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The subadditivity theorem for test ideals was first proved by Hara and Yoshida using tight
closure [HY03]. We give a short proof of the subadditivity theorem for test ideals using Schwede’s
characterization of the test ideal in terms of F -compatibility [Sch10].

We first review the definition of test ideals for F -finite rings of characteristic p > 0. See [ST12]
and [TW18, §5] for overviews of the theory. We set the following notation.

Definition 1 (cf. [Sch10, Def. 2.3]). A pair (R, a•) consists of

(i) an F -finite reduced noetherian ring R of characteristic p > 0, and
(ii) a graded family a• of ideals in R such that am ∩R◦ 6= ∅ for all m > 0.

Remark 2. By setting am = adtme for a fixed ideal a and a real numbers t > 0, we recover the more
common notion of a pair (R, at); see [Sch10, §2.1].

We can now define test ideals.

Definition 3 [Sch10, Def. 3.1 and Thm. 6.3]. Let (R, a•) be a pair. An ideal J ⊆ R is uniformly
(a•, F )-compatible if for every integer e > 0 and every ϕ ∈ HomR(F e

∗R,R), we have

ϕ
(
F e
∗ (J · ape−1)

)
⊆ J.

The test ideal τ(R, a•) is the smallest ideal in R that is uniformly (a•, F )-compatible and intersects
R◦. We often drop R from our notation if it is clear from context.

The test ideal exists by [Sch11, Thm. 3.18]. To prove the subadditivity theorem, we will need the
following consequence of a lemma of Fedder [Fed83, Lem. 1.6].

Proposition 4 [Sch10, Prop. 3.11]. Let (R, a•) be a pair such that R is regular. Then, an ideal

J ⊆ R is uniformly (a•, F )-compatible if and only if for all e ≥ 0, we have ape−1 ⊆ (J [pe] : J).

We can now state and prove the subadditivity theorem for test ideals.

Theorem 5 (Subadditivity, cf. [HY03, Thm. 6.10(2)]). Let R be a regular F -finite ring of charac-
teristic p > 0. If (R, a•) and (R, b•) are two pairs, then

τ(a• · b•) ⊆ τ(a•) · τ(b•).

In particular, if a, b are two ideals in R intersecting R◦, then for all positive real numbers t, s,

τ(at · bs) ⊆ τ(at) · τ(bs).

Proof. The second statement follows from the first by setting am = adtme and bm = bdsme as in
Remark 2. For the first statement, it suffices to show the chain of inclusions

ape−1 · bpe−1 ⊆
(
τ(a•)

[pe] : τ(a•)
)
·
(
τ(b•)

[pe] : τ(b•)
)

⊆
((
τ(a•) · τ(b•)

)[pe]
:
(
τ(a•)

[pe] · τ(b•)
[pe]

))
by Proposition 4, since τ(a• · b•) is the smallest (a• · b•, F )-compatible ideal intersecting R◦ by
definition. The first inclusion follows since τ(a•) and τ(b•) are uniformly (a•, F )- and (b•, F )-
compatible. The second inclusion holds since, in general, (I1 : J1) · (I2 : J2) ⊆ (I1I2 : J1J2). �
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