TEST IDEALS FOR PAIRS VIA GENERALIZED TIGHT CLOSURE

TAKUMI MURAYAMA

The goal of this talk is to develop a theory of test ideals for pairs (R,a'), and to give some
applications that do not mention test ideals. See [ST12] and [TW18, §5] for overviews of the theory.
The theory is originally due to Hara—Yoshida [HY03] and Hara—Takagi [HT04], and generalizes the
tight closure theory developed by Hochster—Huneke [HH90)].

We start by describing our applications. First, recall that the integral closure @ of an ideal a C R
is the set of all elements € R such that r satisfies a polynomial f(z) = Z?:o c4—iw' € R[x] where
co =1 and ¢; € a*. A version of the Briangon—Skoda theorem says that if R is regular, then

— n
an+€ lga,

where /£ is the number of generators of a. This inclusion was shown by Skoda—Briancon for smooth
C-algebras [SB74, Thm. 3], by Lipman-Sathaye for all regular rings [LS81, Thm. 1”], and by
Hochster—-Huneke for weakly F-regular rings [HH90, Thm. 5.4]. We will prove a version of this
result in §2. This result has some interesting corollaries, which we will not be able to prove:

(1) If f € C{z1, 22,...,2,} is a convergent power series in n variables that defines a hypersurface
with an isolated singularity at the origin, then f™ € (0f/0z1,0f/0z2,...,0f/0z,) [SB74,
Cor.]. This answers a question of Mather.

(2) If f1, fa,..., fny1 € R, where R is regular of dimension 7, then

f{lanfg S ( irH_l érH_lv"-: 77;——11-—11)
See [Hocl4, Thm. on p. 29].
Second, recall that the nth symbolic power of an ideal a C R is
a = RN ﬂ a"Ry.
pEAss(a)
We will prove the following uniform comparison theorem for symbolic powers on regular rings:

a(hn) Ca"

where h is the maximal height of the associated primes of a. This uniform comparison theorem
is originally due to Ein—Lazarsfeld-Smith for smooth C-algebras [ELS01, Thm. A], to Hochster—
Huneke for regular rings containing a field [HH02, Thm. 1.1(a)], and to Ma—-Schwede for mixed
characteristic regular rings [MS18, Thm. 7.4]. We will prove a version of this result in §3.

Notation. All rings will be commutative with identity, noetherian, and of characteristic p > 0. If
R is a ring, then R° denotes the complement of the union of the minimal primes of R. We denote
the Frobenius morphism by F': R — F,R. For every integer e > 0, the eth iterate of the Frobenius
morphism is denoted by F°: R — FZR.
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1. DEFINITION AND PRELIMINARIES

We start by defining with the analogue of tight closure and test ideals for pairs (R, a'), following
Hara—Yoshida [HY03] and Hara-Takagi [HT04].

Definition 1.1 [HY03, Def. 6.1; HT04, Def. 1.4]. Let R be a ring, and let a C R be an ideal such
that a N R° # (. Let .: N < M be an inclusion of R-modules. For every ¢t € R>¢, the a’-tight
closure is

N]T;t — {x c M there exists ¢ € R° such that for all e > 0, }

ca” @z Cim(id®e: FFR@p N — FER@p M)

Now let £ = @,, Er(R/m) be the direct sum of the injective hulls of the residue fields R/m for
every maximal ideal m C R. The (non-finitistic or big) test ideal is

7(a") = AnnR(O*E“t).
Now let b C R be another ideal such that b N R° # (). For every s € R>(, we similarly define

there exists ¢ € R° such that for all e > 0,
calPtpP*sl @ 2 Cim(id® : FFR®zg N — FER®pr M)

N3F® = {x e M

in which case the test ideal is

7(a'b*) = Anng (05").
Setting a = R and t = 1, one obtains the usual notion of tight closure for modules due to Hochster—
Huneke [HH90, Def. 8.2], and the (non-finitistic or big) test ideal 7(R) defined by Lyubeznik—
Smith [LS01, §7].

Remark 1.2. The definition in [HY03] is the analogue of the (finitistic) test ideal defined in [HH90,
Def. 8.22] for pairs (R,a'). There is also a version of tight closure for pairs (R,A), where A is
an effective R-Weil divisor [Tak04, Def. 2.1], or triples (R, A, a?) [Sch10, Def. 2.14]. The test ideal
7(al) can also be described in terms of an appropriate version of test elements for a‘-tight closure
if R is F-finite [Sch10, Thm. 2.22].

We now state some basic properties of test ideals that we will use often.

Proposition 1.3 (cf. [HY03, Props. 1.3 and 1.11; LS01, Prop. 2.9]). Let R be a ring, and let a and
b be ideals in R intersecting R°.

(i) T(at-b%)-b C 7(al - b5T1).

(ii) If a C b, then 7(a') C 7(b%). Equality holds if b C .
(i) If s < t, then T(a®) D 7(at).

(iv) For every m € N, we have 7((a™)!) = 7(a

(v) R is strongly F-regular if and only if T(R) = R.

Proof. Tt suffices to show the corresponding dual statements for N]"\‘j‘t by setting N =0and M = F
and taking annihilators, where for (i), we use the fact that Anng(N :p; a) 2 Anng(N) - a.
For (i), we have

nt).

xatpstl

NGO < (NG b) (1)
since if x € N}'{f"sﬂ with multiplier ¢ € R°, then
cal?tp[P*sl @ p. g = calPtplP slplr] & &
C calPtlplP®sl+r® o o
= calPtlpP* ()] & o
Cim(ild®¢: FFR®r N — FfR®p M)
for all e > 0.
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The first part of (i7) and (iii) follow from the fact that N]"{jt 2 N]"\‘ft and N;¥ C Nj\“j‘t. For the
second part of (i7), it suffices to show that N]’(f - Nj\‘/}’t. Recall from [HS06, Cor. 1.2.5] that b Ca
if and only if there exists an integer r > 0 such that

b?”-i—l = ab”
i.e., if and only if a is a reduction of b. By [HS06, Rem. 1.2.3], this implies b"** C a* for every

integer s > 0. Now consider = € Nj\k/c[‘t. Setting s = [p°t], we see that for any choice of d € b" N R°
and all x € M, we have

cdb Pt @ o C cbPHT @ g
Cea?l @
Cim(id®e: FFR®r N — FfR®r M)
hence x € Nj\‘/‘[’t implies x € N]’\‘/}’t.
For (iv), we note that [p°t] — 1 < p°t < [p°t], hence multiplying by n throughout and applying
ceilings again, we have
n[p‘t] —n < [pnt] < n[pt].
We therefore have the inclusions
anlpetl=n o glpent] 5 gnlpt]
The right inclusion already implies N]’\‘/j‘m - N;}an)t. On the other hand, if = € N;C/}an)t with
multiplier ¢ € R°, then for any choice of d € a” N R°, we have

cdal?™ @z C cda™P " @
C ca™P’tl @ o
Cim(id®e: FFR@r N — FCR®p M)
for all e > 0, hence N;\}(an)t C N]"\‘j‘m.
Finally, (v) follows since R is strongly F-regular if and only if 03, = 0 [LSO1, Prop. 2.9]. g
Remark 1.4. Motivated by Proposition 1.3(v), we say that (R, a') is strongly F-regular if 7(a') = R.

The following results are more subtle. The corresponding results for 7(R) are due to Lyubeznik—
Smith [LS01, Thms. 7.1(2) and 7.1(3)], and do not require the full strength of F-finiteness.

Proposition 1.5 [HT04, Props. 3.1 and 3.2]. Let R be a reduced F-finite ring, and let a C R be
an ideal such that a N R° # ().

(i) For every multiplicative subset W C R, we have T(a) )W 'R = 7((aW ~LR)?).

(ii) If (R,m) is a local ring, then T(a')R = 7((aR)!).
Proof Sketch. Both of these properties follow from the fact (see [HT04, Lem. 2.1]) that

(@) => Y ¢l (Fe(eal” ),

e>0 ¢le)

where ¢(¢) ranges over all elements of Hompg(FfR, R), and ¢ € R° is an appropriate version of a
completely stable big test element for a’-tight closure. O

Before we can move on to applications, we need the following version of Matlis duality:

Proposition 1.6 (Matlis duality, see [Hoc07, Prop. on p. 242]). Let (R,m) be a local ring, and let
E = ER(R/m) be the injective hull of the residue field. If a C R is an ideal, then Anng(0 :g a) = a.
If R is complete and N C E is a submodule, then (0 :g Anng(N)) = N.
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Proposition 1.6 has the following consequence:
Lemma 1.7. Let R be a complete local ring, and let a C R be an ideal such that a N R° # (). For
every ideal b C R and every t € R>o, we have
(O*E“t :pb) 2 (0:5 7(a") - b).
Proof. If x € (0 :g 7(a') - b), then b-2 C (0 :g 7(at)) = OE“t by Matlis duality (Proposition 1.6),
hence = € (05 :5 b). O
2. BRIANCON—SKODA

Our next goal is to prove an application of the machinery developed so far. We first prove a
version of the Briangon—Skoda theorem involving test ideals.

Theorem 2.1 (Skoda’s theorem, cf. [HT04, Thms. 4.1 and 4.2]). Let R be a reduced F-finite ring
or a complete local ring, and let a and b be ideals in R intersecting R°. Let ¢ be the number of
generators of an ideal ¢ such that a =<. Then, for every t € R>q, we have

7(a’!) = 7(a"" 10! - a.

Proof. The inclusion D follows from Proposition 1.3(7), hence it suffices to show the reverse inclusion
C. If R is not complete local, we can reduce to the complete local case using Proposition 1.5.
By Matlis duality (Proposition 1.6), it suffices to show the chain of inclusions

OEaebt 2 (O*Eaeflbt - Cl) 2 (0 5 T(aZ—lbt> . a).

The right inclusion holds by Lemma 1.7, hence it suffices to show the left inclusion.
By (a slight generalization of) the equality statement in Proposition 1.3(ii), we may assume that

a is generated by ¢ elements. Let x € (O*E“E_lbt :g a), in which case there exists ¢ € R° such that
ca? DpP T @ g = el D Pt @ 2 = 0
in FFR®p F for all e > 0. Since a is generated by £ elements, the pigeon-hole principle implies
a?t = aP" (=D glP’l Thus, we have ca?‘b/P“!l @ & = 0, and therefore x € O*E“ebt. O
We can now prove a version of the promised application.

Corollary 2.2 (Modified Briangon—Skoda, cf. [HY03, Thm. 2.1 and Rem. 2.2]). Let R, a, and ¢
be as in Theorem 2.1. Then, we have

(@) C o (2)
for alln > 0.
In particular, with R, a, and £ as above, if R is strongly F-reqular, then
a1 C g, (3)
Proof. For the first inclusion, we have
@) = (@) ca = = (@)Y gt C g

by applying Theorem 2.1 n-times. The second inclusion follows from Propositions 1.3(v), 1.3(7),
and 1.3(z7) and (2), since

antl—1 — 7(R) - a1 C T(an+e—1) — T(an+e—1) C an. t

Remark 2.3. The last inclusion (3) for smooth C-algebras was first proved by Skoda and Briangon
using analytic methods [SB74, Thm. 3|, and was shown for all regular rings by Lipman and Sathaye
[LS81, Thm. 1”]. The last inclusion (3) can also be obtained using the usual notion of tight closure,
and in fact holds for weakly F-regular rings; see [HH90, Thm. 5.4].
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3. SUBADDITIVITY AND SYMBOLIC POWERS
For our second application, we first need some more technical results about test ideals.

Proposition 3.1 (cf. [Tak06, Props. 2.1 and 2.2]). Let R be a ring, and let a and b be ideals in R
intersecting R°. Then, for everyt,s € R>q, we have

(05" 5 7(a!)*) 2 (08 :p 7(ah)).
Proof. Let x € (03" :p 7(a?)), in which case there exists ¢ € R° such that
bl @ r(ah)z = b7 ()P @ 2 =0

in FfR®p E for all e > 0. To show that x € (0} 0" .o 7 (at)*"), we want to show that for every
element € 7(a!)*, we have rz € 0%'*". By definition of 7(a*)**, there exists d € R° such that
dalPt17P" C 7(at)P] for all e > 0. Thus, we have

cdalP o7l @ g = cdalPpIP*s112" @ 2 C cblP*l7(a)PT @ 2 = 0,
hence z € (O*E“tbs :p 7(at)*e). O

Theorem 3.2 (Subadditivity, cf. [HY03, Thm. 6.10(2); Tak06, Thm. 2.4]). Let R be a regular ring
that is F'-finite or complete local, and let a and b be ideals in R intersecting R°. Then, for every
t,s € R>o, we have

7(a'6®) C 7(a") - 7(b%).

Proof. We note that if R is not complete local, then we can reduce to the complete local case using
Proposition 1.5.
We first claim that it suffices to show that

t

7(a")* = R. 4)
By Proposition 3.1 and Lemma 1.7, we have
O*atbs _ (O*atbs B R) (O*a bs . B T(at)*at) ) (O*bs B ) ( bs))'
Taking annihilators, Matlis duality (Proposition 1.6) implies T(Cl b*) C 7(a ) ( %).

To show (4), it suffices to show that
a’rpeﬂ g T(at)[pe]

for e > 0 by the definition of a’-tight closure. By [HY03, Thms. 1.7(2) and 6.4], since R is regular,
1 is a test element for a’-tight closure. Thus, we have

0 =al”!l g 0%’
in FfR ®p E. By Matlis duality (Proposition 1.6), we then have

0=a?® (0:5 r(ah)) = a1 (0:p 7(a*)PT). (5)
Here, the second equality follows from the isomorphism
FfR KRR F~F

coming from the fact that R — F¢R is flat [Kun69, Thm. 2.1] and the description of E as HZ(R).
Under this identification, we have FER® (0 :g 7(a%)) ~ (0 :p 7(a?)P)). Finally, (5) implies

alPtl AnnR(O o) T(at)[pe}) = T(at)[pe]
by Matlis duality (Proposition 1.6). O

We now give the second application of the theory.
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Theorem 3.3 (cf. [HH02, Thm. 1.1(a)]). Let R be a regular ring with reduced formal fibers, let
a C R be an ideal intersecting R°, and let h be the maximal height of the associated primes of a.
Then, alPtkn) C (aB+D) for all integers n > 1 and k > 0. In particular, al™) C a™.

Proof. By replacing R with R[X] for an indeterminate X, we may assume that the residue fields
of R are infinite [HH02, Discussion 2.3]. The proof below is written for F-finite regular rings R,
although if R is not F-finite, then one may reduce to the case where R is complete local using the
assumption on formal fibers and the strategy in [MS18, Thm. 7.4].

Since R is regular, it is also strongly F-regular, hence Proposition 1.3(v) and subadditivity
(Theorem 3.2) imply

a(hn+kn) C T(a(thrkn)) C (T((a(thrkn))l/n))n
for all n > 0. Tt therefore suffices to show 7((al" A R,)1/7) C ak+1R,. We have
T((a(hn-i—kn)Rp)l/n) _ T((ahn—i-kan)l/n) _ T(ah+kRp) C ak—HRp

by the definition of symbolic powers, Proposition 1.3(iv), and (2) in the modified Briangon—Skoda
theorem (Corollary 2.2), where we use the infinite residue field to use [HS06, Prop. 8.3.7]. O

Remark 3.4. The proof here follows [Har05, Thm. 2.21]. This uniform containment theorem was
originally proved by Ein-Lazarsfeld-Smith for smooth C-algebras using multiplier ideals [ELSO01,
Thm. A]. Hochster—-Huneke generalized their result to regular rings containing a field using tight
closure and reduction modulo p [HH02, Thm. 1.1(a)]. The mixed characteristic case (with the
addititional assumption on formal fibers) was not proved until recently by Ma—Schwede using
perfectoid techniques [MS18, Thm. 7.4].
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