Fy

H0(OX(H)|Fy )⊗OFy

∼

eval

is surjective, since OX(H)|Fy ' OP1(1) is globally generated.
• The surjection f∗E → OX(H) above induces a morphism

g : f−1(U) −→ P(E |U )

over U , such that the restriction of g to each fiber Fy is the morphism Fy → P1 defined by O(H)|Fy '
OP1(1). But this morphism is an isomorphism for all y ∈ U . Thus, g is an isomorphism.

This proves the Noether–Enriques theorem Theorem 10.5. The key technical ingredient for Castelnuovo’s
theorem Theorem 10.1 is the following proposition:

Proposition 10.6. If X is a minimal smooth projective surface such that p2(X) = 0 = q(X), then there
exists a curve C ↪→ X such that C ' P1 and (C2) ≥ 0.

Note 10.7. This is not obvious even if you knew Castelnuovo’s theorem.

Recall 10.8. X is minimal if there is no curve C ' P1 on X such that (C2) = −1. If there is such a C,
then there is a morphism f : X → Y , where Y is a smooth projective surface, and f is the blowup of Y at a
point p whose exceptional divisor E is C [Har77, Ch. V, Thm. 5.7]. We can then repeat this process until
there are no more (−1)-curves; note we only need to repeat finitely many times since

rank(Pic(X)/ ≡) = rank(Pic(Y )/ ≡)− 1,

where ≡ here denotes numerical equivalence, and rank(Pic(X)/ ≡) is finite (this is nontrivial, but not too
hard to prove in characteristic zero; cf. [Har77, Ch. V, Excs. 1.7–8]). Thus, after a finite number of steps, you
obtain a minimal surface. For Castelnuovo’s criterion (Theorem 10.1), you are allowed to replace X with this
blown down surface, and so we may assume without loss of generality that X is minimal.

48



Proof of Castelnuovo’s Theorem 10.1 assuming Proposition 10.6. One implication is trivial: We know that
if X is rational, then pm(X) = 0 for all m ≥ 1 and hi(X,OX) = 0 for all i ≥ 1 by Proposition 1.10 and
Remark 1.11(3).

Conversely, suppose p2(X) = 0 = q(X). After performing finitely many blow-downs, we may assume
that X is minimal, and so we may apply Proposition 10.6 to show that there exists a curve C ⊆ X that is
isomorphic to P1 such that (C2) = d ≥ 0. We then claim that C moves in a linear system without base
curves, i.e., h0(OX(C)) ≥ 2. Consider

0 OX OX(C) OX(C)|C 0

OP1(d)

∼

Since H1(X,OX) = 0, we obtain the short exact sequence

0 −→ H0(OX) −→ H0(OX(C)) −→ H0(OP1(d)) −→ 0,

which implies that h0(OX(C)) = 1 + h0(OP1(d)) ≥ 2. Consider V ⊆ H0(X,OX(C)) where dimV = 2, such
that V contains an equation defining C. Since C is irreducible, the linear system |V | has no base components.
Now consider the rational map it defines:

ϕ : X 99K P1.

If |V | is basepoint-free, then ϕ is a morphism such that ϕ−1(x) = C ' P1 for some x ∈ P1, so Theorem 10.5
implies there exists U 3 x such that ϕ−1(U) ' U × P1, and so X is rational. Suppose now that |V | has
a basepoint at p ∈ X, and let π : BlpX → X be the blowup of X at p, with exceptional divisor p. By
assumption, p ∈ Bs|V |, and so for all D ∈ |V |, p ∈ D implies π∗D = E + other stuff. Now since C is smooth,

p ∈ C has multiplicity 1, and so π∗C = C̃ +E, where C̃ is the strict transform of C, isomorphic to P1. Hence
the rational map ϕ ◦ π is defined by the base-curve free linear system given by π∗|V | −E, and one element of

this linear system is the curve C̃ ' P1. We can therefore repeat.
It therefore suffices to show that after blowing up at base points a finite number of times, ϕ becomes a

morphism. We know that there is a diagram

Y

BlpX

X P1

g

∃h

π

where g is birational and Y is smooth, projective such that ϕ ◦ g is a morphism (e.g., take a resolution for
the graph of ϕ). Also, by assumption, p /∈ Dom(ϕ), and so P /∈ Dom(g−1). There is then a factorization
h : Y → BlpX such that g = π ◦ h [Har77, Ch. V, Prop. 4.3]. We can then factor g as a composition of r
blowups, and we have

(K2
Y ) = (K2

X)− r

for some r. Thus, after at most r steps, we can make ϕ a morphism.

The meat of Castelnuovo’s Theorem 10.1 is actually Proposition 10.6; we will spend most of next time
proving it. We will then explain the examples of Shioda [Shi74].

11 February 16

11.1 Rationality and unirationality for surfaces (continued)

Recall we want to prove Castelnuovo’s rationality criterion:

Theorem 10.1 (Castelnuovo). Let X be a smooth projective surface. Then, X is rational if and only if
p2(X) = 0 = q(X).
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We reduced this to the following:

Proposition 10.6. If X is a smooth minimal projective surface such that p2(X) = 0 = q(X), then there is
a curve C ⊆ X such that C ' P1 and (C2) ≥ 0.

The proof will be in three cases depending on the sign of (K2
X). We isolate the (K2

X) < 0 case.

Lemma 11.1. If X is a smooth projective minimal surface such that (K2
X) < 0, then for every a > 0, there

exists D ≥ 0 such that (KX ·D) ≤ −a and |KX +D| = ∅.

Proof. The proof proceeds in two steps.

Step 1. Show that it is enough to find E ≥ 0 such that (KX · E) < 0.

After replacing E by one of its components, we may assume that E is a prime divisor. We first claim that
(E2) ≥ 0. By the adjunction formula (10.4), we have

2pa(E)− 2︸ ︷︷ ︸
≥2

= (KX · E)︸ ︷︷ ︸
<0

+ (E2).

This implies (E2) ≥ −1. Moreover, if (E2) = −1, then pa(E) = 0; this implies E ' P1, which contradicts
minimality of X. Hence, (E2) ≥ 0.

Now consider the linear system |aE + nKX |. This is nonempty if n = 0, and as n→∞,

(aE + nKX) · E = a(E2) + n(KX + E) −→ −∞. (11.1)

Since E is a prime divisor and (E2) ≥ 0, we have that (E ·effective) ≥ 0. Hence (11.1) implies |aE+nKX | = ∅
for n� 0. Therefore, there exists n ≥ 0 such that |aE + nKX | 6= ∅, and |aE + (n+ 1)KX | = ∅.

Finally, any divisor D ∈ |aE + nKX | satisfies the conditions in Lemma 11.1, since |D +KX | = ∅, and

(D ·KX) =
(
(aE + nKX) ·KX

)
= a(E ·KX) + n(K2

X) ≤ −a.

Step 2. We find E as in Step 1.

Let H be an effective very ample divisor.
• If (H ·KX) < 0, take E = H.
• If (H ·KX) = 0, take E ∈ |KX + nH| for n� 0. Then, (KX · E) = (K2

X) < 0.
We are therefore left with the case when (H ·KX) > 0.

Let r0 be such that
(
(H + r0KX) ·KX) = 0, so

r0 =
(H ·KX)

−(K2
X)

> 0.

Then,

(H + r0KX)2 =
(
(H + r0KX) ·H

)
= (H2) +

(H ·KX)

−(K2
X)
· (H ·KX) > 0,

since both terms on the right are positive by amplitude. Let r > r0 close to r0 with r ∈ Q. Then,

(H + rKX)2 > 0, (H + rKX) ·KX < 0, (H + rKX) ·H > 0. (11.2)

We now claim some multiple of H + rKX has sections. Write r = p
q , where p, q ∈ Z>0. Let Dm =

mq(H + rKX). By Riemann–Roch (10.3),

χ
(
OX(Dm)

)
= χ(OX) +

1

2

(
Dm · (Dm −KX)

)
= χ(OX) +

1

2

(
m2q2(H + rKX)2 −mq(H + rKX) ·KX

)
−→∞

as m→∞, since each term in the parentheses is positive by (11.2). Now by Serre duality,

h2
(
OX(Dm)

)
= h0

(
OX(KX −Dm)

)
,
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which is zero for m� 0 since as m→∞,

(KX −Dm) ·H = (KX ·H)−mq (H · rKX) ·H︸ ︷︷ ︸
>0

−→ −∞.

Combined with the Riemann–Roch calculation above, this implies h0
(
OX(Dm)

)
> 0 for m� 0. Now choose

E ∈ |Dm| for m� 0. Then, by (11.2) we have

(E ·KX) = mq
(
(H + rKX) ·KX) < 0,

and so E satisfies the conditions in Step 1.

Proof of Proposition 10.6. The proof proceeds in two steps, the second of which splits into different cases
depending on the sign of (K2

X).

Step 1. Show that it is enough to find D ≥ 0 on X such that (KX ·D) < 0 and |KX +D| = ∅.
Suppose we have such a D. Then, there is a component C of D that is a prime divisor such that

(KX ·C) < 0. Since D−C ≥ 0 and |KX +D| = ∅, we also have that |KX +C| = ∅. We claim that C satisfies
the conditions in Proposition 10.6.

We first show C ' P1. The Euler–Poincaré characteristic of OX is

χ(OX) = 1− q(X) + p1(X) = 1 (11.3)

by hypothesis. By Riemann–Roch (10.3) for OX(−C), we have

χ
(
OX(−C)

)
= 1 +

1

2
(−C) · (−C −KX) = 1 +

1

2

(
C · (C +K)

)
= pa(C) ≥ 0

by the adjunction formula (10.4). Since C is effective, |−C| = ∅, and so h0
(
OX(−C)

)
= 0. By Serre duality,

h2
(
OX(−C)

)
= h0

(
OX(KX + C)

)
= 0

by the fact that |KX + C| = ∅. Combined with the Riemann–Roch calculation above, this implies
−h1

(
OX(−C)

)
= pa(C). But pa(C) ≥ 0, and so we must have pa(C) = 0 hence C ' P1.

Now by the adjunction formula (10.4), we have −2 = (C2) + (C · KX), and (C · KX) ≤ −1 so that
(C2) ≥ −1. But we cannot have (C2) = −1 by minimality, and so (C2) ≥ 0.

Step 2. We find D as in Step 1.

Case 1. (K2
X) < 0.

In this case, we are done by Lemma 11.1.

Case 2. (K2
X) = 0.

We first show |−KX | 6= ∅. Applying Riemann–Roch (10.3) for OX(−KX),

χ
(
OX(−KX)

)
= χ(OX) +

1

2
(−KX)(−KX −KX) = 1 + (K2

X) = 1, (11.4)

using that χ(OX) = 1 by (11.3). This implies that |−KX | 6= ∅ because

h2
(
OX(−KX)

)
= h0

(
OX(2KX)

)
= p2(X) = 0

by assumption.
Now let H be an effective very ample divisor on X, and consider |H + nKX | for n ≥ 0.
• |H + nKX | 6= ∅ for n = 0 since H ≥ 0.
• |H + nKX | = ∅ for n� 0: we have that (H + nKX) ·H → −∞ as n→∞, since |−KX | 6= ∅ implies

(H ·KX) < 0.
Therefore, there exists n ≥ 0 such that D ∈ |H + nKX | 6= ∅, and |H + (n+ 1)KX | = ∅. This satisfies the
conditions in Step 1, since |D +KX | 6= ∅ and (D ·KX) = (H ·KX) < 0.

Case 3. (K2
X) > 0.
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The Riemann–Roch calculation for OX(−KX) in (11.4) implies

h0
(
OX(−KX)

)
− h1

(
OX(−KX)

)
= 1 + (K2

X) ≥ 2,

so h0
(
OX(−KX)

)
≥ 2.

We claim we may assume that every G ∈ |−KX | is a prime divisor. Otherwise, for some G, there exists a
decomposition G = A+B where A,B > 0, and

(G ·KX) = −(K2
X) < 0.

After possibly switching A and B, we have that (KX ·A) < 0 and

|KX +A| = |A+ (−A−B)| = |−B| = ∅.

Thus, A satisfies the condition in Step 1.
Hence, we will assume that all elements in |−KX | are prime divisors. Fix G ∈ |−KX |. For every H

effective on X, we have that
• |H + nKX | 6= ∅ for n = 0 since H ≥ 0.
• |H + nKX | = ∅ for n� 0: we have that

(H + nKX) · (ample) = H · (ample)− n
(
G · (ample)

)
−→ −∞

as n→∞.
Thus, as in the proof of Case 2 there exists n ≥ 0 such that |H + nKX | 6= ∅ and |H + (n+ 1)KX | = ∅. There
are two subcases:

Subcase A. For some choice of H ≥ 0, the number n ≥ 0 as above is such that H + nKX 6∼ 0.

Choose E =
∑
niCi ∈ |H + nKX | such that E 6= 0. We claim that (KX · E) ≤ 0. But

(KX · E) = −(G · E) ≤ 0

since (G2) = (K2
X) > 0, and the fact that G is prime implies (G · E) ≥ 0. Thus, there exists a component

C = Ci such that (KX · C) ≤ 0. Moreover, since E − C ≥ 0 and |E +KX | = ∅, we have |C +KX | = ∅. Now
if (KX · C) < 0, then C satisfies the condition in Step 1.

We want to rule out the possibility that (KX · C) = 0. Suppose this equality holds. Then, by the
adjunction formula (10.4), we have

2pa(C)− 2 = (C2), (11.5)

and combined with Riemann–Roch (10.3) for OX(−C), we obtain

χ
(
OX(−C)

)
= 1 +

1

2
(−C) · (−C −KX) = pa(C).

On the other hand, h0
(
OX(−C)

)
= 0 since C is effective, and h2

(
OX(−C)

)
= h0

(
OX(KX + C)

)
= 0.

This implies −h1
(
OX(−C)

)
= pa(C), hence pa(C) = 0 and C ' P1. Then, (11.5) says (C2) = −2. Next,

Riemann–Roch (10.3) for OX(−KX − C) gives

χ
(
OX(−KX − C)

)
= 1 +

1

2
(−KX − C) · (−2KX − C)

= 1 +
1

2

(
2(K2

X) + (C2)
)

= 1 + (K2
X) +

1

2
(C2)

= (K2
X) ≥ 1.

Now h2
(
OX(−KX − C)

)
= h0

(
OX(2KX + C)

)
≤ h0

(
OX(KX + C)

)
= 0 where the inequality is by the

fact that |−KX | 6= ∅. Thus, the Riemann–Roch calculation above implies h0
(
OX(−KX − C)

)
> 0. Letting

C ′ ∈ |−KX − C|, we have that C ′ 6= 0 since otherwise h0
(
OX(KX + C)

)
6= 0. This contradicts the fact that

every divisor in −KX is prime: C ′ + C ∈ |−KX |.
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Subcase B. For all choices of H ≥ 0, the number n ≥ 0 as above is such that H + nKX ∼ 0.

The assumption implies that Pic(X) is generated by O(KX). Since Pic(X) is not a torsion group (by
intersection theory, for example), we see that Pic(X) ' Z · O(KX).

We now need to assume k = C. The exponential sequence

0 −→ Z −→ OXan −→ O∗Xan −→ 0.

By GAGA (Theorem 9.11), we have that the sequence

0 = H1(X,OX) −→ Pic(X)
c1−→ H2(X,Z) −→ H2(X,OX) = 0

is exact, hence c1 is an isomorphism. By Poincaré duality 9.8, we have a perfect pairing

Hi(X,Z)
/

tors × Hn−i(X,Z)
/

tors −→ Z.

Thus, (K2
X) = 1. Now we apply Noether’s formula (10.2):

1 = χ(OX) =
1

12

(
(K2

X) + χtop(X)
)

=
1

12

(
1 + b0 − b1 + b2 − b3 + b4

)
=

1

12

(
1 + 2− 4q(X) + 1

)
= 3,

a contradiction.

Next time we will discuss Shioda’s examples of unirational but not rational surfaces in positive characteristic
[Shi74]. We will then start preparing for the Artin–Mumford example [AM72]. The goal will be to find an
invariant that detects unirationality. To do so, we will need to compute cohomology of projective space and
of blowups, which will use the Thom isomorphism to replace relative simplicial cohomology groups.
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Exercise 12.1. In the proof of both Castelnuovo’s criterion for rationality (Theorem 10.1) and the Noether–
Enriques Theorem 10.5, show that both results hold when k is algebraically closed of characteristic zero, but
not necessarily the complex numbers. This should be true by the Lefschetz principle, but is a bit subtle.

12.1 Shioda’s examples of unirational but not rational surfaces

We conclude our study of the theory of rationality for surfaces with examples due to Shioda [Shi74] of
unirational but not rational surfaces in positive characteristic.

Theorem 12.2. Suppose char k = p > 2. Then, the surface in P3 defined by

xp+1
0 − xp+1

1 = xp+1
2 − xp+1

3 (12.1)

is a smooth unirational surface.

Remarks 12.3.
(1) If k has the appropriate (p+ 1)th roots of unity, then the surface defined by (12.1) is a Fermat surface.
(2) The proof of Theorem 12.2 can be modified to show that if k = k and p > 2, then the Fermat surface

xn0 + xn1 + xn2 + xn3 = 0

is unirational if there exists m such that pm ≡ −1 (mod n). The case of Theorem 12.2 is when m = 1.
(3) The surfaces defined above are not rational, since a smooth surface of degree d ≥ 4 in P3 is not rational

(Example 1.13). Thus, Shioda’s examples give counterexamples to the Lüroth problem for smooth
surfaces in positive characteristic.

(4) [Shi74] does not give examples when char(k) = p = 2.
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So far, we have shown unirationality by exhibiting dominant morphisms from projective space, i.e.,
by explicitly parametrizing the varieties in question. The proof of Theorem 12.2 instead boils down to a
manipulation of equations.

Proof. We denote Y to be the surface defined by (12.1). First, by the Jacobian criterion, the surface Y is
smooth. It remains to show that Y is unirational.

First, we perform the change of coordinates

y1 = x0 + x1, y2 = x0 − x1, y3 = x2 + x3, y4 = x2 − x3.

Then (12.1) becomes
y1y2(yp−1

1 + yp−1
2 ) = y3y4(yp−1

3 + yp−1
4 ), (12.2)

since the left-hand side is

y1y2(yp−1
1 + yp−1

2 ) = (x0 + x1)(x0 − x1)
(
(x0 + x1)p−1 + (x0 − xp−1

1 )
)

= (x0 − x1)(x0 + x1)p + (x0 + x1)(x0 − x1)p

= (x0 − x1)(xp0 + xp1) + (x0 + x1)(xp0 − x
p
1)

= 2(xp+1
0 − xp+1

1 ).

Working in the chart y4 6= 0, the equation (12.2) becomes

y1y2(yp−1
1 + yp−1

2 ) = y3(yp−1
3 + 1). (12.3)

Now after a change of coordinates

Spec(k[y1, u, v]) −→ Spec(k[y1, y2, y3])

y1u←− [ y2

uv ←− [ y3

which is birational since u = y2/y1 and v = y1y3/y2, the equation (12.3) becomes

y2
1u(yp−1

1 + yp−1
1 up−1) = uv(up−1vp−1 + 1).

The strict transform of Y is defined in Spec(k[y, u, v]) by

yp+1
1 (1 + up−1) = v(up−1vp−1 + 1).

Note that u, v are algebraically independent over k, since trdegk k(Y ) = 2 and

yp+1
1 =

v(up−1vp−1 + 1)

1 + up−1
. (12.4)

We now introduce an inseparable extension, which is what you would expect to cause issues in positive

characteristic. Let t = y
1/p
1 . Then, (12.4) implies that yp+1

1 /∈ k(u, v)p, and so t /∈ k(Y ). Now let K = k(Y )(t),
which is an inseparable extension of k(Y ).

Claim 12.4. k(Y )(t) is purely transcendental over k.

Note this implies there is a dominant rational map P2 99K Y .
In K, (12.4) implies the relation

tp(p+1)(1 + up−1) = v(up−1vp−1 + 1),

which is equivalent to

up−1(tp+1 − v)p = v − tp(p+1).

Let s = u(tp+1 − v) so that

sp = u(v − tp(p+1)) =
s(v − tp(p+1))

tp+1 − v
.
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Then,

sptp+1 − spv = sv − stp(p+1),

which holds if and only if v(s+ sp) = sptp+1 + stp(p+1). Now v ∈ k(s, t) and u = s/(tp+1− v) ∈ k(s, t) implies
K = k(s, t). Since trdegk(K/k) = 2, the fact that s, t are algebraically independent gives the claim.

Remark 12.5. The main point of this example is that inseparable extensions are what cause issues for surfaces
in characteristic p, in contrast to the characteristic zero case. One says that X is separably unirational if it
admits a dominant, separable rational map from a projective space. With this restriction, Lüroth’s problem
can be answered affirmatively: any separably unirational smooth surface is in fact rational by applying
Remark 1.11(2) and using Castelnuovo’s criterion (Theorem 10.1).

12.2 More topology

To prepare for the higher-dimensional theory, we need to review more material on the topology of algebraic
varieties.

Goal 12.6. We want to understand the examples of Artin–Mumford [AM72]. The key birational invariant
used is the torsion subgroup of H3, which detects non-stable rationality. To prove it is indeed a birational
invariant, we need to study the cohomology of Pn and how cohomology changes under blowups.

One difficulty is that we want to use relative cohomology. We will avoid relative cohomology by using
results form topology: one can deduce relative cohomology from the cohomology of the complement.

The Mayer–Vietoris Sequence 12.7. If X is a topological space, and there exist U, V open such that
U ∪ V = X, then there exists an exact sequence

· · · Hq(X,A) Hq(U,A)⊕Hq(V,A) Hq(U ∩ V,A) Hq+1(X,A) · · ·
(j∗1 ,j

∗
2 ) i∗1−i

∗
2

where the maps are

U

U ∩ V X

V

j1i1

i2 j2

There exists a similar sequence for homology.

Example 12.8. You can compute the cohomology of the sphere Sn by induction using the Mayer–Vietoris
sequence: Sn has a cover by two copies of the n-dimentional disc, whose intersection is Sn−1.

Two results on fibrations We state some theorems about fibrations, i.e., maps of topological spaces
which locally look like products. We will restrict ourselves to the case of algebraic varieties to ensure there
exists finite open covers satisfying certain properties.

Definition 12.9. A continuous map f : X → Y is locally trivial with fiber F if there exists an open cover
Y =

⋃
α Uα such that f−1(Uα) ' Uα × F over Uα for all α.

Example 12.10. (Topological) vector bundles are locally trivial.

Leray–Hirsch Theorem 12.11. Suppose f : X → Y is locally trivial with fiber F . Assume Hi(F,Z) is
finitely generated and torsion-free for all i. Suppose α1, . . . , αr ∈ H∗(X,Z) are elements such that for all
y ∈ Y , the elements i∗y(α1), . . . , i∗y(αr) give a basis for H∗(X,Z), where iy : f−1(y) ↪→ X is the inclusion.
Then, we have the following isomorphism of abelian groups:

Zr ⊗Z H
∗(Y,Z) −→ H∗(X,Z)

(u1, . . . , ur)⊗ β 7−→
( r∑
i=1

uiαi

)
∪ f∗(β).
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There are many proofs of the Leray–Hirsch Theorem 12.11; for example, it follows from the Leray spectral
sequence in sheaf cohomology. The proof using Mayer–Vietoris, however, is the simplest.

Sketch of proof. If X = Y × F , then it is easy to deduce Theorem 12.11 from the Künneth formula 9.5.
Now suppose there are finitely many open subsets U1, . . . , Us such that f−1(Ui) ' Ui × F over Ui and

Y =
⋃
i Ui. Then, you can argue by induction on X using the Mayer–Vietoris sequence 12.7.

To prove Theorem 12.11 in general, you can use a limiting argument. However, we will only need the
case where a finite cover as stated exists for applications. The Leray–Hirsch Theorem 12.11 will allow us to
understand the cohomology of projective bundles, and particular that of Pn.

We now turn to a “more interesting” result.

Recall 12.12. If X is a topological space, then a topological (real) vector bundle E is oriented if it is oriented
on a trivialization, such that the orientations match on intersections of elements of the open cover giving the
trivialization. In this case, denoting π : E → X to be the structure map for the vector bundle, we have that
Ex := π−1(x) is an oriented r-dimensional R-vector space, where r = rankE.

Now consider the zero section X ↪→ E, and suppose r ≥ 1. Then,

Hr(Rr,Rr r {0},Z) ' Z,

and choosing a generator is equivalent to choosing an orientation. The long exact sequence in cohomology
implies

Hr(Rr,Rr r {0},Z) ' H̃r−1(Rr−1 r {0},Z) ' H̃r−1(Sr−1,Z) ' Z,

since Rr−1 r {0} is homotopy equivalent to Sr−1. Here, H̃∗ denotes reduced cohomology, which is the
cokernel of the canonical map Z ↪→ H∗.

The Thom Isomorphism 12.13. Let E be an oriented, real vector bundle on X of rank r = rankE ≥ 1.
(1) There exists a Thom class ηE ∈ Hr(E,E rX,Z) such that for all x ∈ X, denoting

E(x) E

E(x) r {0} E rX

jx

we have that
j∗x(ηE) ∈ Hr(E(x), E(x) r {0},Z)

is the cohomology class corresponding to the orientation on E(x).
(2) For every closed subset Z ↪→ X, the map

Hi(X,X r Y,Z) Hi+r(E,E r Y,Z)

α π∗(α) ∪ ηE

is an isomorphism for all i ∈ Z, called the Thom isomorphism. In particular, Hi(E,E r Y,Z) = 0 for
all i < r.

We won’t prove this, but it is not hard.

Idea of proof. If E is trivial, then one can deduce both assertions from the Künneth formula 9.5.
Otherwise, if X is covered by finitely many open subsets such that E is trivial over each of them, then

you can argue by induction on these subsets using the Mayer–Vietoris sequence 12.7.

We will primarily use the Thom isomorphism 12.13 in the following special case. Suppose X is an oriented
C∞ (real) manifold, and let Y be a closed, oriented submanifold. The normal exact sequence

0 −→ TY −→ TX |Y −→ N −→ 0
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where N = NY/X is the normal bundle for Y in X implies det(TX |Y ) ' det(TY )⊗ det(N). Since TX |Y and
TY are both oriented, this gives an orientation of the real vector bundle N .

In this situation, there exists an open neighborhood U of Y which restricts to Y in a trivial sense, and
the topology of U is that of NY/X . More precisely, we have the following:

Tubular Neighborhood Theorem 12.14. There exists an open neighborhood U of Y in X which retracts
onto Y , and a homeomorphism U ' N making the diagram

Y U Y

Y N Y

i r

∼

j π

commute, where j : Y ↪→ N is the zero section.

Suppose now that W ↪→ Y is a closed subset, and let r be the real codimension of Y in X. Then,

Hi(Y, Y rW ) ' Hi+r(N,N rW ) (by the Thom isomorphism 12.13)

' Hi+r(U,U rW ) (by Theorem 12.14)

' Hi+r(X,X rW ) (by Excision (9.1))

Thus, Hi(Y, Y rW ) ' Hi+r(X,X rW ).
In particular, if W = Y , we have isomorphisms Hi(Y,Z) ' Hi+r(X,X r Y,Z). Thus, the long exact

sequence for (X,X r Y ) comes

· · · −→ Hi−r(Y,Z) −→ Hi(X,Z) −→ Hi(X r Y,Z) −→ Hi−r+1(Y,Z) −→ · · · . (12.5)

Terminology 12.15. In this case, if f : Y ↪→ X is the inclusion map, then

Hi−r(Y,Z) Hi(X,Z)

Hi(X,X r Y )

f∗

∼

is called the Gysin map corresponding to f .

Remark 12.16. If f : Y → X is any C∞ map between compact, oriented real manifolds, and r = dimX−dimY ,
we also get a map

Hi(Y,Z) Hi+r(X,Z)

HdimY−i(Y,Z) HdimX−i−r(X,Z)

f∗

PD∼ PD∼

f∗

where we note dimX − i− r = dimY − i. If f is an inclusion, this is the Gysin map defined above.

Remark 12.17. Let f : X → Y be a surjective morphism of complete smooth algebraic varieties over C, such
that dimX = dimY . Then, the pushforward f : Hp(X)→ Hp(Y ) is such that f∗(µX) = (deg f)µY , where
µX , µY are the fundamental classes for X,Y , respectively. The projection formula 9.4 and Poincaré duality
9.8 then imply

f∗(f
∗(α)) = deg(f) · α

for all α ∈ H∗(Y,Z). Thus, f∗ is injective if f is birational or after tensoring with Q.

Fact 12.18. f∗ is injective for non-compact X and Y under the same conditions above. To prove this, one
passes through Borel–Moore homology (which is Poincaré dual to cohomology).

Next time, we will investigate the cohomology of Pn and blowups, as well as for projective bundles
(using the Leray–Hirsch Theorem 12.11). This will imply that H3

tors is the same for varieties that are stably
birational. We will then be able to study the Artin–Mumford examples [AM72].
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13 February 23

13.1 Some cohomology computations

We work over the complex numbers C. We start with some computations of cohomology for projective space,
projective bundles, and blowups.

Proposition 13.1. For every n ≥ 1, we have a ring isomorphism

Z[x]/(xn+1) H∗(Pn,Z)

x̄ c1(O(1))

∼

Proof. We induce on n. The case n = 0 is trivial, since in this case P0 = {pt}.
For the induction step, consider a hyperplane Pn−1 ↪→ Pn, with complement Cn. We saw last time that

the long exact sequence on cohomology for (Pn,Pn r Pn−1) becomes (by the Thom isomorphism 12.13)

· · · −→ Hi−1(Pn r Pn−1) −→ Hi−2(Pn−1) −→ Hi(Pn) −→ Hi(Pn r Pn−1) −→ · · ·

as in (12.5). Now note that Hi(Pn r Pn−1) = 0 for i > 0, and so

H1(Pn,Z) = 0

Hi(Pn,Z) ' Hi−2(Pn−1,Z)

By the induction hypothesis, we have that Hi(Pn,Z) ' Z if 0 ≤ i ≤ 2n if i is even, and 0 otherwise.
We now need to check that for 0 ≤ i ≤ n, H2i(Pn,Z) is generated by hi, where h = c1(O(1)). We know

that hn =
(
O(1)n

)
= 1 by the compatibility of the cup product with intersection product, and so in particular,

hn 6= 0. Given 0 ≤ i ≤ n, since hi ∈ H2i(Pn,Z) ' Z is nonzero, it follows that for every α ∈ H2i(X,Z),
there exists r ∈ Q such that α = r · hi. On the other hand, since α ∈ H2i(X,Z), it follows that α · hn−i ∈ Z,
and so

α · hn−i = r · hihn−i = r ∈ Z.

Thus, hi is a generator of H2i(X,Z).

Corollary 13.2. If E is a rank n+ 1 (algebraic) vector bundle on X, and π : P(E)→ X is the corresponding
projective bundle, then there is a ring isomorphism

H∗(P(E),Z) H∗(X)[x]/(xn+1)∑
π∗(αi) c

1
(
O(1)

)i ∑
αix

i

∼

Proof. It is clear that this is a ring homomorphism, and so it is enough to show that it is an isomorphism of

abelian groups. For this, we apply the Leray–Hirsch Theorem 12.11 for the classes c1
(
O(1)

)i
, where 0 ≤ i ≤ n.

By Proposition 13.1, these satisfy the hypothesis of Leray–Hirsch Theorem 12.11.

We are now ready to discuss the blowup. Let X be a smooth projective variety, and consider a smooth
closed subvariety Y of codimension r in X. Consider the blowup along Y :

f−1(Y ) = E X̃ = BlY X

Y X

j

ϕ f

Proposition 13.3. For every p ≥ 0, we have an isomorphism

Hp(X̃,Z) Hp(X,Z)⊕
r−1⊕
q=1

Hp−2q(Y,Z)

f∗(α) +

r−1∑
q=1

j∗

(
c1
(
O(1)

)q−1 ∪ ϕ∗(βq)
)

(α, β1, . . . , βr−1)

∼
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Proof. Consider the long exact sequence on cohomology:

· · · Hp(X̃, X̃ r E) Hp(X̃) Hp(X̃ r E) Hp+1(X̃, X̃ r E) · · ·

· · · Hp(X,X r Y ) Hp(X) Hp(X r Y ) Hp+1(X,X r Y ) · · ·

f∗ f∗ ∼ f∗ f∗ (13.1)

Since ϕ : E → Y is a projective bundle with fiber Pr−1, Corollary 13.2 implies we have an isomorphism

Hp−2(E)

r⊕
q=1

Hp−2q(Y )
r∑
q=1

c1
(
O(1)

)q−1 ∪ ϕ∗(βq) (β1, . . . , βr)

∼

Moreover, the Thom isomorphism 12.13 implies we have a diagram

Hp(X̃, X̃ r E) Hp−2(E)

Hp(X,X r Y ) Hp−2r(Y )

∼

∼

f∗ c1(O(1))r−1∪ϕ∗(−)

where you can check the map on the right makes the diagram commute. Since f is a birational morphism
between smooth varieties X, X̃, we see that the Gysin morphism

f∗ : Hp(X) −→ Hp(X̃)

is injective by Remark 12.17 and Fact 12.18. Proposition 13.3 then follows from a diagram chase using the
diagram (13.1).

13.2 An invariant that detects non-stable-rationality

We now introduce an invariant that can detect when a variety is not stably rational.

Definition 13.4. Two varieties X,Y are stably birational if there exist m,n ≥ 0 such that X × Pm and
Y ×Pn are birational.

Example 13.5. X is stably rational if and only if X is stably birational to a point.

Proposition 13.6. If X and Y are smooth, complete complex varieties which are stably birational, then
H3(X,Z)tors ' H3(Y,Z)tors.

Since a point has no H3, Proposition 13.6 immediately implies the following:

Corollary 13.7. If X is stably birational, then H3(X,Z)tors = 0.

Proof of Proposition 13.6. We need to check the following:
(1) H3(X ×Pn,Z)tors ' H3(X,Z)tors;
(2) If X and Y are smooth, complete, birational varieties, then H3(X,Z)tors ' H3(Y,Z)tors.

For (1), since Hi(Pn,Z) is finitely generated free abelian group, the Künneth formula 9.5 implies

H3(X ×Pn,Z) '
⊕
i+j=3

(
Hi(X,Z)⊗Z H

j(Pn,Z)
)
' H3(X,Z)⊕H1(X,Z)

But H1(X,Z) has no torsion in general (Consequences 9.3), and so H3(X ×Pn,Z)tors ' H3(X,Z)tors.
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For (2), the weak factorization theorem [Abr+02, Thm. 0.1.1] implies X and Y are connected by a chain
of blow-ups of smooth complete varieties along smooth subvarieties. Hence, it suffices to show that if Y is the
blowup of X along Z, where Z is smooth, then H3(Y )tors ' H3(X)tors. Denoting

E Y

Z X

j

f

we have, by Proposition 13.3,
H3(Y,Z) ' H3(X,Z)⊕H1(Z,Z).

Since H1(Z,Z) has no torsion, we see that H3(X,Z)tors ' H3(Y,Z)tors.

One thing to note is that for higher cohomology groups, these arguments would break down since there
would be torsion contributions from other cohomology groups.

Remark 13.8. When Artin and Mumford wrote their paper, weak factorization was not yet known. Instead,
they use the following strong version of Hironaka’s theorem [Hir64]: Let ϕ : X → Y be a rational map, where
X is smooth and X,Y are complete. Then, there exists a sequence of smooth blowups

Xn

...

X1

X Y

morphism

ϕ

Remark 13.9. The same proof implies that H2(X,Z)tors is the same for stably birational varieties, since
H2(X,Z)tors = 0 already for rationally connected varieties.

Recall that a smooth projective variety X is rationally connected if any two general points on X lie in
the image of some map P1 → X. Unirational varieties are rationally connected, since two general points in
the dominating rational variety are connected by a P1. It is also true that rationally connected varieties are
simply connected [Cam91, Thm. 3.5]: First, one can show that they have finite fundamental group [Cam91,
Thm. 2.2]. Rationally connected varieties also satisfy h0

(
(Ωj

X)⊗m
)

= 0. Thus, χ(OX) = 1. If π1(X) 6= 1,
then there would exist a rationally connected étale cover of X, but this would contradict that χ(OX) = 1.
Thus, H2(X,Z)tors = 0 by the Universal Coefficient Theorem 9.2.

Remark 13.10. If X ⊆ Pn is a smooth hypersurface, where n ≥ 4, then H3(X,Z)tors = 0. This follows from
Weak Lefschetz, which says

Hi(X,Z)
∼−→ Hi(P

n,Z) for i < n− 1.

The right-hand side is torsion-free, so H2(X,Z)tors = 0 for n > 3. Thus, the Universal Coefficient Theorem 9.2
implies H3(X,Z)tors = 0.

This shows that H3(X,Z)tors cannot be used to prove non-rationality. The method of Voisin is interesting
because it passes through singular hypersurfaces to compute H3(X,Z)tors.

13.3 How to produce examples with H3(X,Z)tors 6= 0

We briefly describe the idea for how to show H3(X,Z)tors 6= 0.
The idea is that H3(X,Z)tors 6= 0 if there exists a map f : Y → X such that for all x ∈ X, f−1(x) ' Pn,

but such that Y 6' P(E) over X for any vector bundle E (this holds, for example, if f : Y → X does not have
a rational section). One can show that in this case, f is locally trivial in the analytic or the étale topology.
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In fact, such objects are parametrized by Ȟ1(Xan,PGLn+1,X), which we note still makes sense even though
PGLn+1 is non-abelian. We then have an exact sequence

0 Z/n SLn+1,X PGLn+1,X 0

0 O∗Xan GLn+1,X PGLn+1,X 0

This gives a map Ȟ1(PGLn+1,X)→ H2(Xan,O∗Xan)tors, and the exponential sequence gives

0 −→ Z −→ OXan −→ O∗Xan −→ 0

which gives a map H2(O∗Xan)tors → H3(X,Z)tors. We want our assumption to imply that this is not zero. If
this is zero, then our class in Ȟ1(X,PGLn+1,X) comes from Ȟ1(X,GLn+1,X), which implies that Y ' P(E)
for some holomorphic vector bundle E on X. We get a contradiction if X is complete (by GAGA), since
in this case E is algebraic. Note that since we will be working with non-complete varieties, we will need to
introduce étale cohomology.

Next time we will talk about the geometric construction of the Artin–Mumford example, then review
facts from étale cohomology needed to prove non-stable-rationality.

14 March 7

Today, we will start discussing the geometry of the Artin–Mumford example. We will later need to review
some facts about étale cohomology and on Brauer groups.

14.1 The Artin–Mumford example

The Artin–Mumford is constructed from a linear system of quadrics in P3. We start by studying the complete
linear system of quadrics.

14.1.1 The complete linear system of quadric hypersurfaces in P3

We assume k = k, and char(k) 6= 2.
Let P = P

(
H0(P3,O(2))∗

)
' P9 be the projective space parametrizing quadric hypersurfaces in P3, and

let G be the Grassmann variety parametrizing lines in P3, which is a four-dimensional, smooth, projective,
rational variety. Then, we have an incidence correspondence I ⊂ P×G:

I10 G4

P

q

p (14.1)

Since I is a projective bundle over G of relative dimension 6, we see that I is a smooth, projective of dimension
10. Given a system of coordinates x0, . . . , x3 on P3, we may write any nonzero element of H0(P3,O(2))
uniquely as

f =

3∑
i,j=0

aijxixj where aij = aji.

Definition 14.1. The rank of f (or of f = 0) is equal to rank(aij), the rank of the matrix (aij).

If f has rank r, then there exists a system of coordinates such that f = x2
0 + · · ·x2

r−1, which is a smooth
quadric if and only if the rank is equal to 4.

Using this notion of rank, we may stratify P by closed subsets of the form

Wi = {quadrics of rank ≤ i},

in which case W1 ⊆W2 ⊆W3 ⊆W4 = P.
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Proposition 14.2.
(1) dimW1 = 3, dimW2 = 6, dimW3 = 8;
(2) W2 is an irreducible subset of P of degree 10;
(3) W3 is an integral hypersurface of degree 4 in P such that all points of W3 rW2 are smooth points of

W3;
(4) For every P ∈W2 rW1, the tangent cone Cp(W3) is isomorphic to the hypersurface x2

1 +x2
2 +x2

3 in A9.

Proof. We start by showing (1). First,

W1 =
{

double planes
}
⊆ P,

and so there is a bijective map

{planes in P3} W1

P3

'

Thus, W1 is irreducible of dimension 3. Next,

W2 =
{

unions of 2-planes
}
⊆ P,

and so there is a generically 2 : 1 map

P3 ×P3 ϕ−→W2,

and W2 is irreducible of dimension 6. Finally, W3 is an integral hypersurface in P ' P9 defined by an
equation of degree 4, and so W3 has dimension 8.

We now show the assertion that deg(W2) = 10 in (2). The morphism ϕ : P3 ×P3 → W2 is of degree 2
(this is clear in characteristic zero, but the characteristic p case requires some work, which we leave as an
exercise), and so we have

deg(W2) =
1

2

(
ϕ∗O(1)

)6
=

1

2

(
O(1, 1)

)6
=

1

2

(
O(1, 0) +O(0, 1)

)6
=

1

2

(
6

3

)
= 10.

For (3), we have already seen that W3 is an integral hypersurface of degree 4, and so it suffices to show
that all points of W3 rW2 are smooth points in W3. In characteristic zero, this follows by generic smoothness:
W3 rW2 contains a smooth point, and W3 rW2 has a transitive group action, so every point in W3 rW2 is
smooth. We also give a direct argument, which works in arbitrary characteristic. Let P ∈W3 rW2; after a
change of coordinates, we may assume that P corresponds to the quadric x2

0 + x2
1 + x2

2. The equation of W3

at P in the affine chart a00 6= 0 is∣∣∣∣∣∣∣∣
1 a01 a02 a03

a01 a11 − 1 a12 a13

a02 a12 a22 − 1 a23

a03 a13 a23 a33

∣∣∣∣∣∣∣∣ ∈ a33 + m2
P . (14.2)

Thus, the tangent space of W3 at P is defined by a33 = 0 as a subspace of the tangent space of P at P , and
so P is a smooth point of W3.

For (4), let P ∈W2 rW1. After change of coordinates, we may assume that P corresponds to the quadric
x2

0 + x2
1, in which case the equation of W3 at P in the affine chart a00 6= 0 is∣∣∣∣∣∣∣∣

1 a01 a02 a03

a01 a11 − 1 a12 a13

a02 a12 a22 a23

a03 a13 a23 a33

∣∣∣∣∣∣∣∣ ∈ −
∣∣∣∣a22 a23

a23 a33

∣∣∣∣+ m3
P .

The tangent cone is therefore x2
1 + x2

2 + x2
3 = 0 in A9 ' TP (W3).

It remains to show the assertion that W2 is an irreducible subset of P in (2). We saw that the singular
locus of W3 = {det(aij) = 0} is contained in W2; since the singular locus is closed, we see that the singular
locus of W3 is in fact equal to W2. The locus W2 is therefore cut out by the partial derivatives of det(aij) = 0,
which one can check produces an irreducible subset of W3.
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14.1.2 Geometry of the map p in (14.1)

If Q ∈ P rW3, then p−1(Q) is the disjoint union of two P1’s, since after a change of coordinates,

Q = im(P1 ×P1 i
↪→ P3)

has two families of lines on Q, i({P} ×P1)P∈P1 and i(P1 × {P})P∈P1 .

Note 14.3. If L1 is one family of lines, and L2 is the other family, then L1 ∩ L2 6= ∅.

Proposition 14.4.
(1) The morphism p : I → P is smooth over P rW3, hence p−1(Q) = P1 tP1 for all Q ∈ P rW3;
(2) There exists a prime divisor R on I such that p∗(W3) = 2R.

Proof. For (1), we follow the strategy in Theorem 6.6(ii). Let (Q,L) ∈ I; after change of coordinates,

L = (x0 = x1 = 0), Q = (x0f0 + x1f1 = 0).

If gi = fi|L, in order to get that p is étale at (Q,L), it is enough to show

H0(L,O(1))⊕H0(L,O(1)) H0(L,O(2))

(u, v) ug0 + vg1

is surjective. So suppose this were to fail. Then, g0, g1 are proportional, hence there exits some point P ∈ L
such that g0(P ) = 0 = g1(P ), and so multP Q ≥ 2, a contradiction. We have therefore shown (1).

For (2), let D = p∗(W3), in which case we have the diagram

D

I G

P

q

p

We want to show that the support of D is irreducible and has multiplicity 2. We first describe

D ∩ IL ↪→ IL := q−1(L).

As before, choose coordinates such that L = (x0 = x1 = 0). Then, IL is the projective space of symmetric
matrices 

a00 a01 a02 a03

a01 a11 a12 a13

a02 a12 0 0
a03 a13 0 0


in P× {L}. This implies D ∩ IL is defined by ∣∣∣∣a02 a03

a12 a13

∣∣∣∣2
This implies that D ∩ IL is an irreducible set of dimension 5. Thus, R = Dred is irreducible, hence R is a
prime divisor on I. There are then two possibilities:
• D = 2R;
• D = R and the fibers of R→ G are everywhere nonreduced.

The second case is not possible: this is clear in characteristic zero (by generic smoothness), and in characteristic
p, we simply note that our calculation works over the generic point, which would imply that the generic fiber
of R→ G is not reduced, which is a contradiction.
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Remark 14.5. If Q ∈W3 rW2, then p−1(Q) is not reduced, whereas p−1(Q)red ' P1. This is because Q is a
projective cone over a smooth conic C contained in a plane in P3, and so

p−1(Q)red C ' P1

L L ∩ plane

is an isomorphism; the semicontinuity theorem implies that we must have p−1(Q) nonreduced, for it is a
specialization of the disjoint union of two P1’s we had in Proposition 14.4(1).

Exercise 14.6. Consider the diagram

R I

W3 P

p|R p

Show that if Q ∈W3 rW2, then the fiber (p|R)−1(Q) is reduced, hence ' P1.

14.1.3 Introduction to cyclic covers

Recall from §13.3 that our goal is to find a morphism of varieties such that all of the fibers are P1’s. We are
almost in this setting, but Proposition 14.4(1) shows we have two P1’s in each fiber instead of one. The idea
now is to factor this through a ramified double cover of P, and so we start with some background on cyclic
covers of this sort.

Let X be a variety, and let L ∈ PicX be a line bundle. Let m > 1 be an integer, and assume char(k) - m.
Let s ∈ H0(X,Lm), which corresponds to a morphism

ϕs : L −m −→ OX .

The m-cyclic cover of X corresponding to s is constructed as follows. Let

S =

⊕
i≥0

L −iyi
/

I ,

where I is the ideal sheaf locally generated by uym−ϕs(u) where u is a local section of L −m. We then take

Y = Spec(S )
π−→ X.

Locally on U ⊆ X, we have a trivialization L |U ' OU inducing an isomorphism Lm|U ' OU , mapping
s|u 7→ g ∈ O(U). Then,

π−1(U) ' Spec
O(U)[y]

(ym − g)
. (14.3)

We therefore see that π is finite and flat.

Example 14.7. We give the simplest example of a cyclic cover. If s = tm for t ∈ H0(L ), then Y is the
disjoint union of m copies of X, and π is the identity on each of them.

Proposition 14.8.
(1) π is étale over X rD, where D = Z(s) is the zero locus of s.
(2) There is an effective Cartier divisor R on Y such that π∗D = mR, and π induces an isomorphism

R
∼→ D.

(3) If X is smooth, D irreducible, smooth, then Y is smooth.
(4) If X is smooth, and D is a prime divisor, then Y is irreducible and reduced.

Proof. For (1), the local description in (14.3) and the fact that char(k) - m implies that π is étale over X rD.
For (2), since O(π−1(U)) is free over O(U), we have that g is a nonzerodivisor in O(π−1(U)), hence y is a

nonzero divisor on O(π−1(U)). Now let R be the effective Cartier divisor defined by (y). Then, π∗D = mR,
and R ' D.
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For (3), X is smooth and π is étale over X rD, and so Y rR is smooth. Since R ' D and D is smooth,
we see that R is smooth. This implies that Y is smooth around R (since R is a smooth Cartier divisor in Y ),
and so Y is smooth.

For (4), suppose Y has two irreducible components Y1, Y2. π is flat and finite, and so we see that both
Y1, Y2 surject onto X. Since π|R : R→ D is a bijection, we see that R ⊆ Y1 ∩ Y2. By (3), π−1(Y rDsing) is
smooth, and

∅ 6= Rr π−1(Dsing),

which implies there exists x ∈ Y1 ∩ Y2 such that Y is smooth at x, which is a contradiction. Thus, Y is
irreducible. For reducedness, (14.3) implies Y is Cohen–Macaulay, and generically reduced by (1), hence Y is
reduced.

Remark 14.9. The construction of cyclic covers is functorial, in the following sense: if f : X ′ → X is a
morphism of varieties such that s′ = f∗(s) ∈ H0(X ′, f∗Lm) is nonzero, there exists a Cartesian diagram

Y ′ Y

X ′ X

π′ π

f

where π′ is the mth cyclic cover corresponding to s′. This is trivial to see: if S ′ is the algebra on X ′

corresponding to s′, then S ′ ' f∗(S ).

On a complete variety, we will show that the construction only depends on the divisor Z(s), not s. We
will then talk about how the factorization needed for the Artin–Mumford example works.

15 March 9

As a reminder, there are no classes next week.

15.1 The Artin–Mumford example (continued)

We will today finish discussing the geometry of the Artin–Mumford example.

Recall 15.1. For a variety X, and a section 0 6= s ∈ H0(X,Lm), we constructed a m-cyclic cover

Y

X

π

where π∗OY =
⊕m−1

i=0 L −i. This map is finite, flat; it is also étale away from Z(s).

Remark 15.2. If ζm is the group of mth roots of 1 in k, then ζm acts on Y , where α ∈ ζm acts on L −i

by αi. Then, X ' Y/ζm. To show this, note that π is finite, hence affine, and so it suffices to check that
OX ↪→ π∗OY embeds OX as the subsheaf of ζm-invariant sections of π∗OY .

Remark 15.3. If X is complete, then (up to isomorphism) π only depends on the divisor D = Z(s). For
suppose s′ is such that Z(s) = Z(s′). Then, s′ = λs for some λ ∈ k∗. Since k is algebraically closed,
there exists α ∈ k∗ such that αm = λ. The multiplication on the ith component by αi (or α−i) gives an
isomorphism between the two sheaves of OX -algebras.

Remark 15.4. Suppose that X is complete, and D,Y are as in Remark 15.3. Let p : X ′ → X be a morphism
from a complete variety X ′ such that p∗(D) = mT for some effective divisor T on X ′. Then, there exists a
commutative diagram

X ′ Y

X

g

p π
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Proof. We have a Cartesian diagram

Y ′ Y

X ′ X

q

π′
y

π

where π′ is a cyclic cover corresponding to p∗D. Since p∗D = mT , we have that Y ′ is the disjoint union of m
copies of X ′ (Example 14.7). If σ : X ′ → Y ′ is a section of π′, we may take g = q ◦ σ.

We now return to the situation we are interested in. Consider

I G = G(2, 4)

P9 ' P = complete linear system of quadrics in P3

p

q

We saw that p∗W3 = 2R for some effective Cartier divisor R on I by Proposition 14.4(2). Thus, by the

universal property in Remark 15.4, if Y
f→ P is the cyclic 2-cover corresponding to W3, then there exists

g : I → Y such that we have a factorization

I Y P

R

g

p

f

We then claim the following:

Claim 15.5. If y ∈ Y is such that f(y) /∈W2, then g−1(y) ' P1.

• This is clear for y /∈W3.
• If y ∈W3 rW2, then

g−1(y) (p|R)−1(f(y))

p−1(f(y))

The two schemes have the same reduced structure, but (p|Y )−1(f(y)) ' P1, hence g−1(y) ' P1.
Now let Π ⊂ P be a general linear subspace of dimension 3.

Proposition 15.6. For Π general, the following will hold:
(1) Π is basepoint-free;
(2) S := Π ∩W3 ⊆ Π is an irreducible and reduced quartic surface, Γ := Π ∩W2 is a reduced set of ten

points, and Π ∩W1 = ∅;
(3) S r Γ is smooth, and for every P ∈ Γ, S has a node at Γ (i.e., the projectivized tangent cone of S at P

is a smooth conic in P2);
(4) p−1(Π) is a smooth, irreducible variety of dimension 4;
(5) The projection I → G induces a birational map p−1(Π)→ G.

Proof. Since four general quadrics in P3 do not intersect, we have (1).
For (2), since dim(W1) = 3, dim(W2) = 6, deg(W2) = 10, and dim(W3) = 8, deg(W3) = 4, we see that for

Π general, we have the required properties, except possibly the irreducibility and reducedness of S.
Since (W3)sing ⊆W2, then Bertini implies that for general Π, the singular locus Ssing ⊆ Γ. This implies

that S is irreducible and reduced. Now recall that for all Q ∈ W3 r W2, CQ(W3) ⊆ A3 is defined by
x2

1 + x2
2 + x2

3 = 0. Thus, if Q ∈W3 rW2 and Π is a general codimension 6 linear subspace with Π 3 Q, then
S has a node at Q.

Exercise 15.7. Use an argument as in the proof of Bertini to show that for all Π general, and for all
Q ∈ S ∩W2, then Q is a node of S. Recall that one shows Bertini by using an incidence correspondence for
containing the tangent plane at a point, and that a dimension count shows that a general choice avoids this
issue; see [Har77, Ch. II, Thm. 8.18].
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This finishes (3).
For (4), the smoothness of p−1(Π) follows from Kleiman–Bertini (assuming that char(k) = 0), and

connectedness holds for all Π [Laz04, Thm. 3.3.3] (Exercise: check this directly in our situation, i.e., check
that given the morphism

I Y P
g

conn. fibers

p

f

2:1

that g−1(Π) is connected.)
Finally, for (5), we have the diagram

p−1(Π)

I G

P

q

p

Fix a line L ∈ G, and consider q−1(L) ↪→ P = P9. Then, q−1(L) is a linear subspace of dimension 6, and for
Π general, we have that q−1(L) ∩Π is one reduced point. The fiber of p−1(Π)→ G over L is therefore one
reduced point. Since G is smooth, we therefore have that the map is birational.

Form now on, we assume that Π satisfies these properties. We have

I ′ I

Y ′ Y

Π P

g′ g

f ′
y

f

We know that I ′ is a smooth, connected variety of dimension 4, and that f ′ is the 2-cyclic cover of Π
ramified along S. Since S is reduced and irreducible, and Ssing = Γ, then Y ′ is reduced and irreducible, and
Y ′sing ⊆ (g′)−1(Γ); this is a set of ten points.

Claim 15.8. If P ∈ (g′)−1)(Γ), then P is a node of Y ′ (that is, the projectivized tangent cone is a smooth
quadric in P3).

Proof. Working locally, let U contain the image of P in Π such that

O
(
(f ′)−1(U)

)
' O(U)[y]

(y2 − s)

and (s = 0) = S. We therefore get the claim via the fact that S has a node at the image of P .

Exercise 15.9. Show that S ⊆ P3 is a quartic symmetroid, i.e., there are linear forms `ij with 1 ≤ i, j ≤ 4,
with `ij = `ji, such that S =

(
det(`ij) = 0

)
.

Now let V be the blowup of Y ′ at the ten nodes, with exceptional divisor E. Then, E is the disjoint
union of Ei, 1 ≤ i ≤ 10, which are isomorphic to the projectivized tangent cone at the corresponding point in
S. By assumption, this is isomorphic to P1 ×P1. In particular, they are smooth, so E is smooth, hence V is
smooth in a neighborhood of E. Thus, V is smooth.

Definition 15.10. V is the Artin–Mumford threefold.

Note 15.11. V is unirational: we had a birational morphism I ′ = p−1(G)→ G, which implies I ′ is rational,
and the fact that I ′ → Y ′ is surjective and Y ′ birational to V implies V is unirational.
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Theorem 15.12 (Artin–Mumford). V is not stably rational.

We will use the following that we will review later.

Recall 15.13. f : X → Y is a Pn-fibration if f is flat, and f−1(y) ' Pn for all y ∈ Y closed. We will show
the following: If Y is smooth, then to every such f , we associate an element α(f) ∈ Br(Y ) such that α(f) = 0
if and only if X is a projective bundle over Y .
• If k = C, we have a surjective morphism

Br(Y )� H3(Y,Z)tors,

which is an isomorphism if c1 : Pic(Y )→ H2(Y,Z) is surjective.

Lemma 15.14. Let d ≥ 2 and |V | is a basepoint-free linear system of hypersurfaces of degree d on Pn. We
then have the following picture:

H |V | ×Pn

|V |
p

where H is the universal hyperplane. Then, p has no rational section.

We will prove the Lemma next time.

Proof of Theorem 15.12. Recall that we have the cartesian square

I ′ Y ′

I ′0 Y ′0 = (Y ′)sm

⊆ ⊆

All fibers of I ′0 → Y ′0 are isomorphic to P1, and I ′0, Y ′0 smooth imply I ′0 → Y ′0 is a P1-fibration (it is flat since
the fibers all have the same dimension).

Claim 15.15. This has no rational section.

If we have such a section, we may assume that the rational section is defined on the locus where g′ : Y ′ → Π
is étale. Such a section takes a point y ∈ Y ′ to a point (g′(y), Ly), where Ly is contained in the quadric
corresponding to g′(y). Let ϕ : Y ′ → Y ′ be the isomorphism over Π that interchanges the two fibers. Now
consider the map y 7→ Ly ∩ Lϕ(y). These two are lines on the same quadric, but in different families, hence
Ly ∩ Lϕ(y) is one point on the quadric corresponding to g′(y). Then, y and ϕ(y) map to the same point, and
so we get a rational map σ : Π 99K P3 such that σ(Q) is a point on the quadric corresponding to Q. This
contradicts the Lemma. Therefore, we have a P1-fibration I ′0 → Y ′0 with no rational sections. In particular,
it is not a P1-bundle. This implies we have a nontrivial element of Br(Y ′0).

It remains to show:
(1) Pic(Y ′0)→ H2(Y ′0 ,Z) is surjective, which would imply that H3(Y ′0 ,Z)tors 6= 0.
(2) H3(V,Z)tors ' H3(Y ′0 ,Z)tors.
(3) Lemma 15.14.

It will take a couple of lectures to prove these statements and the material about Brauer groups that we
need.

16 March 21

We might have a few more lectures after the semester ends. We won’t be able to cover birational rigidity, but
we will try to do examples using Voisin’s techniques, such as those of Totaro and Hassett–Tschinkel.
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16.1 The Artin–Mumford example (continued)

Lemma 15.14. Let V ⊂ H0(Pn,O(d)), d ≥ 2 be a basepoint-free linear system. If we have the universal
hypersurface

Pn

W H |V | ×Pn

|V |

ψ

birational

ϕ

f
p

q

in |V |, then the map f induced by projection has no rational sections.

In the proof, we will argue in terms of cohomology over the complex numbers. But the argument can be
adapted in the language of Chow groups, which works over an arbitrary ground field.

Proof over C. After replacing |V | by a suitable linear subsystem, we may assume that dim|V | = n. Now
giving a rational section s of f is equivalent to giving a closed irreducible subvariety W of H such that
W → |V | is birational (take W = im(s)). We will show this cannot happen using the cohomology of H .

The cohomology of |V | × Pn can be determined by the Künneth formula 9.5. Let α = c1(pr∗1O(1)),
and β = c1(pr∗2O(1)), which both lie in H2(|V | ×Pn,Z). The Künneth formula and the description of the
cohomology of Pn (Proposition 13.1) implies H∗(|V | ×Pn,Z) has a basis αiβj where 0 ≤ i, j ≤ n. Now H
is an effective Cartier divisor on |V | ×Pn with O(H ) = O(1, d). Since |V | is basepoint-free,

H |V | ×Pn

Pn

is a projective subbundle of relative dimension n − 1. The cohomology of Pn plus the cohomology of a
projective bundle (Corollary 13.2) imply H∗(H ,Z) has a basis given by ϕ∗(αiβj) for 0 ≤ j ≤ n, 0 ≤ i ≤ n−1.
Given ψ : W ↪→H we can write

ψ∗(ηW ) =
∑

0≤i≤n−1

ciϕ
∗(αiβn−1−i) ∈ H2n(H ).

This implies that

ϕ∗ψ∗(ηW ) =

n−1∑
i=0

ciϕ∗(ϕ
∗(αiβn−1−i)) =

n−1∑
i=0

ciα
iβn−1−i(α+ dβ).

Note that

p∗(α
iβj) =

{
αi if j = n

0 if j 6= n

and so p∗ϕ∗ψ∗(ηW ) = dc0 ∈ Z ' H0(|V |). Since W → |V | is birational, p∗ϕ∗ψ∗(ηW ) = η|V | = 1 ∈ H0(|V |).
This contradicts the hypothesis that d ≥ 2.

It would be nice to have a more geometric argument, without using cohomology.
We now return to the setting of the Artin–Mumford example, where Lemma 15.14 found use.

Recall 16.1. We recall the construction of the Artin–Mumford example; see Proposition 15.6 for proofs of
the assertions that follow. We considered a general three-dimensional linear system Π in P, the projective
space of quadrics in P3. Using the stratification by rank on Π ⊂ P, we had the following diagram:

I ′

Y ′

Γ S Π

f ′

p′
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where
• S = {singular quadrics in Π} is an irreducible, reduced quartic surface,
• Γ = {quadrics in Π with rank ≤ 2} is a set of ten points, and
• Y ′ is the double cover of Π ramified along S.

S r Γ is smooth, and for every P ∈ Γ, S has a node at P . Its preimage Y ′0 = (g′)−1(Π r Γ) is also smooth. If
Q ∈ (g′)−1(P ) for P ∈ Γ, then Q is a node of Y ′, i.e., its tangent cone is the cone over a smooth quadric.
Letting

E V

Γ Y ′

⊂
π

⊂

be the blowup of the points over Γ in Y ′, we have that E is the union of ten connected components, each
of them isomorphic to P1 × P1. π gives an isomorphism V0 = π−1(Y ′0)

∼→ Y ′0 . V is a smooth projective
threefold. Since I ′ → G(2, 4) was birational, I ′ is rational, hence V is unirational.

Goal 16.2. Show that V is not stably rational by showing that H3(V,Z)tors 6= 0. This implies that V is not
stably rational.

We saw that the fibers of I ′ → Y ′ over Y ′0 are isomorphic to P1. Lemma 15.14 implies that this map
has no rational section. This implies that Br(Y ′0) 6= {1}, and we will show that if Pic(Y ′0) → H2(Y ′0 ,Z) is
surjective, then Br(Y ′0) ' H3(Y ′0 ,Z)tors.

Claim 16.3. This map Pic(Y ′0)→ H2(Y ′0 ,Z) is surjective.

Proof. Y ′0 ' V0 = V r E, and we have the commutative diagram

PicV H2(V,Z)

PicV0 H2(V0,Z)

∼

res

The top horizontal map is an isomorphism, since the exponential sequence

0 −→ Z −→ Oan
V −→ Oan∗

V −→ 0

plus GAGA and the fact that V is unirational, imply that

H1(V,Oan
V ) = 0 = H2(V,Oan

V ).

Hence it is enough to show that res is surjective. We use the long exact sequence on cohomology and the
Thom isomorphism as in (12.5) to obtain the sequence

H0(E,Z) −→ H2(V,Z)
res−→ H2(V0,Z) −→ H1(E,Z)

Since E is the disjoint union of ten P1 ×P1, by the Künneth formula and the fact that H1(P1) = 0, we see
that H1(E,Z) = 0. Hence the restriction map res is surjective.

We therefore conclude that H3(Y ′0 ,Z)tors = H3(V0,Z)tors 6= 0.
Another piece of the same long exact sequence gives

H1(E,Z) H3(V,Z) H3(V0,Z) H2(E,Z)

0

10⊕
i=1

(
H0(P1)×H2(P1)⊕H2(P1)⊗H0(P1)

)
Z⊕20

∼

and we note that Z⊕20 has no torsion. Thus, H3(V,Z)tors = H3(V0,Z)tors 6= 0, hence V is not stably rational.
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16.2 Introduction to étale cohomology

Before moving forward, we need to prove some statements about Brauer groups. To do so, we will need some
facts about étale cohomology. We will at least state everything that we need.

Since the Zariski topology evaluated on a constant sheaf is always trivial, we want something to give
nontrivial cohomology groups for Z, for example.

Idea 16.4. Define an improved version of the Zariski topology that recovers, for example, the singular
cohomology in the case of a complex algebraic variety.

Idea 16.5. Replace open subsets of X by étale maps to X.

Note 16.6. If f : X → Y is an étale morphism of complex algebraic varieties, then fan : Xan → Y an is a local
isomorphism.

Fix X to be a noetherian scheme. We want to look at the category

Ét(X) =
{
f : Y → X

∣∣ f étale
}
.

Example 16.7.
(1) If U is open in X, then U → X is Ét(X).
(2) A finite Galois cover f : Y → X of a finite group G is in Ét(X). Recall that a finite Galois cover is a

finite étale morphism f : Y → X such that G acts on Y over X (on the right) such that∐
g∈G

Yg
∼−→ Y ×X Y

Yg −→ Y ×X Y

y 7−→ (y, y · g)

and each Yg = Y .

Note 16.8. For every finite étale map f : Y → X, there exists Z such that

Z Y X
f

finite Galois cover

Remark 16.9. If
Y Z

X

are in Ét(X), then every morphism Y → Z making the diagram commute is étale.

Definition 16.10 (Étale topology on X). We say that a family (Ui
fi→ U) of objects of Ét(U) is an étale

cover if each Ui
fi→ U is étale, and U =

⋃
i∈I fi(Ui). This notion of a cover form a Grothendieck topology,

since it satisfies the following properties:

1. (U
isom−−−→ V ) is a cover;

2. If (Ui → U)i and (Vij → Ui)j are covers, then (Vij → U)i,j is a cover;

3. If (Ui → U)i is a cover and V → U is in Ét(X), then (Ui ×U V → V )i is a cover.

16.2.1 Presheaves and sheaves in the étale topology

This notion of a Grothendieck topology allows one to define the notions of presheaves and sheaves on the
étale topology.
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Definition 16.11. A presheaf of abelian groups (resp. sets, groups) is a contravariant functor

F : Ét(X) −→ corresponding category.

This functor F is a sheaf if for every cover (Ui → U)i, the diagram

F (U)
∏
i

F (Ui)
∏
i,j

F (Ui ×U Uj)

is an equalizer diagram.

Notation 16.12. If F is a presheaf, s ∈ F (U), and V → U in Ét(X), then we write s|V for the image of s
in F (V ).

Examples 16.13.
(1) Let M be a quasicoherent sheaf on X. Consider the functor

W (M ) : Ét(X) Ab

(Y
f→ X) Γ(Y, f∗M )

Fact 16.14. By faithfully flat descent, W (M ) is a sheaf.

(2) (Constant sheaves) If A is an abelian group, then consider the functor

AX : Ét(X) Ab

(Y
f→ X) A#conn comp of Y

where on the right-hand side, the exponent denotes a direct product. This defines a sheaf.
(3) Given any scheme p : Y → X over X, we get a presheaf

Y : Ét(X) Set

(U
f→ X) HomX(U, Y )

By faithfully flat descent, this is indeed a sheaf. If Y is a group scheme over X, then this defines a
sheaf of groups.

Examples 16.15.
(1) Let Gm = Spec(Z[t, t−1]), so that Hom(R,Gm) ' O(R)∗ with a group structure under multiplication.

Given X, let
Gm,X := Gm ×SpecZ X −→ X.

Then, for all f : Y → X in Ét(X), we have that Gm(Y ) = O(Y )∗.
(2) Let

µn := Spec

(
Z[t, t−1]

(tn − 1)

)
so that Hom(R,µn) = {f ∈ O(R) | fn = 1}. Similarly, we let µn,X := µn ×SpecZ X.

Note 16.16. Suppose k is a field, char(k) - n, and k is separably closed. If A is a k-algebra that is also a
domain, then {f ∈ A | fn = 1} = {f ∈ k | fn = 1}. This implies that µn,X is isomorphic to (Z/nZ)X ,
once we choose an isomorphism Z/nZ ' {f ∈ k | fn = 1}.

(3) Let k be a field, and consider X = Spec k. Then, Ét(X) consists of disjoint unions of SpecK, where
K/k is a finite separable extension. If F is a sheaf on X, then we may put

MK := F (SpecK)
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if K/k is finite separable. Functoriality implies G(K/k) acts on MK . F is a sheaf if and only if for every
L/K, we have MK = (ML)G(L/K). In this case, we define M := lim−→MK . This carries a continuous
action of the Galois group G(ks/k) = G. The assignment F 7→ (M, continuous G-action) gives an
equivalence of categories between sheaves on (Spec k)ét and sets with continuous G-action.

Next time we will talk about exact sequences, cohomology, and then we can talk about Brauer groups.
Once we finish this discussion about Brauer groups, we will then talk about Chow groups, emphasizing two
things: the specialization map, and actions of correspondences.

17 March 23

17.1 Introduction to étale cohomology (continued)

We continue with some background material on étale cohomology. But first, we will state what we used
before from descent theory.

17.1.1 Some statements from descent theory

This follows [Mil80, Ch. 1.2].

Definition 17.1. A morphism f : X → Y of schemes is faithfully flat if it is flat, and is surjective on points.

Exercise 17.2. If X = SpecB → SpecA = Y , then f is faithfully flat if and only if B is a faithfully flat
A-module, i.e., every complex

M ′ −→M −→M ′′

of A-modules is exact if and only if

M ′ ⊗A B −→M ⊗A B −→M ′′ ⊗A B

is exact.

Proposition 17.3. If A→ B is faithfully flat, and M is a module over A, then

0 M M ⊗A B M ⊗A (B ⊗A B)

m m⊗ 1

m⊗ b m⊗ (b⊗ 1− 1⊗ b)

i

is exact.

Idea. Apply −⊗A B; this reduces to the same question for B
j→ B ⊗A B given by b 7→ b⊗ 1, which has a

section p : B ⊗A B → B, i.e., p ◦ j = id.

This can be used to recover sheaves on Y from sheaves on X, and similarly for morphisms:

Proposition 17.4. If f : X → Y is faithfully flat of finite type, then f is a strict epimorphism, i.e., for
every scheme Z, the sequence

Hom(Y,Z) Hom(X,Z) Hom(X ×Y X,Z)

ϕ ϕ ◦ f

is exact.

It is easy to deduce this from Proposition 17.3 if X,Y, Z are affine; otherwise, you have to patch things
together. Proposition 17.3 implies that if F is a quasi-coherent sheaf on X, the assignment sending U → X
étale to Γ(U, f∗F ) gives an étale sheaf as we stated in Fact 16.14. The other example we had is of representable
sheaves:
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Proposition 17.5. If W → X, then the assignment sending Y → X étale to HomX(Y,W ) gives an étale
sheaf.

Example 17.6. The scheme Gm → X gives an étale sheaf on X.

Proposition 17.3 also implies the following:

Proposition 17.7. If f : X → Y is quasi-compact and faithfully flat, then to give a sheaf M on Y is
equivalent to giving a quasi-coherent sheaf N on X, together with an isomorphism ϕ : p∗1N

∼→ p∗2N that
satisfies a compatibility condition

p∗13(ϕ) = p∗23(ϕ) ◦ p∗12(ϕ)

where notation is as below:

X ×Y X ×Y X X ×Y X X Y
p12

p13

p23

p1

p2

f

Note 17.8. Given M , we have N = f∗(M ), and ϕ comes from the fact that both p∗1N and p∗2N are
isomorphic to pullback of M by f ◦ p1 = f ◦ p2.

17.1.2 Presheaves and sheaves in the étale cohomology (continued)

Let Pshét denote the category of étale presehaves of abelian groups. It is an abelian category, and the inclusion

Shét Pshét

of the category of étale sheaves of abelian groups has a left adjoint functor associating an étale sheaf to an
étale presheaf. This adjoint functor can be used to show that Shét has cokernels, and so it is an abelian
category.

Note 17.9. A complex F ′
α→ F

β→ F ′′ of étale sheaves is exact if for all Y → X in Ét(X) and s ∈ F (Y )
such that β(s) = 0, we have that for all y ∈ Y , there exists Z → Y containing y in its image such that
s|Z ∈ im(F ′(Z)→ F (Z)).

Example 17.10 (Kummer sequence). Suppose n is invertible on X. We then claim we have an exact
sequence

0 −→ µn −→ Gm
·n−→ Gm −→ 0

where µn(Y ) = {f ∈ O(Y ) | fn = 1}, and Gm(Y ) = {f ∈ O(Y ) | f invertible}.
For surjectivity of Gm

·n→ Gm, let U = Spec(A)→ X be étale, and consider a ∈ A∗ = Gm(U). Then, the
ring homomorphism A → B = A[x]/(xn − a) is étale and induces a morphism SpecB → SpecA which is
étale and surjective, and in B, there exists t ∈ B∗ such that a = tn.

We now discuss cohomology, which is possible because of the following facts:
• Shét(X) has enough injectives.
• If Y → X is in Ét(X), then {F 7→ F (Y )} is a left exact functor whose right-derived functors are

written Hi
ét(Y,F ).

Remark 17.11. If F is an étale sheaf on X, then F also gives a sheaf on X with respect to the Zariski
topology, and we have canonical maps

Hi
Zar(X,F ) −→ Hi

ét(Y,F ).

Examples 17.12.
1. If F is a quasi-coherent sheaf on X, and W (F ) is the induced étale sheaf sending f : Y → X étale to

Γ(Y, f∗F ), then the canonical map Hi(X,F )→ Hi
ét(X,W (F )) is an isomorphism.

2. If F = Gm, then
Pic(X) = H1(X,O∗X) = H1

Zar(X,Gm) −→ H1
ét(X,Gm)

is an isomorphism (we will show this in a more general setting later, for arbitrary GLn).
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3. If X = Spec(k), then there is a correspondence

{
étale sheaves

on X

}  k-vector spaces V
with a continuous action

of G = G(ksep/k)

∼

such that the correspondence F ↔M satisfies Γ(X,F ) = MG. Thus, the corresponding cohomology
groups are the Galois cohomology groups.

The interesting new invariants come from the cohomology of constant sheaves, which are not quasi-coherent.

Theorem 17.13. If X is a smooth complex algebraic variety, and A is a finite abelian group, then there is
an isomorphism

Hi
ét(X,A) ' Hi(Xan, A),

where on the right-hand side, we have singular cohomology.

We will postpone the discussion of non-commutative sheaves.

17.2 Brauer group

Definition 17.14. If X is a noetherian scheme, then the (cohomological) Brauer group is

Br(X) := H2
ét(X,Gm)tors.

Fact 17.15. If X is a smooth variety over a field k, then H2
ét(X,Gm) is torsion (we will not need this).

There is a proof in Milne’s book.

We now have to do two things: connect Brauer groups with Pn-fibrations, and then connect it with
torsion in singular cohomology.

17.2.1 Connection with singular cohomology

We now work over the complex numbers C, and let X be a smooth algebraic variety.

Notation 17.16. If A is an abelian group, we denote An = {a ∈ A | na = 0}.

Proposition 17.17. For each n > 0, we have an exact sequence

0 −→ Pic(X)/n · Pic(X)
α−→ H2(X,Z/nZ) −→ Br(X)n −→ 0.

Proof. We use the Kummer exact sequence

0 −→ µn −→ Gm
·n−→ Gm −→ 0

and the fact that µn ' Z/nZ after choosing a primitive nth root of unity. Part of the long exact sequence has

H1(X,Gm) H1(X,Gm) H2
ét(X,Z/nZ) H2

ét(X,Gm) H2
ét(X,Gm)

PicX H2(X,Z/nZ)

·n

∼ ∼

·n

Remark 17.18. The map α is given by taking L to the image of c1(L) via H2(X,Z)→ H2(X,Z/nZ).

We used the following in the Artin–Mumford example:

Proposition 17.19. We have a surjective morphism

Br(X) −→ H3(X,Z)tors

which is an isomorphism if c1 : PicX → H2(X,Z) is surjective.
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Proof. For n > 0, we have the short exact sequence in the top row below:

0 Pic(X)/n · Pic(X) H2(X,Z/nZ) Br(X)n 0

PicX H2(X,Z)

α

c1

β

It is clear that im(α) ⊆ im(β) and this is an equality if c1 is surjective. We therefore get a morphism
coker(α) → coker(β), which is an isomorphism if c1 is surjective. Now taking the long exact sequence for
cohomology for

0 −→ Z
·n−→ Z −→ Z/nZ −→ 0

we obtain

H2(X,Z)
·n−→ H2(X,Z)

β−→ H2(X,Z/nZ) −→ H3(X,Z)
·n−→ H3(X,Z)

hence coker(β) ' H3(X,Z)n. We therefore get a surjective morphism Br(X)n � H3(X,Z)n, which is
an isomorphism if c1 is surjective. Taking the union on both sides, we obtain a surjective morphism
Br(X)� H3(X,Z)tors, which is an isomorphism if c1 is surjective.

17.2.2 Brauer groups and Pn-fibrations

The last ingredient needed for the Artin–Mumford example is the following:

Goal 17.20. Attach to a Pn-fibration f : X → Y an element in the Brauer group Br(Y ), which is trivial if
and only if f is isomorphic to a projective bundle.

The idea is to prove Pn-fibrations are locally trivial in the étale topology, and use this to associate a
certain cohomology class to the Pn-fibration.

Recall 17.21. Suppose k = k. Then, f : X → Y is a Pn-fibration if f is flat, proper, and f−1(y) ' Pn for
all y ∈ Y .

Proposition 17.22. Given a Pn-fibration f : X → Y and a point y ∈ Y , there is an étale morphism
ϕ : V → Y such that y ∈ im(ϕ), and an isomorphism X ×Y V ' V ×k Pn over V , i.e., an isomorphism
fitting into the commutative diagram

X ×Y V

V

V ×Pn

pr2

∼

pr1

The key point is that Pn is rigid, i.e., it has no nontrivial infinitesimal deformations. By a general result
[Ser06, Cor. 1.2.15], this follows from the fact that Pn is smooth, and H1(Pn, TPn) = 0. We will argue
directly.

Step 1. Let (R,m, k) be a local ring, let X be proper flat over R, and consider the cartesian diagram

X X0

SpecR Spec k

If X0 ' Pn
k , then, X ' Pn

R.

Proof. For s ≥ 0, we let

Xs−1 Xs X

SpecR/ms SpecR/ms+1 SpecR

y y

We want to show by induction on s ≥ 0 that there exists Ls ∈ Pic(Xs) such that
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(1) Ls|Xs−1 ' Ls−1 for s ≥ 1;
(2) H0(Xs,Ls)→ H0(Xs−1,Ls−1) is surjective for s ≥ 1;
(3) (Xs,Ls) ' (Pn

R/ms+1 ,O(1)).

We have L0 by hypothesis, since we only need (3) to be satisfied.
We therefore want to prove the inductive step; to do so, we will compare the Picard groups on Xs−1 and

Xs to construct Ls from Ls−1. Using flatness of X over R, we have a short exact sequence

0 −→ ms/ms+1 ⊗R OX0
−→ OXs −→ OXs−1

−→ 0

of sheaves on OX , where we note ms/ms+1 ⊗R OX0 = IXs−1/IXs . Since X0 ' Pn, we have

H1(X0,OX0) = H2(X0,OX0) = 0,

and so this short exact sequence induces an exact sequence

0 −→ ms/ms+1 ⊗R OX0
−→ O∗Xs −→ O

∗
Xs−1

−→ 0.

The associated long exact sequence implies Pic(Xs)
∼→ Pic(Xs−1) via restriction, i.e., there exists Ls such

that (1) is satisfied. Tensoring with Ls yields the exact sequence

H0(Xs,Ls) −→ H0(Xs−1,Ls−1) −→ ms/ms+1 ⊗H1(Pn,OPn(1)) = 0

which implies (2) is satisfied. In particular, we get sections

s0, . . . , sn ∈ H0(Xs,Ls)

lifting a basis of H0(Xs−1,Ls−1) over R/ms, and so we have a diagram

0 ms/ms+1 · 〈s0, . . . , sn〉 R/ms+1 · 〈s0, . . . , sn〉 R/ms · 〈s0, . . . , sn〉 0

0 ms/ms+1 ⊗R L0 Ls Ls−1 0

The surjectivity of the left and right vertical maps implies s0, . . . , sn generate Ls, and so we have a morphism

ϕs : Xs −→ Pn
R/ms+1 .

We know that this becomes an isomorphism after restricting to SpecR/ms. Using the fact that Xs is flat
over R/ms+1, this implies that ϕs is an isomorphism [Stacks, Tag 0CF4].

We will continue next time to show the assertion still holds after going to the completion by using the
theorem on formal functions, and then we have to descend to an étale map by using Artin approximation.

18 March 28

18.1 Brauer groups (continued)

We hope to finish the Brauer group stuff today, then move on to Chow groups.

18.1.1 Brauer groups and Pn-fibrations (continued)

Recall 18.1. Let X → Spec(R) be a flat morphism, where R is complete and local, and suppose we have a
commutative diagram

X X0 ' Pn
k

Xr

Spec(R) Spec k

Spec
(
R/mr+1

R

)
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We want to show that any such X is isomorphic to Pn
R.

So far, we have shown that for all n ≥ 0, there exists Lr ∈ Pic(Xr) such that
• Lr|Xr−1

' Lr−1,
• H0(Xr,Lr)� H0(Xr−1,Lr−1),

• s(r)
0 , . . . , s

(r)
n ∈ H0(Xr,Lr) lift corresponding sections of Lr−1, and define an isomorphism

(Xr,Lr) ' (Pn
R/mr+1 ,O(1)).

Then, the Grothendieck existence theorem [EGAIII1, Thm. 5.1.4] implies there exists L ∈ Pic(X) such that
L |Xr ' Lr for all r. Since R is complete, the theorem on formal functions implies

H0(X,L ) ' lim←−H
0(Xr,Lr),

and so in particular, we get sections s0, . . . , sn ∈ Γ(X,L ) that lift s
(r)
0 , . . . , s

(r)
n . They must generate L . We

therefore get a morphism ϕ : X → Pn
R. Since the induced morphisms Xr → Pn

R/mr+1 are isomorphisms, we

see that ϕ is an isomorphism [EGAIII1, Thm. 5.4.1].

We want to use this to show that if we have a Pn-fibration, then it is étale-locally trivial.

Theorem 18.2. If f : X → Y is a Pn-fibration, then for all y ∈ Y , there is an étale morphism V → Y such
that y is in the image of V , such that X ×Y V → V is isomorphic over V to Pn × V .

We have everything that we need, modulo the Artin approximation theorem.

Proof. Consider

Xy X

Spec ÔY,y Y

y

The previous result implies Xy ' Pn × Spec ÔY,y. Now consider the henselization OhY,y:

Xy X

Xh
y

Spec ÔY,y Y

SpecOhY,y

where we recall that the henselization is
OhY,y = lim−→

(B,q)

Bq,

where the limit is over pairs (B, q) such that SpecB → Y is étale, q ∈ SpecB maps to y. Artin Approximation
[Art69] implies that Xh

y ' Pn × SpecOY,y. This implies that in fact, there exists (B, q) as in the direct limit,
such that X ×Y SpecB → SpecB is isomorphic to Pn × SpecB over SpecB.

The goal now is to show that given a Pn-fibration, we get a class in the Brauer group.

18.2 Introduction to first cohomology of non-abelian sheaves

We want to define
Ȟ1

ét(X,G).

As in the usual case of coherent cohomology, we can define a version of Čech cohomology for the étale topology.
But we want this to work for a sheaf G of not necessarily abelian groups.
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Definition 18.3. Let U = (Ui → X)i be an étale cover of X. Let Uij = Ui×XUj , and Uijk = Ui×XUj×XUk.
Then, a 1-cocycle of G with respect to U is a collection of elements uij ∈ G(Uij)i,j such that uij |Uijk =
uik|Uijk · ukj |Uijk . Two cocycles (uij), (vij) are cohomologous if there exists a family (pi ∈ G(Ui))i such that

uij = pi|Uijvijp−1
j |Uij for all i, j. The set of 1-cocycles up to this equivalence relation is Ȟ1

ét(U/X,G). This is
a pointed set, with distinguished element represented by (1G(Uij )i,j . We then define

Ȟ1
ét(X,G) := lim−→

U
Ȟ1

ét(U/X,G).

If G is a sheaf of abelian groups, this is an abelian group, and there is a canonical isomorphism

Ȟ1
ét(X,G) ' H1

ét(X,G).

Note such an isomorphism holds for arbitrary topological spaces, but just for H1. Given suitable
assumptions, such an isomorphism holds for higher cohomology as well.

We list some properties of Ȟ1
ét(X,−):

• This is functorial: If G→ G′ is a morphism of sheaves of groups, then there is an induced morphism
Ȟ1

ét(X,G)→ Ȟ1
ét(X,G

′).
• Suppose 1 → G′ → G → G′′ → 1 is an exact sequence, i.e., for every U → X étale, we have
G′(U) = ker(G(U) → G′′(U)), and for every s ∈ G′′(U) and every x ∈ U , there exists an étale
neighborhood V → U of x such that s|V ∈ im(G(V )→ G′′(V )). Then, there is an exact sequence

0 H0
ét(X,G

′) H0
ét(X,G) H0

ét(X,G
′′)

Ȟ1
ét(X,G

′) Ȟ1
ét(X,G) Ȟ1

ét(X,G
′′)

of pointed sets, i.e., the inverse image of the distinguished element is the image of the previous map.
• If G′(U) ⊆ Z(G(U)) for all U , then there is another connecting map Ȟ1

ét(X,G
′′) → H2

ét(X,G
′) such

that the sequence stays exact.

Remark 18.4. For every G, we have a canonical map

Ȟ1
Zar(X,G) −→ Ȟ1

ét(X,G).

Proposition 18.5. If G = GLn, then the map

Ȟ1
Zar(X,G) −→ Ȟ1

ét(X,G)

is a bijection of pointed sets.

Note that the left-hand side is the pointed set of isomorphism classes of rank n vector bundles. Last time, we
stated the case n = 1, in which case we had an isomorphim of groups, and the left-hand side was Pic(X).

This is a bit of an involved statement. This is very special for GLn, and fails for PGL, for example.

Sketch of Proof. There is a Leray spectral sequence connecting the two sites. Modulo that, the key ingredient
is the following: If X = SpecA, where A is a local Noetherian ring, then Ȟ1

ét(X,GLn) = {∗}. So it is enough
just to show that if f : SpecB → SpecA is an étale cover, and g ∈ GLn(Spec(B ⊗A B)) is a 1-cocycle, then
g is cohomologous to (1).

Spec(B ⊗A B ⊗A B) Spec(B ⊗A B) SpecB SpecA
p12

p13

p23

p1

p2

f

We can interpret g as an isomorphism p∗1N
ϕ→ p∗2N , where N = O⊕nSpecB . The condition for being a cocycle

is a compatibility condition between the pullbacks of ϕ via p12, p13, p23. Faithfully flat descent implies that
there is a quasi-coherent sheaf M on SpecA such that f∗M ' O⊕nSpecB and ϕ is the canonical isomorphism.

Now f is faithfully flat, so there exists M locally free on SpecA, where A is local, such that M ' O⊕nSpecA.
It is then easy to deduce that g is cohomologous to (1).
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The moral of the story is that Zariski-triviality is the same as étale-triviality for GLn.

Proposition 18.6. We have a natural bijection{
Isomorphism classes

of Pn-fibrations

}
' Ȟ1

ét(X,PGLn+1)

where the distinguished element on the left-hand side is X ×Pn.

Proof. Let U = (Ui → X)i be an étale cover, and let g = (gij) be a 1-cocycle corresponding to this cover. Let
Xi = Ui ×Pn. For all i, j, we have

Xi ×Ui Uij Uij ×Pn Uij ×Pn Xi ×Uj Uij
(x, t) (x, gij(x)t)

∼

By faithfully flat descent, this data gives a unique morphism f : Y → X such that Y ×X Ui ' Xi. It is then
clear that this is a Pn-fibration. The fact that we have a bijection between the two sets follows from the
theorem saying that every Pn-fibration is étale locally trivial and the fact that IsomU (U ×Pn, U ×Pn) '
Hom(U,PGLn+1(k)).

You can do the same thing with vector bundles. However, there are more automorphisms of An, so you
need to restrict the class of objects on the left-hand side.

Remark 18.7. Similarly, if we consider “étale vector bundles,” i.e., morphisms f : Y → X such that there
exists an étale cover (Ui → X)i such that Y ×X Ui → Ui is isomorphic to Ui ×An over An, such that the
glueing isomorphisms Uij ×An → Uij ×An are given by morphisms Uij → GLn. Then,{

Isomorphism classes of rank n
étale vector bundles

}
Ȟ1

ét(X,GLn+1)

{
Isomorphism classes of rank n

vector bundles

}
Ȟ1

Zar(X,GLn+1)

∼

∼

∼

Remark 18.8. An example of Pn-fibrations are projective bundles P(E )→ X.

Theorem 18.9. If char(k) - n+ 1, then we have a map{
Isomorphism classes

of Pn-fibrations

}
α−→ Br(X)

such that α−1(0) = {projective bundles}/isom.

Remark 18.10. PGLn+1(k) is the distinguished affine open subset of P(Mn+1(k)∗) defined by the det(aij) 6= 0.
In particular, we have an exact sequence of sheaves

0 −→ Gm −→ GLn+1 −→ PGLn+1 −→ 0,

which is exact even in the Zariski topology, since the map

GLn+1(k) −→ PGLn+1(k)

is locally trivial in the Zariski topology, with fiber k∗.

Proof of Theorem 18.9. Since Gm(U) ⊆ Z(GLn(U)) for all U , there is an exact sequence of pointed sets

Ȟ1
ét(X,GLn+1) −→ Ȟ1

ét(X,PGLn+1)
α−→ H2

ét(X,Gm).

Claim 18.11. im(α) ⊆ H2
ét(X,Gm)tors = Br(X).
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We have a commutative diagram:

0 µn+1 SLn+1 PGLn+1 0

0 Gm GLn+1 PGLn+1 0

Note that the top sequence is exact in the étale topology, since SLn+1(k) → PGLn+1(k) is étale and
surjective (this is where the characteristic assumption is used). This implies that im(α) ⊆ im(H2

ét(X,µn+1)→
H2

ét(X,Gm)) ⊆ Br(X).
Finally, given f : Y → X a Pn-fibration, we have α(f) = 0 if and only if f lies in the image of

Ȟ1
ét(X,GLn+1) ' {rank (n+ 1)-vector bundles on X}/isom. But this is equivalent to saying that f is

isomorphic to some P(E ).

This completes the story for the Artin–Mumford example.
We are now moving to the last part of the course. We will review Chow groups; we will recall the

definitions and results that we need. It is not hard to go through all the details on your own. We will also
talk about the specialization map (to go from the generic to special fiber), and also about the actions of
correspondences, for example to prove that two birational varieties have isomorphic Chow groups of 0-cycles.

19 March 30

19.1 Introduction to Chow groups

We work over a field k, and all schemes will be separated and of finite type over k.

Definition 19.1. If X/k, then the group of p-cycles is

Zp(X) := free abelian group on p-dimensional irreducible closed subsets of X.

If V ⊂ X is such a closed subset, then we denote its class in Zp(X) as [V ]. We also define

Z∗(X) :=
⊕
p≥0

Zp(X).

Example 19.2. Let Y ⊂ X have pure dimension, and let dim(Y ) = p. Then,

[Y ] =
∑
V⊂Y

irred. comp.

`(OY,V ) · [V ] ∈ Zp(X).

Example 19.3. Let W ⊂ X be an integral subscheme, where dimX = p+ 1. Let ϕ ∈ k(W ) r {0}. Then,
we define

div(ϕ) =
∑
V⊂W

codim 1

ordV (ϕ)[V ] ∈ Zp(X),

where denoting R = OW,Y , which is a local domain of dimension 1, and writing ϕ = a
b for a, b ∈ R, we define

ordV (ϕ) = `(R/(a))− `(R/(b)).

If R is a DVR, this matches the usual definition. One can show the following:
• This definition of ordV is independent of a, b;
• There are only finitely many V such that ordV (ϕ) 6= 0;
• ordV (ϕψ) = ordV (ϕ) + ordV (ψ).
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Definition 19.4. We say that α, β ∈ Zp(X) are rationally equivalent (α ∼rat β) if

α− β =

n∑
i=1

ni div(ϕi)

where ni ∈ Z, and 0 6= ϕi is a rational function on some (p+ 1)-dimensional integral subscheme. Then, the
pth Chow group of X is

CHp(X) := Zp(X)/ ∼rat .

We also denote

CH∗(X) :=
⊕
p≥0

CHp(X).

Example 19.5.
1. If dimX = n, then CHn(X) = Zn(X) is free with basis given by the irreducible components of X of

dimension n.
2. If X is normal of dimension n, then Zn−1(X) is the group of Weil divisors on X, and CHn−1(X) = Cl(X).

One should think about Chow groups as similar to homology, not cohomology. There is a cycle class map
from CH∗ → H∗, but note that Chow groups are actually very subtle (including CH0).

19.1.1 Operations on Chow groups

Proper push forward Let f : X → Y . We then define a map

f∗ : Zp(X) −→ Zp(Y )

[V ] 7−→

{
deg(V/f(V )) · [f(V )] if dim f(V ) = dimV

0 otherwise

where V is an irreducible closed set in X. We then extend by linearity. We also have a map

f∗ : Z∗(X) −→ Z∗(Y ).

We want to descend this definition to Chow groups. One can show that if W ⊂ X has dimension p+ 1,
and ϕ ∈ k(W ) r {0}, then we have

f∗(div(ϕ)) =

{
div(Norm(ϕ)) if dim f(W ) = dimW

0 otherwise

Here, the norm is taken with respect to the finite field extension k(f(W )) ↪→ k(W ). We therefore get
homomorphisms

f∗ : CHp(X) −→ CHp(Y ),

f∗ : CH∗(X) −→ CH∗(Y ).

Example 19.6. If X is a complete variety, then there is a proper map X → Spec k, and so there is a degree
morphism

deg : CH0(X) CH0(Spec k) ' Z

r∑
i=1

ni[pi]
r∑
i=1

ni deg(k(pi)/k)

for points pi ∈ X. If k = k, then the right-hand side is just the number of points (counted with multiplicity)
in X.

Remark 19.7. If X
f→ Y

g→ Z for f, g proper, then (g ◦ f)∗ = g∗ ◦ f∗ by definition (use that degrees of field
extensions are multiplicative).
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Flat pullback Suppose f : X → Y is flat of relative dimension d. This means all fibers have a fixed pure
dimension d. For example, if Y is irreducible and X has pure dimension, then a flat morphism f has relative
dimension dimX − dimY . By definition, if Z ⊆ Y has pure dimension p, then f−1(Z) has pure dimension
p+ d. We can then define:

f∗ : Zp(Y ) −→ Zp+d(X)

[V ] 7−→ [f−1(V )]

where f−1(V ) is the scheme-theoretic inverse image; we extend by linearity. One can show that if Z is any
scheme of pure dimension p, then

f∗([Z]) = [f−1(Z)]. (19.1)

Also, one can show that f∗(α) ∼rat 0 if α ∼rat 0, so we get f∗ : CHp(Y )→ CHp+d(X).

Note 19.8. If g : Y →W is flat of relative dimension e, then

f∗ ◦ g∗ = (g ◦ f)∗ : CHp(W ) −→ CHp+d+e(X).

There is a more complicated operation given by Gysin maps, but we will do this next time.
We give some examples. The easiest proper map is a closed immersion, in which case you just view the

subvariety as living in the larger space, and the easiest flat morphism is an open immersion, in which case
pullback is just restriction.

Example 19.9. Suppose Y is a closed subscheme of X, and let U = X r Y . Let i : Y ↪→ X, j : U ↪→ X be
the inclusion maps. Then, we have an exact sequence

Zp(Y )
i∗−→ Zp(X)

j∗−→ Zp(U) −→ 0,

which you can check using the definitions. This immediately implies that on Chow groups, we have an exact
sequence

CHp(Y )
i∗−→ CHp(X)

j∗−→ CHp(U) −→ 0.

The only thing you need to check is exactness at CHp(X) (Exercise). This is an analogue of the long exact
sequence on cohomology. However, it is only a piece: ideally, you would want to continue it to the left.

Remark 19.10. Proper push-forward and flat pull-back are compatible in the following sense: Suppose have a
diagram

X ′ X

Y ′ Y

f ′ f

g

flat
rel dim n

then g∗f∗ = f ′∗g
′∗.

Example 19.11. For every n ≥ 1 and every X, the projection π : X ×An → X (which is flat of relative
dimension n) induces a map π∗ : CHp−n(X)→ CHp(X ×An) that is surjective. In particular, if X = {pt},
then CHi(A

n) = 0 for all i 6= n, and CHn(An) ∼= Z.

Proof. By induction on n, it suffices to consider the case n = 1. The exact sequence in Example 19.9 implies
that if Y ↪→ X is a closed subscheme, and U = X r Y , then the assertion for Y and U imply the assertion
for X. By induction on dimension, we may assume that X is affine.

Let V ↪→ X ×A1 be irreducible and reduced of dimension p. Let

V X ×A1

W = π(V ) X

π
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Then, V ↪→W ×A1. If dim(W ) = p− 1, then V = W ×A1, so [V ] = f∗([W ]). Otherwise, if dim(W ) = p,
let R = O(W ). Then, V is defined by an ideal q ⊆ R[t]. The map V →W in the diagram

V W ×A1

W

is dominant, so q∩R = (0), and for some f ∈ R[t], we have q ·K[t] = f ·K[t], which is a nonzero prime ideal.
Then,

div(f) = [V ] +

r∑
i=1

ni · [Wi ×A1]

for some irreducible closed Wi ⊆W .

Note the proof is exactly what you do for class groups.
We now calculate the Chow groups of Pn.

Example 19.12 (Chow groups of Pn). We have a closed immersion Pn−1 ↪→ Pn with complement An.
Then, Examples 19.9 and 19.11 imply that CHi(P

n−1)� CHi(P
n) for i 6= n, and so by induction on n, if

Li is an i-dimensional linear subspace of Pn, 0 ≤ i ≤ n, then CHi(P
n) = Z · [Li].

Claim 19.13. [Li] is a free generator of CHi(P
n).

If i = n, this is trivial, and the case when i = n− 1 is well-known. If i ≤ n− 2, then suppose

d[Li] =

r∑
j=1

nj · div(ϕj),

where ϕj are rational functions on some Yj of dimension i+ 1. Let Y =
⋃r
j=1 Yj , and let W ⊆ Pn be a linear

subspace dimension n− i− 2 such that W ∩ Y = ∅. The projection with center W then induces a morphism
f : Y → Pi+1, which is proper since Y is complete. Then,

f∗(d[Li]) = d · [hyperplane] ∼rat 0,

which implies d = 0 by using the i = n− 1 case.

Other constructions We also discuss other constructions, which are more elementary.

Remark 19.14. If K/k is a field extension, then there is a morphism

Zp(X) −→ Zp(XK)

[V ] 7−→ [VK ]

where XK := X ×Spec k SpecK, which induces a morphism CHp(X)→ CHp(XK). This is very related to
flat pullback, but is not exactly the same, since K/k can be an infinite extension. This morphism is not
necessarily an isomorphism: for example, even if CH0(X) = Z, we could have a much larger CH0(XK) after
taking an infinite extension K/k.

Remark 19.15. If X,Y are schemes over k, then given V p ⊂ X and W q ⊂ Y irreducible, one can take
[V ×W ] ∈ Zp+q(X × Y ). This gives a morphism of cycle groups

Zp(X)⊗ Zq(Y ) −→ Zp+1(X × Y ),

which descends to a map of Chow groups

CHp(X)⊗ CHq(Y ) −→ CHp+1(X × Y ).

This is compatible with proper pushforward and flat pullback.

84



19.1.2 Chern classes

We will leave Gysin maps for next time, and now talk about Chern classes. We want a way to act on Chow
groups using some analogue of the cap product.

If E is a rank n locally-free sheaf on X, then the Chern classes ci(E ) are defined as maps

ci(E ) ∩ − : CHp(X) −→ CHp−1(X).

Case of line bundles The Chern class c1(L) for a line bundle L is given by a homomorphism

CHp(X) −→ CHp−1(X)

uniquely characterized by:
(1) If L = O(D) for an effective Cartier divisor D on X, and V ⊂ X is irreducible, reduced, and of

dimension p such that V 6⊆ Supp(D), then

c1(L) ∩ [V ] = [D ∩ V ].

(2) c1(L⊗ L′) = c1(L) + c1(L′).
(3) (Projection formula) If f : Y → X is proper, then

f∗
(
c1(f∗L) ∩ α

)
= c1(L) ∩ f∗(α)

for every α ∈ CH∗(Y ).
(4) If f : Y → X is flat of relative dimension d, then

c1(f∗L) ∩ f∗(α) = f∗
(
c1(L) ∩ α

)
for every α ∈ CH∗(X).

(5) If L,L′ ∈ PicX, then
c1(L) ∩

(
c1(L′) ∩ α

)
= c1(L′) ∩

(
c1(L) ∩ α

)
for all α ∈ CH∗(X).

Using first Chern class actions of line bundles, one can compute the Chow groups of a projective bundle.

Proposition 19.16. If E is a rank r locally free sheaf on X, and π : P(E )→ X is the associated projective
bundle, then

r−1⊕
i=0

CHp−r(X) −→ CHp(P(E ))

(α0, . . . , αr−1) 7−→
r−1∑
i=0

c1
(
O(1)

)r−1−i ∩ π∗α

is an isomorphism.

This is similar to what we had for singular cohomology. You can prove something similar for blowups.

Chern classes of arbitrary vector bundles We start with the following basic fact:

Fact 19.17. The description of CH(P(E )) implies that there exist unique linear maps ci(E ) : CHp(X)→
CHp−i(X) such that

r∑
i=0

(−1)ic1
(
O(1)

)r−i ∩ (ci(E ) ∩ α
)

= 0

for all α ∈ CH∗(X), where c0(E ) = id and ci(E ) = 0 for all i > r.

The basic property of Chern classes is the following multiplicative formula:
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The Whitney formula 19.18. Given a short exact sequence

0 −→ E ′ −→ E −→ E ′′ −→ 0

of locally free sheaves, we have

cp(E ) =
∑
i+j=p

ci(E
′)cj(E

′′),

where the product on the right-hand side is given by composition of maps on Chow groups. In particular, if
E has a filtration with successive quotients L1, . . . , Lr ∈ PicX, then cp(E ) is the pth symmetric function of
c1(L1), . . . , c1(Lr).

Remark 19.19. By taking iterates of projective bundles, there exists a smooth morphism f : Y → X of some
relative dimension, such that f∗E has a filtration with rank 1 quotients, and f∗ : CH∗(X) → CH∗(Y ) is
injective. This is what you use to prove properties of Chern classes by reducing to the case of when all given
vector bundles have such a filtration.

Next time, we will discuss the most interesting operation defining intersection products. We will then
discuss correspondences.

20 April 4

20.1 Introduction to Chow groups (continued)

Last time we discussed the definition of Chow groups, proper pushforwards, and flat pullbacks.

Exercise 20.1. If f : X → Y is finite and flat of degree d (so that rkOY f∗OX = d), then

f∗
(
f∗(α)

)
= dα

for all α ∈ CH∗(Y ).

Exercise 20.2. Let f : X → Y be a morphism, and suppose Y is an integral scheme. Consider

Xη X

Spec k(η) Y 3 η gen pt

y
f

Then,
Ap(Xη) ' lim−→

U

Ap+dim(Y )

(
f−1(U)

)
,

where the direct limit runs over all open sets U ⊂ Y with transition maps

Ap+dim(Y )

(
f−1(V )

)
−→ Ap+dim(Y )

(
f−1(U)

)
for all open inclusions U ⊆ V given by restriction. We will use this pretty often.

The interesting operation on Chow groups is the intersection product.

20.1.1 Refined Gysin maps

Goal 20.3. Define “intersection operations.”

Suppose i : X ↪→ Y is a regular embedding of codimension d, which is a closed immersion that is locally
defined by a regular sequence of length d. Given any cartesian diagram

X ′ Y ′

X Y

y

i
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we will define a Gysin map

i! : CH∗(Y
′) −→ CH∗(X

′)

CHp(Y
′) −→ CHp−d(X

′)

We will not define this since it is a bit involved, but will mention a special case. Note that you cannot define
this on the level of cycles: you need to work up to rational equivalence.

Example 20.4 (Special Case). If V ⊆ Y ′ is irreducible and reduced such that V ×Y X → V is also a regular
embedding of codimension d, then i!([V ]) = [V ×Y X].

Properties 20.5.
(1) Compatibility with proper pushforwards and flat pullbacks. Consider the commutative diagram with

cartesian squares

X ′′ Y ′′

X ′ Y ′

X Y

g
y

f

j

y

i

where i is regular of codimension d. If f is proper, then

i!f∗ = g∗i
! : Ap(Y

′′) −→ Ap−d(X
′).

If f is flat of relative dimension m, then

i!f∗ = g∗i! : Ap(Y
′) −→ Ap−d+m(X ′).

If j is another regular embedding of codimension d, then

i! = j! : Ap(Y
′′) −→ Ap(X

′′).

(2) Functoriality. If

X ′ Y ′ Z ′

X Y Z

y y

i j

is a commutative diagram with cartesian squares, such that i is a regular embedding of codimension d,
and j is a regular emebdding of codimension e, so that j ◦ i is a regular embedding of codimension d+ e,
then

(j ◦ i)! = i! ◦ j! : A∗(Z
′) −→ A∗(X

′).

(3) Commutation of Gysin maps. Consider the following diagram with cartesian squares:

U ′ V ′ W ′

U V W

X Y

y y
j

y

i

If i is a regular embedding of codimension d, and j is a regular embedding of codimensin e, then

i! ◦ j! = j! ◦ i! : A∗(V ) −→ A∗(U
′).
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(4) Self-intersection formula. Suppose i : X ↪→ Y is a regular embedding of codimension d. Let α ∈ Ap(X).

i!i∗(α) = cd(NX/Y ) ∩ α ∈ Ap−d(X),

where NX/Y is the normal bundle of X in Y is of rank d. More generally, given a diagram

X ′ Y ′

X Y

i′

f

i

we have
i!i′∗(α) = cd(f

∗NX/Y ) ∩ α.

Exercise 20.6. Use this to show the following: Let E be a locally free, rank d sheaf on Y , and let s ∈ Γ(Y,E )

such that X = Z(s)
i
↪→ Y is a regular embedding of codimension d (i.e., s is locally defined by a regular

sequence). If α ∈ Ap(Y ), then
i∗i

!(α) = cd(E ) ∩ α.

We can use this to define a ring structure on Chow groups. Suppose that X is a smooth variety over a field
k of dimension n. Since X is smooth, we see that ∆X : X ↪→ X ×X is a regular embedding of codimension n
(it is a closed embedding of smooth varieties). It is also a commutative algebra result that given a closed
embedding, checking it is a regular embedding amounts to checking the conormal sheaf is locally free.

We now define an operation on CH∗(X):

α ∈ CHp(X), β ∈ CHq(X) α · β = ∆!(α× β) ∈ CHp+q−n(X).

It is usually more convenient to use indexing by codimension, that is, CHp(X) := CHn−p(X). Even though
this looks like Poincaré duality, there is not really an interpretation as duals: it really is just a definition.
The intersection product respects the grading on CH∗(X), and properties of Gysin maps imply CH∗(X) is a
commutative graded ring with identity element [X] ∈ CH0(X) = CHn(X).

Remark 20.7. This intersection product is easy to compute when intersecting two cycles that intersect
properly: given

α =
∑
i

mi[Vi], β =
∑

nj [Wj ]

such that dim(Vi ∩Wj) = dimVi + dimWj − n (≥ always holds), then

α · β =
∑

minj [Vi ∩Wj ].

Remark 20.8. This is enough to compute intersection products on quasi-projective varieties, by using the
following

Lemma 20.9 (Moving lemma). Given cycles u, b, we can find v′ ∼rat v such that u and v′ intersect properly.

This is not obviously well-defined. The point of Fulton’s book [Ful98] is that using deformation to the
normal cone, you can prove the intersection product is well-defined.

20.1.2 Pullback by lci morphisms

Suppose we deal only with varieties that can be embedded in smooth varieties, e.g. quasi-projective varieties
and smooth varieties. A morphism f : X → Y is lci of relative dimension d if it factors as

X W Yi p
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with p smooth of relative dimension n, and i is a regular embedding of codimension n− d. One can extend
the definition of Gysin maps to this setting: denoting

X ′ W ′ Y ′

X W Y

f ′

p′

i

f

p

then
f ! = i! ◦ (p′)∗ : CHp(Y

′) −→ CHp+d(X
′).

Fact 20.10.
• This is independent of factorization.
• If f is both lci of relative dimension d and flat of relative dimension d, then f ! = (f ′)∗.

We will mostly be interested in morphisms f : Xn → Y m between smooth varieties. Then, f is lci of
relative dimension n−m: Consider

X X × Y Y

x (x, f(x))

i p2

Then, p2 is smooth since X is smooth, and X,X ×Y smooth (hence regular) implies i is a regular embedding.
In this case, we will write f∗ for f !.

f∗ : Ap(Y ) Ap+n−m(X)

An−p(Y ) Am−p(X)

Fact 20.11. f∗ : A∗(Y )→ A∗(X) is a homomorphism of graded rings. Moreover,
• If f is flat of relative dimension q, then f∗ coincides with the previous definition of pullback.
• Projection formula: If f is proper, then

f∗
(
f∗(α) · β

)
= α · f∗(β).

Remark 20.12. If X is a smooth variety, and E is a rank r vector bundle on X, then

ci(E ) ∩ α =
(
ci(E ) ∩ [X]

)
· α.

Thus, one usually identifies this map ci(E ) : CH∗(X)→ CH∗(X) with ci(E ) ∩ [X] ∈ CHi(X).

20.1.3 Connection with singular cohomology

We now describe the connection with singular cohomology. Suppose X is a complete variety over C. Then,
there is a cycle map

Zp(X) −→ H2p(X,Z)∑
ni[Vi] 7−→

∑
niηVi

where ηVi is the class of Vi in H2p(X,Z). This induces a group homomorphism

CHp(X)
cl−→ H2p(X,Z).

(1) This is compatible with pushforward f∗.
(2) This is compatible with

• pullback (and Gysin maps)
• multiplication

for X smooth.
There is always a map to Borel–Moore homology when X is not complete.

This is as much as we wanted to say about general intersection theory.

89



20.2 Correspondences

We will be a bit more detailed about what we will use: correspondences. We assume all varieties are smooth,
and most of the time complete.

Definition 20.13. A correspondence from X to Y , written α : X ` Y , is an element in CH∗(X × Y ).

Using

X × Y ∼−→ Y ×X
(x, y) 7−→ (y, x)

a correspondence α : X ` Y yields a correspondence α′ : Y ` X. It is clear that (α′)′ = α.

Composition of correspondences Given α : X ` Y and β : Y ` Z such that Y is complete, there is a
correspondence β ◦ α : X ` Z, where denoting

X × Y × Z

X × Y Y × Z

X × Z

p12 p23

p13

we have
β ◦ α := (p13)∗

(
p∗12(α) · p∗23(β)

)
.

Fact 20.14. Composition of correspondences is associative, that is, given γ : Z `W , where Y,Z are complete,

(γ ◦ β) ◦ α = γ ◦ (β ◦ α).

Example 20.15. Consider f : X → Y . Let α = [Γf ], where Γf ⊆ X × Y is the graph of f .
(1) If β : Y ` Z, and Y is complete, then

β ◦ α = (f × 1Z)∗(β).

(2) If γ : W ` X, and X is complete, then

α ◦ γ = (1W × f)∗(γ).

Proof of (2). Consider the diagram

W ×X × Y

W ×X X × Y

W × Y

p12 p23

p13

We have the diagram

W ×X W ×X × Y

X X × Y

j

q

i

Then, we have

p∗12(γ) · p∗23([Γf ]) = p∗12(γ) · p∗23

(
i∗([X])

)︸ ︷︷ ︸
=j∗

(
[W×X]

) proj. formula
= j∗

(
j∗p∗12(γ)

)
= j∗(γ),

since p12 ◦ j = id. We then have

α ◦ γ = (p13)∗
(
j∗(γ)

)
= (1W × f)∗(γ).
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Next time, we will discuss how correspondences act on Chow groups and cohomology groups. We will
then show that birational varieties have the same CH0. We will then discuss the specialization map.

21 April 6

We are considering having extra classes on Tuesday, April 25 from 10–12, and Friday, April 28 from 10–12.
Today we would like to finish the material on correspondences. Our goal will eventually be to study

quartic threefolds, and Kollár’s method of finding interesting examples via reduction modulo p.

21.1 Correspondences (continued)

In what follows, every variety is a complete smooth variety over k. Then, a correspondence α : X ` Y is
an element α ∈ CH∗(X × Y ). One can define compositions of correspondences, and this composition is
associative.

Example 21.1. CH∗(X ×X) has a new ring structure where addition is the usual one, and multiplication
is given by composition of correspondences. The identity element is [∆X ].

21.1.1 Actions of correspondences on Chow groups

Let α ∈ CH∗(X × Y ). Then, we have

α∗ : CH∗(X) −→ CH∗(Y ),

where denoting

X × Y

X Y

p1 p2

we have α∗(u) = p2∗(p
∗
1(u) · α) and α∗ = (α′)∗ : CH∗(Y )→ CH∗(X).

Note 21.2. This is a special case of composition of correspondences: Given α as above, and u ∈ CH∗(X),
consider u as the correspondence Spec k ` X. Then, α∗(u) = α ◦ u, since

Spec k ×X × Y ' X × Y

Spec k ×X X × Y

Spec k × Y

p12 p23

p13

Similarly, if u ∈ CH∗(Y ) is considered as a correspondence Spec k ` Y , then α∗(u) = u ◦ α.
A consequence of associativity of composition of correspondences is that if α : X ` Y and β : Y ` Z, then

β∗ ◦α∗ = (β ◦α)∗, and α∗ ◦ β∗ = (β ◦α)∗. Thus, we can think of α as a “generalized map” between X and Y .

Remark 21.3. Pushforward and pullbacks by morphisms are a special case: Let f : X → Y , and let α = [Γf ]
be the class associated to the graph of f . We claim that f∗ = α∗. Let u ∈ CH∗(X), so that

α∗(u) = α ◦ u,

where u is considered as a correspondence Spec k ` X. Last time, we showed that

α ◦ u = (1Spec k × f)∗(u) = f∗(u).

Similarly, α∗ = f∗.
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21.1.2 CH0 is a birational invariant

Theorem 21.4. If X and Y are stably birational smooth, complete varieties over k, then CH0(X) ' CH0(Y ).

If there is a birational morphism connecting the two varieties, then the morphism can be used to
pushforward and pullback. This was the method employed in the first proof of Theorem 21.4 by Colliot-
Thélène, which works in the presence of resolution of singularities. The present proof is from [Ful98, Ex.
16.1.11].

Lemma 21.5. Suppose X is a variety over k, and let z =
∑
ni[pi] be a zero-cycle, where all the pi are

regular points on X. Then, given any nonempty open subset U ⊆ X, there is a zero cycle z′ supported on U
such that z ∼rat z

′.

Proof. We can assume that z is one regular point [p]. If n = dimX = 0, then there is nothing to show. If
n ≥ 1, then there exists a dimension 1 subvariety C ⊆ X such that p ∈ C is a regular point, and such that
C ∩ U 6= ∅. After replacing (X,U) by (C,C ∩ U), we may assume X is of dimension 1. We may also assume
that X is affine; otherwise, X is complete, and it is enough to show the assertion for (X r {q}, U r {q}) for
some q ∈ U . Let X = SpecR, and let m be the maximal ideal corresponding to p. Let m1, . . . ,mr be the
ideals corresponding to the points in X r U . Then, Rm is a DVR. We may find an element

ϕ ∈ mr
(
(m2Rm ∩R) ∪m1 ∪ · · · ∪mr

)
by prime avoidance. Then, div(ϕ) = [p] +

∑
mi[qi], where the latter term is supported on U .

Note that by replacing U with U ∩Xreg, we can ensure that z′ is a sum of regular points.

Proof of Theorem 21.4. Denote π : X ×Pn → X.

Step 1. We have an isomorphism

CH0(X)
∼−→ CH0(X ×Pn)

u 7−→ c1(O(1))n ∩ π∗(u)

π∗(w)←− [ w

Step 2. Suppose X and Y are birational, and choose open subsets U ⊆ X and V ⊆ Y such that there is an
isomorphism ϕ : U

∼→ V . Let W = Γϕ ⊆ X × Y be the closure of the graph of ϕ in X × Y , and let α = [W ].
Then, denoting n = dimX = dimY , we have maps

α∗ : CH0(X) −→ CH0(Y )

α′∗ : CH0(Y ) −→ CH0(X)

We claim these are mutually inverse.

We have α′∗ ◦ α∗ = (α′ ◦ α)∗. Restricting to U ×X, we have

α′ ◦ α|U×X = α′ ◦ [ΓU→Y ] = [ΓU↪→X ].

Thus,
(
α′ ◦ α− [∆X ]

)
|U×X = 0. We have an inclusion

U ×X X ×X (X r U)×Xj i

and so
α′ ◦ α = [∆X ] + i∗(β)

for some β ∈ CHn

(
(X r U) × X

)
. This implies α′∗ ◦ α∗ = id +

(
i∗(β)

)
∗. On the other hand, we claim(

i∗(β)
)
∗ = 0 on CH0(X). Let z ∈ CH0(X), and write z ∼rat z

′ for a zero-cycle z′ which is supported on U .
Then, (

i∗(β)
)
∗(z) =

(
i∗(β)

)
∗(z
′) = p2∗

(
p∗1(z′) · i∗(β)

)
.

But p∗1(z′) · i∗(β) = 0 since p∗1(z′) and i∗(β) are supported on disjoint closed sets in X ×X. This implies
α′∗ ◦ α∗ = id. Switching X and Y implies α∗ ◦ α′∗ = id.
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Remark 21.6. The isomorphism of the theorem commutes with the degree maps, which we recall are defined
for complete X as the map

deg : CH0(X) −→ Z∑
ni[pi] 7−→

∑
ni deg

(
k(pi)

)
In Step 1, we have a commutative diagram

CH0(X ×Pn) CH0(X)

CH0(Spec k)

(pr)∗

In Step 2, if X and Y are birational, we used the isomorphism [W ]∗ where W ⊆ X × Y is the closure of the
graph of a birational map. But denoting

X Y

Spec k
f g

we have

degY ◦[W ]∗ = g∗ ◦ [W ]∗ = [Γg]∗ ◦ [W ]∗ = [Γg ◦W ]∗ =
(
(pr1)∗(W )

)
∗ = [X]∗ = degX ,

where we denote

X × Y X

W

pr1

birational

One can also use the moving lemma to move zero-cycles to the locus where X and Y are isomorphic.

21.1.3 Actions of correspondences on singular cohomology

We now mention how correspondences act on singular cohomology, or really any Weil cohomology theory.
Let k = C. Then, α : X ` Y gives a class cl(α) ∈ H∗(X × Y,Z), and we get a map

α∗ : H∗(X,Z) −→ H∗(Y,Z)

u 7−→ p2∗
(
p∗1(u) · cl(α)

)
such that α∗ = (α′)∗. We also have a commutative diagram

CH∗(X) H∗(X,Z)

CH∗(Y ) H∗(Y,Z)

cl

α∗ α∗

cl

since cl commutes with pushforward and pullback. Many of the properties we had before for the action of
correspondences on Chow groups extend to this setting, that is, e.g.,

(1) (α ◦ β)∗ = α∗ ◦ β∗ as maps on cohomology.
(2) If f : X → Y is a morphism, then [Γf ]∗ = f∗ as maps on cohomology.

This can be used to show that stably birational varieties have the same torsion in H3 (although you have to
be a bit careful).
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21.1.4 The specialization map

One can develop the theory of Chow groups in a more general setting, e.g., where one works over a regular
scheme S (i.e., a noetherian scheme such that the local rings are all regular), where the absolute notion of
dimension is replaced by the relative one: if V is an irreducible and reduced scheme of finite type over S,
then letting W = image of V in S,

dimS(V ) := trdeg
(
k(V )/k(W )

)
− codimS(W ).

Using the fact that regular local rings are universally caternary, we have that
• If V1 ⊂ V2 is an inclusion of irreducible, reduced schemes that are finite type over S, then

dimS(V2) = dimS(V1) + codimV2
(V1).

• If f : V →W is a dominant morphism of integral schemes of finite type over S, then

dimS(V ) = dimS(W ) + trdeg
(
k(V )/k(W )

)
.

Thus, letting X be a finite type, separated scheme over S, we have

Zp(X/S) := free abelian group on irreducible closed subsets of X with dimS(·) = p.

All results extend to this setting. For us, the main interest in this is to compare Chow groups over the special
and generic fibers.

Suppose we have regular schemes S,Z such that Z ↪→ S is a closed embedding (hence a regular closed
embedding) of codimension r. Let S0 = SrZ. If X is a scheme over S, then we may consider the commutative
diagram of cartesian squares

XZ X X0

Z S S0

iX

y
⊃
jX

f
x

i
⊃
j

As before, we have an exact sequence

CHp(XZ/S) CHp(X/S) CHp(X
0/S) 0

CHp+r(XZ/Z) CHp(X
0/S0)

CHp(XZ/Z)

(iX)∗ (jX)∗

i! σ

Suppose NZ/S ' O⊕rZ , so that cr(NZ/S) = 0, and so i! ◦ (iX)∗ = 0. We therefore get a unique induced map

σ : CHp(X
0/S0)→ CHp(XZ/Z), such that σ([V ∩X0]) = i!([V ]).

We will consider the (very) special case where

Xk X XK

Z = Spec k Spec(R) SpecK

⊃

⊃

where (R,m, k) is a DVR with fraction field K = Frac(R). The normal bundle NZ/S = OZ is trivial. We get
a specialization map

σ : CHp(XK) −→ CHp(Xk)

[V ] 7−→ [V k]

where V is the closure of V in X, by using the description of the Gysin map for divisors (Example 20.4).
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Remark 21.7. These specialization maps commute with proper pushforwards, flat pullbacks, and pullbacks by
complete intersection maps.

We will use this to deduce properties of the generic fiber from the special fiber. We will then discuss
decomposition of the diagonal and show that such a decomposition is equivalent to the triviality of CH0.
This is due to Bloch and Srinivas. Voisin showed that this can be used to deduce rationality results after
degenerating varieties to special ones. Finally, we will discuss quartic threefolds.

22 April 11

We will have two extra classes, both in East Hall 3096:
• Tuesday, April 25, 10–12; and
• Friday, April 28, 10–12.

22.1 Decomposition of the diagonal

This is the last technique in our study of rationality.
Let k be a field. All schemes X today will be of finite type and separated over k. If X is complete, recall

that we had the degree morphism

deg : CH0(X) −→ Z∑
ni[Pi] 7−→

∑
ni deg

(
k(Pi)/k

)
We start with some important definitions:

Definition 22.1. A complete scheme X over k is CH0-trivial if deg : CH0(X)→ Z is an isomorphism. This
holds if and only if the following two properties hold:
• There exists a 0-cycle α on X of degree 1 (this is trivially satisfied if X(k) 6= ∅); and
• CH0(X)0 := ker

(
deg : CH0(X)→ Z

)
is trivial.

Definition 22.2. A complete scheme X over k is universally CH0-trivial if for every field extension F/k,
the base change XF is CH0-trivial over F .

Example 22.3. Pn is universally CH0-trivial, since if F/k is a field extension, CH0(Pn
F ) is freely generated

by [P ] for any P ∈ Pn(F ). Thus, the degree map is an isomorphism.

Note that universal CH0-triviality is not the same as requiring CH0-triviality for the base change to the
algebraic closure of k.

Remark 22.4. If X is CH0-trivial, then X is connected, since if P,Q belonged in different connected
components of X, the cycle

deg(Q)P − deg(P )Q ∈ CH0(X)0

is nonzero. Thus, if a scheme is universally CH0-trivial, then X is geometrically connected. We will often
make the assumption that X is geometrically connected in results below.

Definition 22.5. We say that a complete variety X over k has a decomposition of the diagonal if

[∆X ] = α× [X] + Z ∈ CHn(X ×X) (22.1)

for some α ∈ CH0(X) such that deg(α) = 1, and some Z that is the class of a cycle supported on X × V for
a proper closed subset V ( X.

Also, we say that X has a rational decomposition of the diagonal is there is some N ∈ Z>0 and a
decomposition

N · [∆X ] = N
(
α× [X]

)
+ Z ∈ CHn(X ×X)

with α,Z as above.
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Example 22.6. The projective space Pn has a decomposition of the diagonal. We understand CHn(Pn×Pn)
pretty well, since it is a trivial projective bundle over projective space: it is freely generated by [Li]× [Ln−i],
where Li ⊂ Pn denotes a linear subspace of dimension i. We can therefore write

[∆X ] =

n∑
i=0

ai[Li]× [Ln−i]

for some ai ∈ Z. Projecting onto the second component pr2 : Pn ×Pn → Pn gives the equation

[Pn] = (pr2)∗
(
[∆X ]

)
= a0[Pn],

and so a0 = 1. Thus,
[∆X ] = [{pt} ×Pn] + Z,

where Z is a class supported on Pn × hyperplane.

Note that just as in this example, if a decomposition of the diagonal as in (22.1) exists, then we must
have deg(α) = 1.

22.1.1 The Bloch–Srinivas theorem and stable rationality

Theorem 22.7 (Bloch–Srinivas). Let X be a smooth, geometrically connected, complete variety over k. Then,
the following are equivalent:

(1) X is universally CH0-trivial;
(2) X has a zero-cycle of degree 1, and CH0(XK)0 = 0, where K = k(X) is the function field;
(3) X has a decomposition of the diagonal.

Proof. (1)⇒ (2) is trivial. For (2)⇒ (3), consider the cartesian square

XK X ×X

SpecK X

j

y
pr2

Denoting n = dimX, we can define a flat pullback map

j∗ : Zn(X ×X) −→ Z0(XK)

[V ] 7−→ [j−1(V )]

We have two cycles j∗
(
[∆X ]

)
, j∗
(
α× [X]

)
∈ Z0(XK), which are both of degree 1. The hypothesis says that

j∗
(
[∆X ]

)
∼rat j

∗(α× [X]
)
.

Since the rational equivalence is defined over finitely many elements in k(X), we therefore see that there
exists an open subset U ⊆ X such that if we denote jU : X × U ↪→ X ×X, then

j∗U
(
[∆X ]− α× [X]

)
∼rat 0.

Thus, [∆X ]− α× [X] ∼rat Z, where Z is supported on X × (X r U).
(3)⇒ (1). We start with the decomposition

[∆X ] = α× [X] + Z ∈ CHn(X ×X).

We will consider each term as correspondences and let them act on CH0(X). First, recall that if Γf ⊆ X × Y
is the graph of f : X → Y , then [Γf ]∗ = f∗ and [Γf ]∗ = f∗. We therfore have an equality of maps

[∆X ]∗ =
(
α× [X]

)∗
+ Z∗ : CH0(X) −→ CH0(X).
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Since ∆X is the graph of the identity, we see that [∆X ]∗ = 1CH0(X).
For the other terms, we first note that for all β ∈ CH0(X), we have that

(α×X)∗(β) = p1∗
(
p∗2(β) · α×X

)
= p1∗(α× β) = deg(β)α.

For Z, we first note that if W is supported on a closed subset V ×X with V ( X, then W∗ = 0 on CH0

(by using the Moving Lemma 21.5). Taking W = Z, we see that [Z]∗ = 0. We conclude that for every
β ∈ CH0(X), we have

β = deg(β)α,

and so CH0(X)0 = 0. Since α is a cycle of degree 1, this equality also implies that deg : CH0(X) → Z is
an isomorphism. Finally, if F/k is any field extension, a decomposition of the diagonal on X induces a
decomposition of the diagonal on XF . We therefore conclude that X is universally CH0-trivial.

We now make some comments about some variants of Theorem 22.7. The same proof shows that if X is
as in Theorem 22.7, then the following are equivalent:

(1) There is a zero-cycle of degree 1, and N > 0, such that for all field exentensions F/k, we have

N · CH0(XF )0 = 0;

(2) There is a zero-cycle of degree 1 and N > 0 such that

N · CH0(Xk(X))0 = 0;

(3) There exists a rational decomposition of the diagonal (where N can be taken as in (2)).

Corollary 22.8. Let X,Y be stably birational smooth, complete varieties over k. If Y is geometrically
connected, and has a decomposition of the diagonal, then the same holds for X. In particular, if X is a stably
rational smooth, complete variety, then X has a decomposition of the diagonal.

Proof. By assumption, there exist m,n and open subsets U ⊆ X ×Pm and V ⊆ X ×Pn such that U ' V .
Now given any field F/k, the base extensions are isomorphic: UF ' VF . Now VF is connected, and UF is dense
in XF ×Pn

F , and so XF is connected. We saw that we have an isomorphism CH0(XF ) ' CH0(YF ) commuting

with the degree maps. Then, Theorem 22.7 implies deg : CH0(YF )
∼→ Z and so deg : CH0(XF )

∼→ Z. Thus,
X has a decomposition of the diagonal.

The last assertion follows from the first one, since Pn has a decomposition of the diagonal.

Decomposition of the diagonal is therefore a stable birational invariant. It is more useful than CH0 since it
works better in families, e.g. when a family of smooth varieties degenerates to a singular one.

Remark 22.9. Suppose k is perfect, and suppose we are in a setting where we have resolution of singularities
(e.g., dim ≤ 3 or char(k) = 0). If there exists a generically finite, dominant rational map f : Pn 99K X of
degree N , then X has a rational decomposition of the diagonal, using this N .

Proof. By resolving the singularities of f , we get a morphism g : Y → X that is generically finite and
surjective, where Y is smooth, complete, and rational. Now given any F/k, consider gF : YF → XF . Note
that since X is unirational, X(k) 6= ∅. We then have maps

CH0(X)
g∗F−→ CH0(Y )

(gF )∗−→ CH0(X)

and the projection formula says that (gF )∗
(
g∗F (β)

)
= Nβ for all β. This implies that for all β ∈ CH0(XF )

such that deg(β) = 0, we have deg
(
g∗F (β)

)
= 0. But Y is rational, and so g∗F (β) = 0, and pushing forward,

we see that Nβ = 0.

This says that a rational decomposition of the diagonal is no big deal; for example, all Fano varieties have
this property. On the other hand, if there exist two generically finite dominant rationals maps

Pn X Pnf1 f2

such that deg(f1),deg(f2) are relatively prime, then there exists a(n integral) decomposition of the diagonal.
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Proposition 22.10. Let X be a smooth, complete, geometrically connected variety over k. If there exists a
zero-cycle of degree 1 on X and CH0(X

k(X)
)0 = 0, then X has a rational decomposition of the diagonal.

Remark 22.11. Suppose k = k, char(k) = 0, and k is uncountable. Recall that a smooth, connected, projective
variety X is rationally connected if one of the following equivalent conditions holds:
• For every two general points x1, x2 ∈ X, there exists f : P1 → X such that f(P1) 3 x1, x2;
• For every two points x1, x2 ∈ X, there is a chain of rational curves joining x1 and x2;
• There exists C ' P1 ↪→ X such that NC/X is ample.

The second condition implies that for all x1, x2 ∈ X, we have [x1] ∼rat [x2], and so CH0(X)0 = 0. By using
the third condition, we see that if X is rationally connected, then XF is rationally connected for every
algebraically closed extension F/k. In particular, if X is rationally connected over k (e.g., it is Fano), then
CH0(X

k(X)
)0 = 0. Thus, X has a rational decomposition of the diagonal.

The last thing we want to say about general decomposition of the diagonal is a criterion for when something
does not have a decomposition of the diagonal, which involves H0(X,ΩpX) and H3(X,Z)tors. The proof will
use the action of correspondences on singular cohomology, and a little bit of Hodge theory. We will then
discuss behavior in families.

23 April 13

23.1 Decomposition of the diagonal (continued)

Last time, we showed (Theorem 22.7) that if X is a smooth, geometrically connected, complete scheme over
a field k, then

(1) X is universally CH0-trivial
(2) X has a zero-cycle of degree 1 and CH0(Xk(X))0 = 0
(3) X has a decomposition of the diagonal.

We had left to explain that if α is a zero-cycle on X, then denoting

X ×X

X X

p1 p2

for all u ∈ CH0(X),

(α×X)∗(u) = (p1)∗
(
p∗1(α) · p∗2(u)

)
= α · (p1)∗

(
p∗2(u)

)
= deg(u) · α

where the second equality is by the projection formula, and the third is by compatibility of proper pushforward
and flat pullback in cartesian squares (Remark 19.10).

We now give the proof of the following result we stated last time:

Proposition 22.10. Let X be a smooth, geometrically connected, complete scheme over k. Suppose that
• X has a zero-cycle of degree 1, and
• CH0(X

k(X)
)0 = 0.

Then, X has a rational decomposition of the diagonal.

Note that CH0(X
k(X)

)0 = 0 holds for all rationally connected varieties over an algebraically closed field

of characteristic zero (Remark 22.11), so the condition is rather easy to satisfy.

Parenthesis 23.1. Let W be a scheme over k. Then, there is a map

CHp(W ) −→ CHp(Wk)

[V ] 7−→ [Vk]

and it is easy to see that
CHp(Wk) = lim−→

k′/k
finite

CHp(Wk′).
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Note that if k′/k is finite of degree d, the map ϕ : Wk′ →W is finite flat of degree d, and so the composition

CHp(W )
ϕ∗−→ CHp(Wk′)

ϕ∗−→ CHp(W )

is equal to d · id.

Proof of Proposition 22.10. Consider the cartesian diagram

Xk(X) X ×X

Spec k(X) X

g

y
p1

Then, letting α be a zero-cycle of degree 1 on X, we have

g∗(∆X)− g∗(α× [X]) ∈ CH0(Xk(X))0.

By hypothesis, the pullback of the above to k(X) is zero. Thus, there exists a finite extension k′/k(X) of
degree d such that the pullback to k′ is zero. By Parenthesis 23.1, pushing forward to k(X) implies that

d ·
(
g∗(∆X)− g∗(α× [X])

)
= 0.

Now arguing as in the proof of Theorem 22.7, there exists some closed proper subset V ( X such that

d
(
[∆X ]− (α× [X])

)
∼rat cycle supported on X × V .

We now want a criterion to show a scheme does not have a decomposition of the diagonal.

Proposition 23.2. Let X be a smooth, complete, complex algebraic variety such that X has a decomposition
of the diagonal. Then, the following two conditions hold:

(a) H0(X,ΩpX) = 0 for all p ≥ 1;
(b) H3(X,Z)tors = 0.

Note the first condition is satisfied for all rationally connected varieties, in particular for all Fano varieties.
In fact, rationally connected varieties satisfy h0

(
X, (Ωp

X)⊗m
)

= 0 for all p ≥ 1 and m > 0, as we stated in
Remark 13.8. Thus, the criterion we will use often is (b).

There is another criterion based on unramified cohomology, but in practice, unramified cohomology is
hard to compute.

Remark 23.3. Note that (a) implies H2(X,OX) = 0 by Hodge symmetry (1.3), which in turn implies
that PicX → H2(X,Z) is surjective by using the exponential sequence. Thus, Br(X) ' H3(X,Z)tors by
Proposition 17.19, hence Br(X) is trivial by (b).

The idea of the proof of Proposition 23.2 is very simple, and again the idea is to use the action of
correspondences on singular cohomology. The only thing that makes it a bit messy is that the subvariety
V that shows up in the decomposition of the diagonal may not be smooth, and so we must resolve the
singularities of V .

Proof of Proposition 23.2. By assumption, we have a decomposition of the diagonal

[∆X ] = {p} ×X + Z,

where Z ∈ Zn(X ×X) is supported on X × V for some proper closed subset V ( X. We first reduce to

the case where V is a smooth divisor. Let f : X̃ → X be an embedded resolution of singularities, i.e., f is
a projective and birational morphism such that X̃ is smooth, and such that E = f−1(V ) is a divisor with
simple normal crossings (we only need that the irreducible components E1, . . . , Er are smooth divisors). Note
that we may assume f is an isomorphism over X r V .
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Now rearranging our decomposition, we first have(
[∆X ]− {p} × [X]

)∣∣
X×(XrV )

= 0. (23.1)

We want to translate this into an equation on X × X̃. Consider the graph Γf ⊆ X̃ ×X of f , and consider

Γ′f ⊆ X × X̃, the image of the graph under the isomorphism interchanging the two factors. Then, (23.1)
implies (

[Γ′f ]− {p} × [X̃]
)∣∣
X×(X̃rE)

= 0.

We therefore can write

[Γ′f ] = {p} × [X̃] +

r∑
k=1

(1X × ik)∗(zk),

where ik : Ek ↪→ X̃ is the inclusion, and zk ∈ CHn(X × Ek). Now consider the action

[Γ′f ]∗ = [Γf ]∗ = f∗ : Hm(X,Z) −→ Hm(X̃,Z)

on cohomology. To compute [Γ′f ], we consider each term separately in the decomposition above. First,(
{p} × [X̃]

)
∗ =

(
[X̃]× {p}

)∗
,

and [X̃]× {p} ⊆ X̃ ×X is the graph of the constant map X̃ → {p} ↪→ X. Since Hm(pt,Z) = 0 for m > 0,

we see that
(
{p} × [X̃]

)
∗ = 0. Next, for any u ∈ Hm(X,Z), denoting

X × Ek X × X̃

Ek

X X̃

ϕk

1X×ik

p2

ik

p1

we have (
(1X × ik)∗(zk)

)
∗(u) = (p2)∗

(
p∗1(u) · cl

(
(1X × ik)∗(zk)

))
= (p2)∗(1X × ik)∗

(
(1X × ik)∗p∗1(u) · cl(zk)

)
= (ik)∗(βk)

where the second equality is by the projection formula, and where the third equality holds by letting

βk = (ϕk)∗
(
(1X × ik)∗p∗1(u) · cl(zk)

)
(23.2)

and observing that the diagram

X × Ek X × X̃

Ek X̃

ϕk

1X×ik

p2

ik

commutes. We therefore conclude that for all u ∈ Hm(X,Z), m > 0, we can write

f∗(u) =

r∑
k=1

(ik)∗(βk) (23.3)

with βk as above. If we tensor this with C, we also get the same result for cohomology with C coefficients.
We then use the following fact about how pullback on cohomology preserves the Hodge decomposition:

100



Note 23.4. If f : X → Y is a morphism of smooth projective varieties, then

f∗ : Hm(Y,C) −→ Hm(X,C)

preserves the Hodge decomposition, i.e., f∗ restricts to a map

Hq(Y,ΩpY ) −→ Hq(X,ΩpX).

This map can be identified with that induced by f∗ΩpY → ΩpX . Note that this fact is automatic if you interpret
the Hodge decomposition in terms of harmonic forms.

Using this, we can describe (via Poincaré Duality 9.8) the behavior of f∗ with respect to the Hodge

decomposition. In our case, for the map ik : Ek ↪→ X̃, we have

(ik)∗
(
Hp,q(Ek)

)
⊆ Hp+1,q+1(X̃).

This implies

Hm,0(X̃,C) ∩ im

( r⊕
k=1

Hm(Ek,C)→ Hm(X̃,C)

)
= 0.

Thus, f∗
(
Hm,0(X)

)
= 0 by using the decomposition in (23.3). Since f∗ : H0(X,Ωm

X) → H0(X,Ωm
X̃

) is

injective (see the proof of Proposition 1.10), we therefore see that H0(X,ΩmX) = 0. This shows (a).
For (b), we note that if dimX = n, then by Poincaré duality, it is enough to show H2n−3(X,Z)tors = 0. If

u ∈ H2n−3(X,Z) is torsion, then in the decomposition (23.3), the formula (23.2) for βk implies each βk is
torsion. Since

βk ∈ H2n−3(Ek,Z) ' H1(Ek,Z)

and H1(Ek,Z) has no torsion (by Consequences 9.3 of the Universal Coefficient Theorem 9.2), we see that
βk = 0 for all k. Thus, f∗(u) = 0 and f∗(f

∗(u)) = u = 0 since f was birational.

23.1.1 CH 0-triviality for morphisms

The main advantage to working with decompositions of the diagonal is that it has interesting behavior under
families in which smooth varieties degenerate to singular ones. This is useful since these singular degenerations
often do not have decompositions because its resolution has torsion in H3. Such behavior does not occur for
smooth families, since all fibers would be diffeomorphic by Ehresmann’s theorem.

The main definition is just a relative version of CH0-triviality. We work over a fixed field k.

Definition 23.5. A proper morphism f : X → Y is CH0-trivial if the induced map

f∗ : CH0(X) −→ CH0(Y )

is an isomorphism. We say f is universally CH0-trivial if under every extension K/k of the ground field, the
morphism fK : XK → YK is CH0-trivial.

If Y = Spec k, then this recovers the previous notions of CH0-triviality.
We want a criterion for a morphism to be CH0-trivial. We will get a criterion for universal CH0-triviality

as a Corollary.

Proposition 23.6. Let f : X → Y be proper. Then, f is CH0-trivial if the following two conditions hold:
(1) For every y ∈ Y closed, the fiber Xy is CH0-trivial, where we think of Xy as a scheme over Spec k(y);

(2) For every η ∈ Y with dim {η} = 1, the degree map deg : CH0(Xη)→ Z is surjective.

Proof. Surjectivity of f∗ : CH0(X)→ CH0(Y ): For every y ∈ Y , we know by (1) that there exists a cycle
supported on Xy of degree 1 over k(y), whose pushforward to Y is [y]. Since CH0(Y ) is generated by the
classes [y] for closed points y ∈ Y , we therefore have surjectivity.

Injectivity of f∗ : CH0(X)→ CH0(Y ): Suppose α ∈ Z0(X) is such that f∗(α) ∼rat 0. This implies that
we can write

f∗(α) =

r∑
i=1

ni divYi(ϕi),
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where Yi ⊂ X is irreducible and reduced of dimension 1, and ϕi ∈ k(Yi)r {0}. Now by (2), if we denote ηi to
be the generic point of Yi, then there exists a zero-cycle of degree 1 on Xηi . We can write this zero-cycle of
degree 1 as ∑

j

ai,jYi,j ∈ CH0(Xηi),

where each Yi,j is a one-dimensional irreducible subset that dominates Yi. After taking degrees, we have∑
j

ai,j deg(Yi,j/Yi) = 1.

Let ψi,j be the pullback of ϕi to Yi,j . Then,

f∗
(
divYi,j (ψi,j)

)
= divYi

(
Norm(ψi,j)

)
= divYi

(
ϕ

deg(Yi,j/Yi)
i

)
= deg(Yi,j/Yi) · divYi(ϕi).

Now let
β = α−

∑
i,j

niai,j divYi,j (ψi,j).

Then, pushing forward, we obtain

f∗(β) = f∗(α)−
∑
i,j

niai,j deg(Yi,j/Yi) · divYi(ϕi) = 0.

Thus, we can write β =
∑s
j=1 βj such that Suppβj = {yj} for a closed point yj ∈ Y , and such that f∗(βj) = 0.

Now (1) implies that βj ∼rat 0 in Xyj for all j, hence βj ∼rat 0 in X. Thus, β ∼rat 0, and so α ∼rat 0.

Next time, we will study the way decomposition of the diagonal behaves in families, especially when all
fibers in the family are universally CH0-trivial. Later, we will use these methods to study Colliot-Thélène
and Pirutka’s result that very general quartic threefolds are not stably rational [CTP16], and Totaro’s
generalization of their result [Tot16], which also generalizes some non-rationality results by Kollár [Kol95;
Kol00].

24 April 18

The last lecture will be Tuesday, April 25 10–12 in this room.

24.1 Decomposition of the diagonal (continued)

Here is an open question:

Question 24.1. Suppose X/k where k = k is a smooth, complete scheme, and K/k is a field extension such
that K = K. Suppose XK is universally CH0-trivial. Is X universally CH0-trivial?

It is not clear that this holds. We will get around it since rational connectedness does descend from an
algebraically closed field extension.

24.1.1 A criterion for universal CH 0-triviality for morphisms

Last time, we discussed the notion of universally CH0-trivial morphisms. We showed (Proposition 23.6) that
if f : X → Y is a proper morphism such that
• For every closed point y ∈ Y , the fiber Xy is CH0-trivial; and

• For every η ∈ Y with dim {η} = 1, the degree map deg : CH0(Xη)→ Z is surjective,

then f is CH0-trivial, i.e., f∗ : CH0(X)
∼→ CH0(Y ) is an isomorphism.

Corollary 24.2. If f : X → Y is proper such that for all y ∈ Y (including non-closed points), the fiber Xy

is universally CH0-trivial, then f is universally CH0-trivial.
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Proof. Suppose K/k is a field extension, and consider the base change fK : XK → YK . We claim this satisfies
our previous hypotheses. Given y′ ∈ YK mapping to y ∈ Y , we have the following picture:

(XK)y′ XK X

Xy

Spec k(y′) YK Y

Spec k(y)

and (XK)y′ = (Xy)k(y′) is CH0-trivial since Xy is universally CH0-trivial. Then apply Proposition 23.6.

Note that we need to put the condition on all points y ∈ Y , since we cannot control the dimension of the
image of y′ ∈ YK .

24.1.2 Behavior of decomposition of the diagonal in families

We will now state our main theorem for families over a DVR.

Main Theorem 24.3 [Voi15; CTP16]. Consider a commutative diagram with cartesian squares

X0 X Xη

Spec k SpecA SpecK

f

where (A,m, k) is a DVR with fraction field K, and f is a proper, flat morphism such that
(1) Xη is geometrically connected;

(2) X0 is geometrically integral and we have a resolution of singularities g : X̃0 → X0 with X̃0 smooth;
(3) g is universally CH0-trivial;

(4) There exists a zero-cycle of degree 1 on X̃0;

(5) X̃0 is not universally CH0-trivial.
Then, Xη is not universally CH0-trivial. In particular, Xη is not stably rational.

The point is that we will degenerate a variety we are interested in to a variety with mild singularities
with a resolution of the form above.

The following is the example that appeared in [Voi15]:

Example 24.4. Let Y be a variety over k = k with char(k) 6= 2 with only isolated singularities that are all
nodes, i.e., the tangent cone at each of these points is an affine cone over a smooth quadric. In this case, the
blowup g : Ỹ → Y at its singular points is a resolution of singularities.
• If y ∈ Y is a node, the fiber g−1(Y ) is a smooth quadric (since the fiber is isomorphic to the projectivized

tangent cone at the point), hence rational (since k = k) and universally CH0-trivial.
• For all other points z ∈ Y , the fiber g−1(z) over z is Spec

(
k(z)

)
.

By Corollary 24.2, we see that g is universally CH0-trivial.

We will see next time an example where there is a whole line of singularities. Voisin’s examples were
cyclic covers of P3 along quadrics with six to ten nodes.

The proof of Main Theorem 24.3 is fairly straightforward. Voisin’s proof was fairly involved, but was
simplified and generalized by [CTP16].

We will first say in words what the proof is. Suppose that X̃0 is such that the degree map is not injective.
Then we have a nontrivial zero-cycle on X̃0. We want something in Xη that maps to this zero-cycle under the
specialization map. In order to do that, the trick is to restrict to the open subset where g is an isomorphism,
and where f is smooth.
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Recall 24.5. In the setting of Main Theorem 24.3, we have a specialization map

σ : CHp(Xη) CHp(X0)

[V ] [V ∩X0]

Note that the specialization map σ is defined on the level of cycles, even though the Gysin map f ! is not
necessarily, and that σ commutes with the degree maps.

We first prove the following technical lemma:

Lemma 24.6. Suppose we have a commutative diagram with cartesian squares

W0 W Wη

Spec k SpecA SpecK

f

where (A,m, k) is a complete DVR with fraction field K, and f is smooth. Given any closed point x0 ∈W0,
there exists a closed point x ∈Wη such that σ([x]) = [x0] in Z0(W0).

Remark 24.7. Lemma 24.6 still holds if A is only assumed to be a henselian DVR instead of a complete DVR.

This is quite easy if we assume that k is algebraically closed, but we will not assume this.

Proof of Lemma 24.6. Let k′ = k(x0), in which case k′/k is finite. Then, there is an injective local homomor-
phism A ↪→ A′, where A′ is another complete DVR with maximal ideal mA′, inducing k ↪→ k′ at the level of
residue fields [Mat89, Thm. 29.1]. For example, if A contains a field so that A ' kJtK, then you can take
A′ = k′JtK. Since A is complete and A′/mA′ is finitely generated over A/m, it follows that A′ is finite over A
(exercise; the idea is to approximate modulo mn, and use completeness). We then make the following:

Claim 24.8. There is a morphism x̃ : SpecA′ →W over SpecA such that the diagram

SpecA′ W

Spec k′ W0

x̃

x0

commutes.

To prove the claim, we use completeness. We may assume that W = SpecR is affine. We will use
smoothness and completeness of A. The diagram on rings is

A R

A′ k′

smooth

x0

Since A→ R is smooth, hence formally smooth, and since A′ is complete (lift morphisms and use completeness),
there is a morphism R→ A′ making the two triangles commutative. This proves Claim 24.8.

Now if K ′ is the fraction field of A′, then K ′/K is finite, and x̃ induces a morphism SpecK ′ →Wη, which

determines the closed point x ∈ Xη. It is easy to see that [{x} ∩W0] = [x0].

In Main Theorem 24.3, we will want to assume A is complete, and do a field extension to use the
assumption (5).

Proof of Main Theorem 24.3. We first claim that we may assume that A is complete, and that

deg : CH0(X̃0) −→ Z (24.1)
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is not injective. By assumption, there exists a field extension k′/k such that the map deg : CH0

(
(X̃0)k′

)
→ Z

is not injective. As before, there exists an injective local homomorphism A ↪→ A′, where A′ is a complete
DVR with maximal ideal mA′, and such that there is a residue field extension k ↪→ k′. We now claim that we
can replace f by

f ′ : X ×SpecA′ SpecA −→ SpecA′.

First note that (1) and (4) are trivially preserved under the base change above. For (2), note that gk′ : (X̃0)k′ →
(X0)k′ is still a resolution of singularities. The generic fiber is (Xη)K′ for K ′ = Frac(A′), and is geometrically
connected, so that (1) is preserved. Now for (5), if (Xη)K′ is not universally CH0-trivial, then Xη is not
universally CH0-trivial by definition. Thus, we may replace f by f ′ to assume that A is complete.

We now want to use the two homomorphisms in the middle row of the following commutative diagram:

Z0(X̃) Z0(X0) Z0(Xη)

CH0(X̃0) CH0(X0) CH0(Xη)

Z

g∗ σ

g∗
∼

deg
deg

σ

deg

As indicated, both g∗ and σ are defined on the level of cycles, and commute with the degree maps. Since
(24.1) is not injective, there exists a cycle class α ∈ CH0(X̃0) such that α 6= 0 but deg(α) = 0. Now choose an
open subset V ⊆ X0 such that g−1(V )→ V is an isomorphism, so that in particular, V is smooth over k. Let
U ⊆ X be an open subset such that V = U ∩X0. This implies that U is smooth over A in a neighborhood
of X0, hence after shrinking U , we may assume that U → SpecA is smooth. By the Moving Lemma 21.5,
we may represent α as the class of a cycle β supported on g−1(V ). This implies g∗(β) is supported on V .
Now applying Lemma 24.6 to U → SpecA, we have that there exists γ ∈ Z0(Xη) supported on Uη such that
σ(γ) = β. Since g∗ is an isomorphism, we see that g∗(β) is not rationally equivalent to zero and has degree
zero, hence γ is not rationally equivalent to zero. But γ has degree zero, hence Xη is not CH0-trivial.

One disadvantage of this formulation is that even though it proves that the generic fiber is not stably
rational, the generic fiber is not defined over an algebraically closed field, and in particular may not have
rational points, hence not stably rational for trivial reasons. However, there is a short argument that says
that if k is algebraically closed, then you can show that the generic fiber is not universally CH0-trivial, even
after passing to the algebraic closure.

Note that we did not need that Xη is smooth. However, this is a useful assumption when you want to
deduce things about decomposition of the diagonal.

Corollary 24.9. In the situation of Main Theorem 24.3, assume furthermore that
• k is algebraically closed,
• Xη is smooth, and
• A is excellent (or just Japanese).

Then, (Xη)K is not universally CH0-trivial.

Proof. Since Xη is smooth and complete, universal CH0-triviality is equivalent to the existence of a decom-
position of the diagonal (Theorem 22.7). We will use the following general fact:

Fact 24.10. If Y is geometrically integral over k is such that Yk has a decomposition of the diagonal, then
there is some finite extension k′/k such that Yk′ has a decomposition of the diagonal.

This follows from
CHn(Yk × Yk) = lim−→

k′/k

CHn(Yk′ × Yk′)

plus the definition of decomposition of the diagonal.
Now if (Xη)K is universally CH0-trivial, then there exists some K ′/K finite such that (Xη)K′ is universally

CH0-trivial. Let A′ be the localization at a maximal ideal of the integral closure of A in K ′. This implies A′ is
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a DVR, and the residue field of A′ is finite over k so it is equal to k since k = k. Applying Main Theorem 24.3
for X ×SpecA SpecA′ → SpecA′ yields that the generic fiber (Xη)K′ is not universally CH0-trivial, a
contradiction.

On Tuesday, we want to construct an interesting quartic threefolds with a resolution, to show that the set
of non-stably rational quartic threefolds is dense.

25 April 25

25.1 Non-stable-rationality of quartic threefolds

The plan today is to explain how decomposition of the diagonal is used in examples to prove non-stable-
rationality results. The goal is the following:

Theorem 25.1 [CTP16, Thm. 1.17]. If k is an algebraically closed field that strictly contains Q, then the set{
H ⊆ P4(k)

∣∣ H smooth, degree 4 hypersurface, not stably rational
}

is dense in the set of smooth degree 4 hypersurfaces over k.

The main ingredient will be:

Theorem 25.2 [Huh14; CTP16, App. A]. There is a hypersurface Z ⊆ P4(Q) of degree 4, which has a

resolution of singularities g : Z̃ → Z such that
• g is universally CH0-trivial;
• Z̃ is not universally CH0-trivial, and in fact, H3(Z̃C,Z)tors 6= 0.

We will first explain why what we did so far and Theorem 25.2 imply Theorem 25.1, and then go back to
proving Theorem 25.2.

25.1.1 Rationality and base change

We have not yet discussed how rationality does not depend on the algebraically closed field you work
over. Recall that if X is a rational variety over an algebraically closed field k, then XK is rational for any
algebraically closed field extension k ⊆ K. The following says that the reverse implication also holds.

Lemma 25.3. Let X,Y be geometrically integral varieties over k and K/k a field extension.
(1) If XK , YK are birational, then there exists a finite extension k ⊆ k′ such that Xk′ , Yk′ are birational.
(2) If k is algebraically closed, and XK is (stably) rational, then X is (stably) rational.

This can be proved using a general Hilbert scheme argument, but we will prove this more elementarily.

Proof. For (1), we may assume that K is finitely generated as a field over k, since the birational maps between
X and Y involve finitely many elements in K. Thus, we may assume K = k(W ) for some variety W/k, and
we have open subsets U ⊆ X ×W and V ⊆ Y ×W that are isomorphic as schemes over W , i.e., they fitt
into the diagram below:

X ×W U V Y ×W

W

⊇

pr2

∼ ⊆

pr2

Now choose a closed point w ∈W lying in the image of U under the projection X ×W →W ; since U and V
are isomorphic over W , the point w lies in the image of V under the projection Y ×W →W as well. Then,
k(w) is a finite extension of k, and by base change along Spec k(w)→W , we get an induced isomorphism

U ×W Spec k(w) ' V ×W Spec k(w),

which are nonempty varieties over k(w) by choice of w. Thus, Xk(w) and Yk(w) are birational.
(2) follows by applying the argument in (1) for Y = Pn in the rationality statement, and Y = X ×Pn in

the stably rationality statement.
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25.1.2 Proof of Theorem 25.1

We now prove Theorem 25.2 implies Theorem 25.1. Let P be the parameter space of all hypersurfaces over
Q, that is,

P = P
(
H0
(
P4

Q
,O(4)

)∗)
,

and let U ⊆ P be the subset parametrizing smooth hypersurfaces. Consider the universal family

H P4 ×P

P

If t ∈ P(k), then we denote Ht ⊆ P4(k) to be the corresponding hypersurface over k. Note that if t ∈ P(Q),
then Ht = (H ′t)k, where H ′t is the corresponding hypersurface over Q.

Step 1. We may assume that k ⊆ C.

Proof. Suppose V ( U is a closed subset such that for all t ∈ U(k) r V (k), the corresponding hypersurface
Ht is stably rational. The set V is defined by finitely many equations in k. Let k0 ⊆ k be the algebraic
closure of the subfield of k generated by Q and the coefficients of those equations. Then, V is defined
over k0, and trdegQ(k0) <∞, hence k0 embeds into C as a subfield. By Lemma 25.3, we have that for all
t ∈ U(k0) r V (k0), the corresponding hypersurface Ht is stably rational.

Step 2. Let s ∈ P(Q) be the point corresponding to the hypersurface in the statement of Theorem 25.2, and
let L ⊆ P be a smooth curve defined over Q containing s such that L∩U 6= ∅. Then, for all y ∈ L(k)rL(Q),
the hypersurface Hy is not stably rational.

Proof. Theorem 25.2 says that H ′s has a resolution of singularities H̃ ′s → H ′s such that

• The resolution H̃ ′s → H ′s is universally CH0-trivial; and

• H3
(
(H̃ ′s)C,Z

)
tors
6= 0.

After base changing to k, we have a resolution of singularities H̃s → Hs such that H̃s is not universally
CH0-trivial by Proposition 23.2 and Theorem 22.7.

Now suppose that L is a curve as in the statement of Step 2, e.g., a line in P joining s to a point in P(Q).
Consider the cartesian diagram

X H

SpecOL,s L P

y

Since L∩U 6= ∅, we know that the generic fiber X of the universal family H |L is smooth, and the resolution
of the special fiber Hs described above has the properties needed in Main Theorem 24.3. Since OL,s is a
DVR, Main Theorem 24.3 implies that (Xη)

k(L)
is not universally CH0-trivial, hence not stably rational.

Now if y ∈ L(k) r L(Q), then the morphism Spec k(y)→ L factors through Spec k(L). Thus, Hy is a base
extension of (Xη)

k(L)
. By Lemma 25.3, this implies that Hy is not stably rational.

Step 3. The set of non-stably rational smooth hypersurfaces is dense in P.

Proof. Suppose there is V as in Step 1. Given any y ∈ U(Q), let L be a line joining y and s. Step 2 implies
that L(k) r L(Q) is contained in V (k). Since L(k) r L(Q) is dense in L(k), we see that L(k) ∩ U(k) ⊆ V (k).
This implies that y ∈ V (k). Since U(Q) is dense in U(k) (exercise), we have that U ⊆ V , which contradicts
that U is an open dense subset of P.

Remarks 25.4.
(1) [CTP16, Thm. 1.20] provides an example of a non-stably-rational smooth quartic threefold over Q, but

the argument of Theorem 25.1 does not quite apply.
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(2) A general result says that given a projective family X → T over k = k with integral fibers such that T
is integral, there exists a countable set (Ti)i≥1 of closed subsets of T such that{

t ∈ T (k)
∣∣Xt has a decomposition of the diagonal

}
=
⋃
i≥1

Ti(k).

This was a folklore result that was proved in [CTP16, App. B]. The rough idea is that Chow varieties can
parametrize cycles, and since cycles depend on countably many parameters, the set of Ti is countable.
This implies that if k = k and k is uncountable, then a very general quartic hypersurface in P4 does not
have a decomposition of the diagonal, since we constructed one such smooth hypersurface. In particular,
a very general quartic hypersurface in P4 is not stably rational.

This was the story for very general quartic threefolds.

25.1.3 The geometry of quartic symmetroids

It does not make too much sense to do all the computations needed for Theorem 25.2, and so instead we will
describe the geometry behind the construction, which is very classical in flavor.

We first remind ourselves of some aspects from the construction of the Artin–Mumford example. We
considered

W2 ⊂W3 ⊂ P9 = space of quadrics in P3,

where Wi was the set of quadrics of rank ≤ i (§14.1.1). We then considered a general three-dimensional linear
subspace Π ⊂ P9, and letting S = Π ∩W3 ⊂ Π ' P3, we saw that S was a quartic hypersurface with ten
nodes at Π ∩W2 (Proposition 15.6). The Artin–Mumford example then took a double cover of P3 along S,
and then resolved the singularities (§15.1).

Artin and Mumford [AM72] used explicit things about the equation of S in their argument. We will
need this to construct the example we need for Theorem 25.2. The surface S is an example of a quartic
symmetroid, which is defined by the vanishing of a 4× 4 symmetric matrix of linear forms. The construction
goes back to Cayley in 1916.

Choose coordinates on Π such that one of the nodes is P = (0, 0, 0, 1). We want to write down the
equation g(z0, . . . , z3) of S. Since P ∈ S is a node, we have

g(z0, . . . , z3) = α(z0, z1, z2)z2
3 + β(z0, z1, z2)z3 + γ(z0, z1, z2), (25.1)

where degα = 2,deg β = 3,deg γ = 4. Moreover, (α = 0) ⊂ P2 is the projectivized tangent cone of S at P ,
hence is a smooth conic since P is a node.

Claim 25.5 (Cayley). For general Π, the discriminant β2 − 4αγ factors as ε1 · ε2, where ε1, ε2 are two smooth
cubics in P2 meeting at nine distinct points. Moreover, (εi = 0) is tangent to (α = 0) at three points, and
the fifteen points involved are distinct.

To show Claim 25.5, the idea is to project away from P to P2. For a general choice of Π, this induces a
2 : 1 map from the blowup of Π at P , which is ramified exactly along the vanishing locus of the discriminant
β2 − 4αγ.

First, we will describe the resolution of S more geometrically. Of course, it can also be defined as the
blowup at each of the ten nodes on S, but a more geometric description will be useful.

Notation 25.6. For t ∈ P9, we denote by Ht ⊆ P3 the corresponding quadric. We consider the incidence
correspondence

R =
{

(Q, t) ∈ P3 ×P9
∣∣ Q ∈ (Ht)sing

}
⊆ P3 ×P9.

This set R is the intersection of four divisors of type (1, 1), since it is defined by the vanishing of partial
derivatives. There are projection maps

R

P3 W3

ϕ ψ

which are both surjective, where
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• ϕ : R→ P3 is a projective subbundle of codimension four in P3 ×P9, hence R is smooth of dimension
3 + 9− 4 = 8;
• ψ : R→W3 is injective over W3 rW2, hence birational.

Letting Π ⊆ P9 be a general three-dimensional linear subspace, we also define

S = Π ∩W3 ⊆W3, S̃ = ψ−1(S), S′ = ϕ(S̃),

so that we have the following diagram:

S̃

R

S′ P3 W3 S

ϕ̃ ψ̃

ϕ ψ

⊆ ⊇

Now we note the following:
(1) Since Π is general, S̃ is a smooth subvariety of P3 ×Π, which is cut out by four divisors of type (1, 1).

Thus, by the adjunction formula, S̃ is a smooth K3 surface, and the induced birational map S̃ → S is a
minimal resolution of singularities that blows up the ten nodes on S.

(2) Letting q0, . . . , q3 span the linear space corresponding to Π, a point Q ∈ P3 lies in S′ if and only if
there exist λ0, . . . , λ3, not all zero, such that

3∑
i=0

λi
∂qi
∂xj

(Q) = 0

for all j. This is equivalent to saying that

det

(
∂qi
∂xj

)
= 0, (25.2)

where the matrix is a 4× 4 matrix of linear forms. Moreover, we have the following:

Fact 25.7. For general Π, the hypersurface given by (25.2) is a smooth quartic in P3.

(3) The morphism ϕ̃ : S̃ → S′ is birational, hence an isomorphism since both S̃ and S′ have trivial canonical
bundles. We prove that deg(ϕ) = 1 via intersection theory, by computing

(
OS̃(1, 0)2

)
in two different

ways. First, (
OS̃(1, 0)2

)
=
(
ϕ∗OS′(1)2

)
= 4 · deg(ϕ)

by compatibility of intersection numbers with pullbacks, and since Fact 25.7 implies 4 =
(
OS′(1)2

)
. We

also have(
OS̃(1, 0)2

)
= OP3×Π(1, 0)2 ·

(
OP3×Π(1, 0) +OP3×Π(0, 1)

)4
= 4
(
O(1, 0)3 · O(0, 1)3

)
= 4

by using the description of S̃ in (1). Combining the two equations gives deg(ϕ) = 1.
We now return to the proof of Claim 25.5. We will need the following:

Fact 25.8. If L ⊂ S is a line, then there are three nodes on L, which give singular points on S′. Thus, if Π
is general, then S′ is smooth, and so there cannot be a line on S.

We will use Fact 25.8 when L parametrizes singular quadrics.
Now consider the projection S r {P} → P2 from the point P . Since P is a node, this induces a morphism

π : BlP S → P2. Since S contains no lines, we see that π is a finite map, and is of degree two. In this case,
one can prove the following:
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Exercise 25.9. If π : X → Y is a degree two finite surjective morphism, with X normal and Y smooth, then
π is a cyclic cover of order two.

Thus, π : BlP S → P2 is a cyclic cover of order two. The ramification locus, i.e., the locus where π is not
étale, is a curve in P2. By looking at the equation of S, you can see that this locus is exactly the vanishing
locus of the discriminat β2 − 4αγ.

We will try to understand the inverse image of this ramification locus in S r {P}. This is the locus{
t ∈ S

∣∣ the line tP is tangent to S at t
}

=
{
t ∈ S

∣∣ the line tP is contained in TtS
}

(25.3)

Since Π is general, the intersection W3 ∩Π = S is as transversal as possible. Thus, if t is not a node, then
TtS = TtW3 ∩Π. We did an explicit computation of TtW3 in coordinates (cf. (14.2)): W3 is given by∣∣∣∣∣∣∣∣

a11 + 1
a22 + 1

a33 + 1
a44

∣∣∣∣∣∣∣∣ = 0

and the tangent space is given by a44 = 0. The quadric x2
0 + x2

1 + x2
2 is singular exactly at (0, 0, 0, 1), hence

TtW3 =
{
Q ∈ P9

∣∣ (Ht)sing ∈ HQ

}
.

This implies that the locus (25.3) when intersected with S r {nodes} is{
t ∈ S r {nodes}

∣∣ P ∈ TtS},
and by the above, this condition is equivalent to (Ht)sing ∈ HP , which holds if and only if there exists

(Q, t) ∈ R such that Q ∈ HP . Thus, the locus in (25.3) is ψ̃
(
ϕ̃−1(S′ ∩HP )

)
, where we recall the notation

S̃

S′ S

∼

ϕ̃ ψ̃

We then need to understand S′ ∩HP . P is a node corresponding to a quadric of rank 2, hence HP is a union
of two planes HP = L1 + L2, where L1, L2 ⊆ P3 are planes meeting along a line `. It is then easy to see that
` ⊆ S′, and therefore,

S′ ∩ Li = `+ residual cubic curve in P2︸ ︷︷ ︸
Ci

.

These are the two cubic curves we were looking for. Thus, the discriminant curve β2 − 4αγ is the union of
the images in P2 of these two cubic curves. Now since BlP S has precisely nine nodes, it follows that these
two cubic curves in P3 are smooth, and intersect at nine distinct points.

This concludes the description of the Artin–Mumford example, which is what they start with in [AM72].
This is quite important for the computations in [Huh14; CTP16].

25.1.4 The construction for Theorem 25.2

Let g as in (25.1) define S. [Huh14] takes Z ⊆ P4 defined by

g(x0, x1, x2, x3)− x2
4δ(x0, . . . , x3)

with δ is a general form of degree two. [CTP16] take

g(x0, x1, x2, x3)− x2
4x

2
0,

where x0 can be replaced by x0 + ux1 + vx2 for u, v ∈ k general. The advantage of the second Z is that it is
birational to the Artin–Mumford example, since in the chart x0 6= 0,

Z ∩ {x0 6= 0} = {g(1, x1, x2, x3)− x2
4 = 0} ⊆ A4

is an affine piece of the double cover of P3 ramified along S. Hence, for every resolution Z̃ → Z, we have
that H3(Z̃,Z)tors 6= ∅. We then need to show that we can find some resolution Z̃ → Z that is universally
CH0-trivial.
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Description of the resolution We have a line

L = (x0 = x1 = x2 = 0) ⊂ Zsing,

and (Z r L)sing consists of exactly nine nodes.

Step 1. Let g′ : Z ′ = BlL Z → Z, with exceptional divisor E′ → L. One can check in charts that

Z ′sing ∩ (g′)−1(L) = (g′)−1(P ),

and that this set is a line, which we denote by L′. Also, E′ is birational to a smooth quadric, hence is rational.
Moreover, E′ → L is a conic bundle, which has a rational section.

Step 2. Let g′′ : Z ′′ = BlL′ Z
′ → Z ′, with exceptional divisor E′′ → L′. Then, E′′ is smooth, hence

Z ′′ is smooth over L, and moreover, E′′ → L′ is a conic bundle over P1, hence E′′ is rational by the
Noether–Enriques Theorem 10.5.

Step 3. Consider the composition

Z̃

Z ′′

Z ′

Z

g′′′

g g′′

g′

where g′′′ : Z̃ → Z ′′ is the blowup at the remaining nine nodes. The fibers of g are:
• Points (over the open set where g is an isomorphism);
• Smooth quadrics, which are rational (over the nine nodes);
• A smooth quadric with a rational point (over the generic point Spec k(L) of L);
• Smooth conics (over closed points in Lr {P});
• The ruled surface E′′ (over P ).

All of these are rational, hence g is universally CH0-trivial by Corollary 24.2. This completes the sketch of
the proof of Theorem 25.2.

The general strategy for producing interesting examples is to find explicit descriptions of resolutions like
what we did for Theorem 25.2, and use degeneration arguments. This is the strategy employed by Hassett,
Pirutka, and Tschinkel in [HPT16a; HPT16b].
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