
TEST IDEALS FOR PAIRS VIA GENERALIZED TIGHT CLOSURE

TAKUMI MURAYAMA

The goal of this talk is to develop a theory of test ideals for pairs (R, at), and to give some
applications that do not mention test ideals. See [ST12] and [TW18, §5] for overviews of the theory.
The theory is originally due to Hara–Yoshida [HY03] and Hara–Takagi [HT04], and generalizes the
tight closure theory developed by Hochster–Huneke [HH90].

We start by describing our applications. First, recall that the integral closure a of an ideal a ⊆ R

is the set of all elements r ∈ R such that r satisfies a polynomial f(x) =
∑d

i=0 cd−ix
i ∈ R[x] where

c0 = 1 and ci ∈ ai. A version of the Briançon–Skoda theorem says that if R is regular, then

an+ℓ−1 ⊆ an,

where ℓ is the number of generators of a. This inclusion was shown by Skoda–Briançon for smooth
C-algebras [SB74, Thm. 3], by Lipman–Sathaye for all regular rings [LS81, Thm. 1′′], and by
Hochster–Huneke for weakly F -regular rings [HH90, Thm. 5.4]. We will prove a version of this
result in §2. This result has some interesting corollaries, which we will not be able to prove:

(1) If f ∈ C{z1, z2, . . . , zn} is a convergent power series in n variables that defines a hypersurface
with an isolated singularity at the origin, then fn ∈ (∂f/∂z1, ∂f/∂z2, . . . , ∂f/∂zn) [SB74,
Cor.]. This answers a question of Mather.

(2) If f1, f2, . . . , fn+1 ∈ R, where R is regular of dimension n, then

fn
1 f

n
2 · · · fn

n ∈ (fn+1
1 , fn+1

2 , . . . , fn+1
n+1 ).

See [Hoc14, Thm. on p. 29].

Second, recall that the nth symbolic power of an ideal a ⊆ R is

a(n) := R ∩
⋂

p∈Ass(a)

anRp.

We will prove the following uniform comparison theorem for symbolic powers on regular rings:

a(hn) ⊆ an

where h is the maximal height of the associated primes of a. This uniform comparison theorem
is originally due to Ein–Lazarsfeld–Smith for smooth C-algebras [ELS01, Thm. A], to Hochster–
Huneke for regular rings containing a field [HH02, Thm. 1.1(a)], and to Ma–Schwede for mixed
characteristic regular rings [MS18, Thm. 7.4]. We will prove a version of this result in §3.

Notation. All rings will be commutative with identity, noetherian, and of characteristic p > 0. If
R is a ring, then R◦ denotes the complement of the union of the minimal primes of R. We denote
the Frobenius morphism by F : R → F∗R. For every integer e ≥ 0, the eth iterate of the Frobenius
morphism is denoted by F e : R → F e

∗R.
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1. Definition and preliminaries

We start by defining with the analogue of tight closure and test ideals for pairs (R, at), following
Hara–Yoshida [HY03] and Hara–Takagi [HT04].

Definition 1.1 [HY03, Def. 6.1; HT04, Def. 1.4]. Let R be a ring, and let a ⊆ R be an ideal such
that a ∩ R◦ 6= ∅. Let ι : N →֒ M be an inclusion of R-modules. For every t ∈ R≥0, the at-tight

closure is

N∗at

M :=

{
x ∈ M

∣∣∣∣
there exists c ∈ R◦ such that for all e ≫ 0,

ca⌈p
et⌉ ⊗ x ⊆ im

(
id⊗ ι : F e

∗R⊗R N → F e
∗R⊗R M

)
}
.

Now let E :=
⊕

mER(R/m) be the direct sum of the injective hulls of the residue fields R/m for
every maximal ideal m ⊆ R. The (non-finitistic or big) test ideal is

τ(at) := AnnR
(
0∗a

t

E

)
.

Now let b ⊆ R be another ideal such that b ∩R◦ 6= ∅. For every s ∈ R≥0, we similarly define

N∗atbs

M :=

{
x ∈ M

∣∣∣∣
there exists c ∈ R◦ such that for all e ≫ 0,

ca⌈p
et⌉b⌈p

es⌉ ⊗ x ⊆ im
(
id⊗ ι : F e

∗R⊗R N → F e
∗R⊗R M

)
}

in which case the test ideal is
τ(atbs) := AnnR

(
0∗a

tbs

E

)
.

Setting a = R and t = 1, one obtains the usual notion of tight closure for modules due to Hochster–
Huneke [HH90, Def. 8.2], and the (non-finitistic or big) test ideal τ(R) defined by Lyubeznik–
Smith [LS01, §7].

Remark 1.2. The definition in [HY03] is the analogue of the (finitistic) test ideal defined in [HH90,
Def. 8.22] for pairs (R, at). There is also a version of tight closure for pairs (R,∆), where ∆ is
an effective R-Weil divisor [Tak04, Def. 2.1], or triples (R,∆, at) [Sch10, Def. 2.14]. The test ideal
τ(at) can also be described in terms of an appropriate version of test elements for at-tight closure
if R is F -finite [Sch10, Thm. 2.22].

We now state some basic properties of test ideals that we will use often.

Proposition 1.3 (cf. [HY03, Props. 1.3 and 1.11; LS01, Prop. 2.9]). Let R be a ring, and let a and

b be ideals in R intersecting R◦.

(i) τ(at · bs) · b ⊆ τ(at · bs+1).
(ii) If a ⊆ b, then τ(at) ⊆ τ(bt). Equality holds if b ⊆ a.

(iii) If s < t, then τ(as) ⊇ τ(at).
(iv) For every m ∈ N, we have τ((an)t) = τ(ant).
(v) R is strongly F -regular if and only if τ(R) = R.

Proof. It suffices to show the corresponding dual statements for N∗at

M by setting N = 0 and M = E
and taking annihilators, where for (i), we use the fact that AnnR(N :M a) ⊇ AnnR(N) · a.

For (i), we have

N∗atbs+1

M ⊆
(
N∗atbs

M :M b
)

(1)

since if x ∈ N∗atbs+1

M with multiplier c ∈ R◦, then

ca⌈p
et⌉b⌈p

es⌉ ⊗ b · x = ca⌈p
et⌉b⌈p

es⌉b[p
e] ⊗ x

⊆ ca⌈p
et⌉b⌈p

es⌉+pe ⊗ x

= ca⌈p
et⌉b⌈p

e(s+1)⌉ ⊗ x

⊆ im
(
id⊗ ι : F e

∗R⊗R N → F e
∗R⊗R M

)

for all e ≫ 0.
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The first part of (ii) and (iii) follow from the fact that N∗at

M ⊇ N∗bt

M and N∗as

M ⊆ N∗at

M . For the

second part of (ii), it suffices to show that N∗at

M ⊆ N∗bt

M . Recall from [HS06, Cor. 1.2.5] that b ⊆ a

if and only if there exists an integer r > 0 such that

br+1 = abr,

i.e., if and only if a is a reduction of b. By [HS06, Rem. 1.2.3], this implies br+s ⊆ as for every

integer s > 0. Now consider x ∈ N∗at

M . Setting s = ⌈pet⌉, we see that for any choice of d ∈ br ∩R◦

and all x ∈ M , we have

cdb⌈p
et⌉ ⊗ x ⊆ cb⌈p

et⌉+r ⊗ x

⊆ ca⌈p
et⌉ ⊗ x

⊆ im
(
id⊗ ι : F e

∗R⊗R N → F e
∗R⊗R M

)

hence x ∈ N∗at

M implies x ∈ N∗bt

M .
For (iv), we note that ⌈pet⌉ − 1 ≤ pet ≤ ⌈pet⌉, hence multiplying by n throughout and applying

ceilings again, we have

n⌈pet⌉ − n ≤ ⌈pent⌉ ≤ n⌈pet⌉.

We therefore have the inclusions

an⌈p
et⌉−n ⊇ a⌈p

ent⌉ ⊇ an⌈p
et⌉.

The right inclusion already implies N∗ant

M ⊆ N
∗(an)t

M . On the other hand, if x ∈ N
∗(an)t

M with
multiplier c ∈ R◦, then for any choice of d ∈ an ∩R◦, we have

cda⌈p
ent⌉ ⊗ x ⊆ cdan⌈p

et⌉−n ⊗ x

⊆ can⌈p
et⌉ ⊗ x

⊆ im
(
id⊗ ι : F e

∗R⊗R N → F e
∗R⊗R M

)

for all e ≫ 0, hence N
∗(an)t

M ⊆ N∗ant

M .
Finally, (v) follows since R is strongly F -regular if and only if 0∗E = 0 [LS01, Prop. 2.9]. �

Remark 1.4. Motivated by Proposition 1.3(v), we say that (R, at) is strongly F -regular if τ(at) = R.

The following results are more subtle. The corresponding results for τ(R) are due to Lyubeznik–
Smith [LS01, Thms. 7.1(2) and 7.1(3)], and do not require the full strength of F -finiteness.

Proposition 1.5 [HT04, Props. 3.1 and 3.2]. Let R be a reduced F -finite ring, and let a ⊆ R be

an ideal such that a ∩R◦ 6= ∅.

(i) For every multiplicative subset W ⊆ R, we have τ(at)W−1R = τ((aW−1R)t).

(ii) If (R,m) is a local ring, then τ(at)R̂ = τ((aR̂)t).

Proof Sketch. Both of these properties follow from the fact (see [HT04, Lem. 2.1]) that

τ(at) =
∑

e≥0

∑

φ(e)

φ(e)
(
F e
∗ (ca

⌈pet⌉)
)
,

where φ(e) ranges over all elements of HomR(F
e
∗R,R), and c ∈ R◦ is an appropriate version of a

completely stable big test element for at-tight closure. �

Before we can move on to applications, we need the following version of Matlis duality:

Proposition 1.6 (Matlis duality, see [Hoc07, Prop. on p. 242]). Let (R,m) be a local ring, and let

E = ER(R/m) be the injective hull of the residue field. If a ⊆ R is an ideal, then AnnR(0 :E a) = a.

If R is complete and N ⊆ E is a submodule, then (0 :E AnnR(N)) = N .
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Proposition 1.6 has the following consequence:

Lemma 1.7. Let R be a complete local ring, and let a ⊆ R be an ideal such that a ∩ R◦ 6= ∅. For

every ideal b ⊆ R and every t ∈ R≥0, we have
(
0∗a

t

E :E b
)
⊇

(
0 :E τ(at) · b

)
.

Proof. If x ∈ (0 :E τ(at) · b), then b · x ⊆ (0 :E τ(at)) = 0∗a
t

E by Matlis duality (Proposition 1.6),

hence x ∈ (0∗a
t

E :E b). �

2. Briançon–Skoda

Our next goal is to prove an application of the machinery developed so far. We first prove a
version of the Briançon–Skoda theorem involving test ideals.

Theorem 2.1 (Skoda’s theorem, cf. [HT04, Thms. 4.1 and 4.2]). Let R be a reduced F -finite ring

or a complete local ring, and let a and b be ideals in R intersecting R◦. Let ℓ be the number of

generators of an ideal c such that a = c. Then, for every t ∈ R≥0, we have

τ(aℓbt) = τ(aℓ−1bt) · a.

Proof. The inclusion ⊇ follows from Proposition 1.3(i), hence it suffices to show the reverse inclusion
⊆. If R is not complete local, we can reduce to the complete local case using Proposition 1.5.

By Matlis duality (Proposition 1.6), it suffices to show the chain of inclusions

0∗a
ℓbt

E ⊇
(
0∗a

ℓ−1bt

E :E a
)
⊇

(
0 :E τ(aℓ−1bt) · a

)
.

The right inclusion holds by Lemma 1.7, hence it suffices to show the left inclusion.
By (a slight generalization of) the equality statement in Proposition 1.3(ii), we may assume that

a is generated by ℓ elements. Let x ∈ (0∗a
ℓ−1bt

E :E a), in which case there exists c ∈ R◦ such that

cap
e(ℓ−1)b⌈p

et⌉ ⊗ ax = cap
e(ℓ−1)a[p

e]b⌈p
et⌉ ⊗ x = 0

in F e
∗R ⊗R E for all e ≫ 0. Since a is generated by ℓ elements, the pigeon-hole principle implies

ap
eℓ = ap

e(ℓ−1)a[p
e]. Thus, we have cap

eℓb⌈p
et⌉ ⊗ x = 0, and therefore x ∈ 0∗a

ℓbt

E . �

We can now prove a version of the promised application.

Corollary 2.2 (Modified Briançon–Skoda, cf. [HY03, Thm. 2.1 and Rem. 2.2]). Let R, a, and ℓ
be as in Theorem 2.1. Then, we have

τ(an+ℓ−1) ⊆ an (2)

for all n ≥ 0.
In particular, with R, a, and ℓ as above, if R is strongly F -regular, then

an+ℓ−1 ⊆ an. (3)

Proof. For the first inclusion, we have

τ(an+ℓ−1) = τ(an+ℓ−2) · a = · · · = τ(an+ℓ−(n+1)) · an ⊆ an

by applying Theorem 2.1 n-times. The second inclusion follows from Propositions 1.3(v), 1.3(i),
and 1.3(ii) and (2), since

an+ℓ−1 = τ(R) · an+ℓ−1 ⊆ τ
(
an+ℓ−1

)
= τ(an+ℓ−1) ⊆ an. �

Remark 2.3. The last inclusion (3) for smooth C-algebras was first proved by Skoda and Briançon
using analytic methods [SB74, Thm. 3], and was shown for all regular rings by Lipman and Sathaye
[LS81, Thm. 1′′]. The last inclusion (3) can also be obtained using the usual notion of tight closure,
and in fact holds for weakly F -regular rings; see [HH90, Thm. 5.4].
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3. Subadditivity and Symbolic Powers

For our second application, we first need some more technical results about test ideals.

Proposition 3.1 (cf. [Tak06, Props. 2.1 and 2.2]). Let R be a ring, and let a and b be ideals in R
intersecting R◦. Then, for every t, s ∈ R≥0, we have

(
0∗a

tbs

E :E τ(at)∗a
t)

⊇
(
0∗b

s

E :E τ(at)
)
.

Proof. Let x ∈ (0∗b
s

E :E τ(at)), in which case there exists c ∈ R◦ such that

cb⌈p
es⌉ ⊗ τ(at)x = cb⌈p

es⌉τ(at)[p
e] ⊗ x = 0

in F e
∗R ⊗R E for all e ≫ 0. To show that x ∈ (0∗a

tbs

E :E τ(at)∗a
t

), we want to show that for every

element r ∈ τ(at)∗a
t

, we have rx ∈ 0∗a
tbs

E . By definition of τ(at)∗a
t

, there exists d ∈ R◦ such that

da⌈p
et⌉rp

e

⊆ τ(at)[p
e] for all e ≫ 0. Thus, we have

cda⌈p
et⌉b⌈p

es⌉ ⊗ rx = cda⌈p
et⌉b⌈p

es⌉rp
e

⊗ x ⊆ cb⌈p
es⌉τ(at)[p

e] ⊗ x = 0,

hence x ∈ (0∗a
tbs

E :E τ(at)∗a
t

). �

Theorem 3.2 (Subadditivity, cf. [HY03, Thm. 6.10(2); Tak06, Thm. 2.4]). Let R be a regular ring

that is F -finite or complete local, and let a and b be ideals in R intersecting R◦. Then, for every

t, s ∈ R≥0, we have

τ(atbs) ⊆ τ(at) · τ(bs).

Proof. We note that if R is not complete local, then we can reduce to the complete local case using
Proposition 1.5.

We first claim that it suffices to show that

τ(at)∗a
t

= R. (4)

By Proposition 3.1 and Lemma 1.7, we have

0∗a
tbs

E =
(
0∗a

tbs

E :E R
)
=

(
0∗a

tbs

E :E τ(at)∗a
t)

⊇
(
0∗b

s

E :E τ(at)
)
⊇

(
0 :E τ(at) · τ(bs)

)
.

Taking annihilators, Matlis duality (Proposition 1.6) implies τ(atbs) ⊆ τ(at) · τ(bs).
To show (4), it suffices to show that

a⌈p
et⌉ ⊆ τ(at)[p

e]

for e ≫ 0 by the definition of at-tight closure. By [HY03, Thms. 1.7(2) and 6.4], since R is regular,
1 is a test element for at-tight closure. Thus, we have

0 = a⌈p
et⌉ ⊗ 0∗a

t

E

in F e
∗R⊗R E. By Matlis duality (Proposition 1.6), we then have

0 = a⌈p
et⌉ ⊗

(
0 :E τ(at)

)
= a⌈p

et⌉ ·
(
0 :E τ(at)[p

e]
)
. (5)

Here, the second equality follows from the isomorphism

F e
∗R⊗R E ≃ E

coming from the fact that R → F e
∗R is flat [Kun69, Thm. 2.1] and the description of E as Hd

m(R).

Under this identification, we have F e
∗R⊗ (0 :E τ(at)) ≃ (0 :E τ(at)[p

e]). Finally, (5) implies

a⌈p
et⌉ ⊆ AnnR

(
0 :E τ(at)[p

e]
)
= τ(at)[p

e]

by Matlis duality (Proposition 1.6). �

We now give the second application of the theory.
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Theorem 3.3 (cf. [HH02, Thm. 1.1(a)]). Let R be a regular ring with reduced formal fibers, let

a ⊆ R be an ideal intersecting R◦, and let h be the maximal height of the associated primes of a.

Then, a(hn+kn) ⊆ (a(k+1))n for all integers n ≥ 1 and k ≥ 0. In particular, a(hn) ⊆ an.

Proof. By replacing R with R[X] for an indeterminate X, we may assume that the residue fields
of R are infinite [HH02, Discussion 2.3]. The proof below is written for F -finite regular rings R,
although if R is not F -finite, then one may reduce to the case where R is complete local using the
assumption on formal fibers and the strategy in [MS18, Thm. 7.4].

Since R is regular, it is also strongly F -regular, hence Proposition 1.3(v) and subadditivity
(Theorem 3.2) imply

a(hn+kn) ⊆ τ(a(hn+kn)) ⊆
(
τ
(
(a(hn+kn))1/n

))n

for all n ≥ 0. It therefore suffices to show τ((a(hn+kn)Rp)
1/n) ⊆ ak+1Rp. We have

τ((a(hn+kn)Rp)
1/n) = τ

(
(ahn+knRp)

1/n
)
= τ(ah+kRp) ⊆ ak+1Rp

by the definition of symbolic powers, Proposition 1.3(iv), and (2) in the modified Briançon–Skoda
theorem (Corollary 2.2), where we use the infinite residue field to use [HS06, Prop. 8.3.7]. �

Remark 3.4. The proof here follows [Har05, Thm. 2.21]. This uniform containment theorem was
originally proved by Ein–Lazarsfeld–Smith for smooth C-algebras using multiplier ideals [ELS01,
Thm. A]. Hochster–Huneke generalized their result to regular rings containing a field using tight
closure and reduction modulo p [HH02, Thm. 1.1(a)]. The mixed characteristic case (with the
addititional assumption on formal fibers) was not proved until recently by Ma–Schwede using
perfectoid techniques [MS18, Thm. 7.4].
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