TEST IDEALS FOR PAIRS VIA GENERALIZED TIGHT CLOSURE

TAKUMI MURAYAMA

The goal of this talk is to develop a theory of test ideals for pairs (R, \mathfrak{a}^t) , and to give some applications that do not mention test ideals. See [ST12] and [TW18, §5] for overviews of the theory. The theory is originally due to Hara–Yoshida [HY03] and Hara–Takagi [HT04], and generalizes the tight closure theory developed by Hochster–Huneke [HH90].

We start by describing our applications. First, recall that the integral closure $\bar{\mathfrak{a}}$ of an ideal $\mathfrak{a} \subseteq R$ is the set of all elements $r \in R$ such that r satisfies a polynomial $f(x) = \sum_{i=0}^{d} c_{d-i}x^i \in R[x]$ where $c_0 = 1$ and $c_i \in \mathfrak{a}^i$. A version of the Briançon–Skoda theorem says that if R is regular, then

$$\overline{\mathfrak{a}^{n+\ell-1}} \subseteq \mathfrak{a}^n$$
.

where ℓ is the number of generators of \mathfrak{a} . This inclusion was shown by Skoda–Briançon for smooth C-algebras [SB74, Thm. 3], by Lipman–Sathaye for all regular rings [LS81, Thm. 1"], and by Hochster–Huneke for weakly *F*-regular rings [HH90, Thm. 5.4]. We will prove a version of this result in §2. This result has some interesting corollaries, which we will not be able to prove:

- (1) If $f \in \mathbf{C}\{z_1, z_2, \ldots, z_n\}$ is a convergent power series in n variables that defines a hypersurface with an isolated singularity at the origin, then $f^n \in (\partial f/\partial z_1, \partial f/\partial z_2, \ldots, \partial f/\partial z_n)$ [SB74, Cor.]. This answers a question of Mather.
- (2) If $f_1, f_2, \ldots, f_{n+1} \in R$, where R is regular of dimension n, then

$$f_1^n f_2^n \cdots f_n^n \in (f_1^{n+1}, f_2^{n+1}, \dots, f_{n+1}^{n+1}).$$

See [Hoc14, Thm. on p. 29].

Second, recall that the *nth symbolic power* of an ideal $\mathfrak{a} \subseteq R$ is

$$\mathfrak{a}^{(n)} \coloneqq R \cap \bigcap_{\mathfrak{p} \in \mathrm{Ass}(\mathfrak{a})} \mathfrak{a}^n R_\mathfrak{p}.$$

We will prove the following uniform comparison theorem for symbolic powers on regular rings:

$$\mathfrak{a}^{(hn)} \subseteq \mathfrak{a}^n$$

where h is the maximal height of the associated primes of \mathfrak{a} . This uniform comparison theorem is originally due to Ein–Lazarsfeld–Smith for smooth C-algebras [ELS01, Thm. A], to Hochster– Huneke for regular rings containing a field [HH02, Thm. 1.1(a)], and to Ma–Schwede for mixed characteristic regular rings [MS18, Thm. 7.4]. We will prove a version of this result in §3.

Notation. All rings will be commutative with identity, noetherian, and of characteristic p > 0. If R is a ring, then R° denotes the complement of the union of the minimal primes of R. We denote the Frobenius morphism by $F: R \to F_*R$. For every integer $e \ge 0$, the *e*th iterate of the Frobenius morphism is denoted by $F^e: R \to F_*^e R$.

Date: November 1, 2018 at the Singularities reading group at the University of Michigan, Fall 2018.

TAKUMI MURAYAMA

1. Definition and preliminaries

We start by defining with the analogue of tight closure and test ideals for pairs (R, \mathfrak{a}^t) , following Hara–Yoshida [HY03] and Hara–Takagi [HT04].

Definition 1.1 [HY03, Def. 6.1; HT04, Def. 1.4]. Let R be a ring, and let $\mathfrak{a} \subseteq R$ be an ideal such that $\mathfrak{a} \cap R^{\circ} \neq \emptyset$. Let $\iota: N \hookrightarrow M$ be an inclusion of R-modules. For every $t \in \mathbf{R}_{\geq 0}$, the \mathfrak{a}^{t} -tight closure is

$$N_M^{*\mathfrak{a}^t} \coloneqq \left\{ x \in M \; \middle| \; \begin{array}{c} \text{there exists } c \in R^\circ \text{ such that for all } e \gg 0, \\ c \mathfrak{a}^{\lceil p^e t \rceil} \otimes x \subseteq \operatorname{im} \left(\operatorname{id} \otimes \iota \colon F_*^e R \otimes_R N \to F_*^e R \otimes_R M \right) \right\}.$$

Now let $E := \bigoplus_{\mathfrak{m}} E_R(R/\mathfrak{m})$ be the direct sum of the injective hulls of the residue fields R/\mathfrak{m} for every maximal ideal $\mathfrak{m} \subseteq R$. The (non-finitistic or big) test ideal is

$$\tau(\mathfrak{a}^t) \coloneqq \operatorname{Ann}_R(0_E^{*\mathfrak{a}^t}).$$

Now let $\mathfrak{b} \subseteq R$ be another ideal such that $\mathfrak{b} \cap R^{\circ} \neq \emptyset$. For every $s \in \mathbf{R}_{>0}$, we similarly define

$$N_M^{*\mathfrak{a}^t\mathfrak{b}^s} \coloneqq \left\{ x \in M \mid \begin{array}{c} \text{there exists } c \in R^\circ \text{ such that for all } e \gg 0, \\ c\mathfrak{a}^{\lceil p^e t \rceil} \mathfrak{b}^{\lceil p^e s \rceil} \otimes x \subseteq \operatorname{im} \left(\operatorname{id} \otimes \iota \colon F_*^e R \otimes_R N \to F_*^e R \otimes_R M \right) \right\}$$

in which case the test ideal is

$$\tau(\mathfrak{a}^t\mathfrak{b}^s) \coloneqq \operatorname{Ann}_R(0_E^{*\mathfrak{a}^t\mathfrak{b}^s})$$

Setting $\mathfrak{a} = R$ and t = 1, one obtains the usual notion of tight closure for modules due to Hochster– Huneke [HH90, Def. 8.2], and the (non-finitistic or big) test ideal $\tau(R)$ defined by Lyubeznik– Smith [LS01, §7].

Remark 1.2. The definition in [HY03] is the analogue of the (finitistic) test ideal defined in [HH90, Def. 8.22] for pairs (R, \mathfrak{a}^t) . There is also a version of tight closure for pairs (R, Δ) , where Δ is an effective **R**-Weil divisor [Tak04, Def. 2.1], or triples $(R, \Delta, \mathfrak{a}^t)$ [Sch10, Def. 2.14]. The test ideal $\tau(\mathfrak{a}^t)$ can also be described in terms of an appropriate version of test elements for \mathfrak{a}^t -tight closure if R is F-finite [Sch10, Thm. 2.22].

We now state some basic properties of test ideals that we will use often.

Proposition 1.3 (cf. [HY03, Props. 1.3 and 1.11; LS01, Prop. 2.9]). Let R be a ring, and let \mathfrak{a} and \mathfrak{b} be ideals in R intersecting R° .

- (*i*) $\tau(\mathfrak{a}^t \cdot \mathfrak{b}^s) \cdot \mathfrak{b} \subseteq \tau(\mathfrak{a}^t \cdot \mathfrak{b}^{s+1}).$
- (ii) If $\mathfrak{a} \subseteq \mathfrak{b}$, then $\tau(\mathfrak{a}^t) \subseteq \tau(\mathfrak{b}^t)$. Equality holds if $\mathfrak{b} \subseteq \overline{\mathfrak{a}}$.
- (*iii*) If s < t, then $\tau(\mathfrak{a}^s) \supseteq \tau(\mathfrak{a}^t)$.
- (iv) For every $m \in \mathbf{N}$, we have $\tau((\mathfrak{a}^n)^t) = \tau(\mathfrak{a}^{nt})$.
- (v) R is strongly F-regular if and only if $\tau(R) = R$.

Proof. It suffices to show the corresponding dual statements for $N_M^{*\mathfrak{a}^t}$ by setting N = 0 and M = E and taking annihilators, where for (i), we use the fact that $\operatorname{Ann}_R(N :_M \mathfrak{a}) \supseteq \operatorname{Ann}_R(N) \cdot \mathfrak{a}$.

For (i), we have

$$N_M^{*a^t \mathfrak{b}^{s+1}} \subseteq \left(N_M^{*a^t \mathfrak{b}^s} :_M \mathfrak{b} \right)$$

$$: c \in \mathbb{R}^{\circ}, \text{ then}$$

$$(1)$$

since if
$$x \in N_M^{*\mathfrak{a}^t\mathfrak{b}^{s+1}}$$
 with multiplier $c \in R^\circ$, then
 $c\mathfrak{a}^{\lceil p^e t \rceil}\mathfrak{b}^{\lceil p^e s \rceil} \otimes \mathfrak{b} \cdot x = c\mathfrak{a}^{\lceil p^e t \rceil}\mathfrak{b}^{\lceil p^e s \rceil}\mathfrak{b}^{\lceil p^e \rceil} \otimes x$
 $\subseteq c\mathfrak{a}^{\lceil p^e t \rceil}\mathfrak{b}^{\lceil p^e (s+1)\rceil} \otimes x$
 $\equiv c\mathfrak{a}^{\lceil p^e t \rceil}\mathfrak{b}^{\lceil p^e (s+1)\rceil} \otimes x$
 $\subseteq \operatorname{im}(\operatorname{id} \otimes \iota \colon F^e_*R \otimes_R N \to F^e_*R \otimes_R M)$

for all $e \gg 0$.

The first part of (*ii*) and (*iii*) follow from the fact that $N_M^{*\mathfrak{a}^t} \supseteq N_M^{*\mathfrak{b}^t}$ and $N_M^{*\mathfrak{a}^s} \subseteq N_M^{*\mathfrak{a}^t}$. For the second part of (*ii*), it suffices to show that $N_M^{*\mathfrak{a}^t} \subseteq N_M^{*\mathfrak{b}^t}$. Recall from [HS06, Cor. 1.2.5] that $\mathfrak{b} \subseteq \overline{\mathfrak{a}}$ if and only if there exists an integer r > 0 such that

$$\mathfrak{b}^{r+1} = \mathfrak{a}\mathfrak{b}^r,$$

i.e., if and only if \mathfrak{a} is a reduction of \mathfrak{b} . By [HS06, Rem. 1.2.3], this implies $\mathfrak{b}^{r+s} \subseteq \mathfrak{a}^s$ for every integer s > 0. Now consider $x \in N_M^{*\mathfrak{a}^t}$. Setting $s = \lfloor p^e t \rfloor$, we see that for any choice of $d \in \mathfrak{b}^r \cap R^\circ$ and all $x \in M$, we have

$$cd\mathfrak{b}^{\lceil p^e t \rceil} \otimes x \subseteq c\mathfrak{b}^{\lceil p^e t \rceil + r} \otimes x$$
$$\subseteq c\mathfrak{a}^{\lceil p^e t \rceil} \otimes x$$
$$\subseteq \operatorname{im} (\operatorname{id} \otimes \iota \colon F_*^e R \otimes_R N \to F_*^e R \otimes_R M)$$

hence $x \in N_M^{*\mathfrak{a}^t}$ implies $x \in N_M^{*\mathfrak{b}^t}$. For (iv), we note that $\lceil p^e t \rceil - 1 \le p^e t \le \lceil p^e t \rceil$, hence multiplying by *n* throughout and applying ceilings again, we have

$$n\lceil p^et\rceil - n \le \lceil p^ent\rceil \le n\lceil p^et\rceil.$$

We therefore have the inclusions

$$\mathfrak{a}^{n\lceil p^et\rceil-n}\supseteq\mathfrak{a}^{\lceil p^ent\rceil}\supseteq\mathfrak{a}^{n\lceil p^et\rceil}.$$

The right inclusion already implies $N_M^{*\mathfrak{a}^{nt}} \subseteq N_M^{*(\mathfrak{a}^n)^t}$. On the other hand, if $x \in N_M^{*(\mathfrak{a}^n)^t}$ with multiplier $c \in R^{\circ}$, then for any choice of $d \in \mathfrak{a}^n \cap R^{\circ}$, we have

$$cd\mathfrak{a}^{|p^ent|} \otimes x \subseteq cd\mathfrak{a}^{n|p^et|-n} \otimes x$$
$$\subseteq c\mathfrak{a}^{n\lceil p^et\rceil} \otimes x$$
$$\subseteq \operatorname{im}(\operatorname{id} \otimes \iota \colon F_*^e R \otimes_R N \to F_*^e R \otimes_R M)$$

for all $e \gg 0$, hence $N_M^{*(\mathfrak{a}^n)^t} \subseteq N_M^{*\mathfrak{a}^{nt}}$. Finally, (v) follows since R is strongly F-regular if and only if $0_E^* = 0$ [LS01, Prop. 2.9].

Remark 1.4. Motivated by Proposition 1.3(v), we say that (R, \mathfrak{a}^t) is strongly F-regular if $\tau(\mathfrak{a}^t) = R$.

The following results are more subtle. The corresponding results for $\tau(R)$ are due to Lyubeznik– Smith [LS01, Thms. 7.1(2) and 7.1(3)], and do not require the full strength of F-finiteness.

Proposition 1.5 [HT04, Props. 3.1 and 3.2]. Let R be a reduced F-finite ring, and let $\mathfrak{a} \subseteq R$ be an ideal such that $\mathfrak{a} \cap R^{\circ} \neq \emptyset$.

- (i) For every multiplicative subset $W \subseteq R$, we have $\tau(\mathfrak{a}^t)W^{-1}R = \tau((\mathfrak{a}W^{-1}R)^t)$.
- (ii) If (R, \mathfrak{m}) is a local ring, then $\tau(\mathfrak{a}^t)\widehat{R} = \tau((\mathfrak{a}\widehat{R})^t)$.

Proof Sketch. Both of these properties follow from the fact (see [HT04, Lem. 2.1]) that

$$\tau(\mathfrak{a}^{t}) = \sum_{e \ge 0} \sum_{\phi^{(e)}} \phi^{(e)} \left(F_{*}^{e}(c\mathfrak{a}^{\lceil p^{e}t \rceil}) \right).$$

where $\phi^{(e)}$ ranges over all elements of $\operatorname{Hom}_{R}(F^{e}_{*}R, R)$, and $c \in R^{\circ}$ is an appropriate version of a completely stable big test element for \mathfrak{a}^t -tight closure.

Before we can move on to applications, we need the following version of Matlis duality:

Proposition 1.6 (Matlis duality, see [Hoc07, Prop. on p. 242]). Let (R, \mathfrak{m}) be a local ring, and let $E = E_R(R/\mathfrak{m})$ be the injective hull of the residue field. If $\mathfrak{a} \subseteq R$ is an ideal, then $\operatorname{Ann}_R(0:_E \mathfrak{a}) = \mathfrak{a}$. If R is complete and $N \subseteq E$ is a submodule, then $(0:_E \operatorname{Ann}_R(N)) = N$.

TAKUMI MURAYAMA

Proposition 1.6 has the following consequence:

Lemma 1.7. Let R be a complete local ring, and let $\mathfrak{a} \subseteq R$ be an ideal such that $\mathfrak{a} \cap R^{\circ} \neq \emptyset$. For every ideal $\mathfrak{b} \subseteq R$ and every $t \in \mathbf{R}_{>0}$, we have

$$(0_E^{*\mathfrak{a}^t}:_E\mathfrak{b})\supseteq (0:_E\tau(\mathfrak{a}^t)\cdot\mathfrak{b}).$$

Proof. If $x \in (0 :_E \tau(\mathfrak{a}^t) \cdot \mathfrak{b})$, then $\mathfrak{b} \cdot x \subseteq (0 :_E \tau(\mathfrak{a}^t)) = 0_E^{*\mathfrak{a}^t}$ by Matlis duality (Proposition 1.6), hence $x \in (0_E^{*\mathfrak{a}^t} :_E \mathfrak{b})$.

2. BRIANÇON-SKODA

Our next goal is to prove an application of the machinery developed so far. We first prove a version of the Briançon–Skoda theorem involving test ideals.

Theorem 2.1 (Skoda's theorem, cf. [HT04, Thms. 4.1 and 4.2]). Let R be a reduced F-finite ring or a complete local ring, and let \mathfrak{a} and \mathfrak{b} be ideals in R intersecting R° . Let ℓ be the number of generators of an ideal \mathfrak{c} such that $\overline{\mathfrak{a}} = \overline{\mathfrak{c}}$. Then, for every $t \in \mathbf{R}_{\geq 0}$, we have

$$\tau(\mathfrak{a}^{\ell}\mathfrak{b}^t) = \tau(\mathfrak{a}^{\ell-1}\mathfrak{b}^t) \cdot \mathfrak{a}.$$

Proof. The inclusion \supseteq follows from Proposition 1.3(*i*), hence it suffices to show the reverse inclusion \subseteq . If *R* is not complete local, we can reduce to the complete local case using Proposition 1.5.

By Matlis duality (Proposition 1.6), it suffices to show the chain of inclusions

$$0_E^{*\mathfrak{a}^{\ell}\mathfrak{b}^t} \supseteq \left(0_E^{*\mathfrak{a}^{\ell-1}\mathfrak{b}^t} :_E \mathfrak{a} \right) \supseteq \left(0 :_E \tau(\mathfrak{a}^{\ell-1}\mathfrak{b}^t) \cdot \mathfrak{a} \right).$$

The right inclusion holds by Lemma 1.7, hence it suffices to show the left inclusion.

By (a slight generalization of) the equality statement in Proposition 1.3(*ii*), we may assume that \mathfrak{a} is generated by ℓ elements. Let $x \in (0_E^{\mathfrak{sd}^{\ell-1}\mathfrak{b}^t} :_E \mathfrak{a})$, in which case there exists $c \in \mathbb{R}^\circ$ such that

$$c\mathfrak{a}^{p^e(\ell-1)}\mathfrak{b}^{\lceil p^et\rceil}\otimes\mathfrak{a} x=c\mathfrak{a}^{p^e(\ell-1)}\mathfrak{a}^{\lceil p^e\rceil}\mathfrak{b}^{\lceil p^et\rceil}\otimes x=0$$

in $F^e_*R \otimes_R E$ for all $e \gg 0$. Since \mathfrak{a} is generated by ℓ elements, the pigeon-hole principle implies $\mathfrak{a}^{p^e\ell} = \mathfrak{a}^{p^e(\ell-1)}\mathfrak{a}^{[p^e]}$. Thus, we have $c\mathfrak{a}^{p^e\ell}\mathfrak{b}^{[p^et]} \otimes x = 0$, and therefore $x \in 0_E^{*\mathfrak{a}^\ell\mathfrak{b}^t}$.

We can now prove a version of the promised application.

Corollary 2.2 (Modified Briançon–Skoda, cf. [HY03, Thm. 2.1 and Rem. 2.2]). Let R, \mathfrak{a} , and ℓ be as in Theorem 2.1. Then, we have

$$\tau(\mathfrak{a}^{n+\ell-1}) \subseteq \mathfrak{a}^n \tag{2}$$

for all $n \geq 0$.

In particular, with R, \mathfrak{a} , and ℓ as above, if R is strongly F-regular, then

$$\overline{\mathfrak{a}^{n+\ell-1}} \subseteq \mathfrak{a}^n. \tag{3}$$

Proof. For the first inclusion, we have

$$\tau(\mathfrak{a}^{n+\ell-1}) = \tau(\mathfrak{a}^{n+\ell-2}) \cdot \mathfrak{a} = \dots = \tau(\mathfrak{a}^{n+\ell-(n+1)}) \cdot \mathfrak{a}^n \subseteq \mathfrak{a}^n$$

by applying Theorem 2.1 *n*-times. The second inclusion follows from Propositions 1.3(v), 1.3(i), and 1.3(ii) and (2), since

$$\overline{\mathfrak{a}^{n+\ell-1}} = \tau(R) \cdot \overline{\mathfrak{a}^{n+\ell-1}} \subseteq \tau(\overline{\mathfrak{a}^{n+\ell-1}}) = \tau(\mathfrak{a}^{n+\ell-1}) \subseteq \mathfrak{a}^n.$$

Remark 2.3. The last inclusion (3) for smooth C-algebras was first proved by Skoda and Briançon using analytic methods [SB74, Thm. 3], and was shown for all regular rings by Lipman and Sathaye [LS81, Thm. 1"]. The last inclusion (3) can also be obtained using the usual notion of tight closure, and in fact holds for weakly F-regular rings; see [HH90, Thm. 5.4].

3. Subadditivity and Symbolic Powers

For our second application, we first need some more technical results about test ideals.

Proposition 3.1 (cf. [Tak06, Props. 2.1 and 2.2]). Let R be a ring, and let \mathfrak{a} and \mathfrak{b} be ideals in R intersecting \mathbb{R}° . Then, for every $t, s \in \mathbb{R}_{\geq 0}$, we have

$$\left(0_E^{*\mathfrak{a}^t\mathfrak{b}^s}:_E\tau(\mathfrak{a}^t)^{*\mathfrak{a}^t}\right)\supseteq\left(0_E^{*\mathfrak{b}^s}:_E\tau(\mathfrak{a}^t)\right).$$

Proof. Let $x \in (0_E^{*\mathfrak{b}^s} :_E \tau(\mathfrak{a}^t))$, in which case there exists $c \in \mathbb{R}^\circ$ such that

$$c\mathfrak{b}^{\lceil p^e s \rceil} \otimes \tau(\mathfrak{a}^t) x = c\mathfrak{b}^{\lceil p^e s \rceil} \tau(\mathfrak{a}^t)^{\lceil p^e \rceil} \otimes x = 0$$

in $F^e_* R \otimes_R E$ for all $e \gg 0$. To show that $x \in (0^{*\mathfrak{a}^t \mathfrak{b}^s}_E : \tau(\mathfrak{a}^t)^{*\mathfrak{a}^t})$, we want to show that for every element $r \in \tau(\mathfrak{a}^t)^{*\mathfrak{a}^t}$, we have $rx \in 0^{*\mathfrak{a}^t \mathfrak{b}^s}_E$. By definition of $\tau(\mathfrak{a}^t)^{*\mathfrak{a}^t}$, there exists $d \in R^\circ$ such that $d\mathfrak{a}^{[p^e t]} r^{p^e} \subseteq \tau(\mathfrak{a}^t)^{[p^e]}$ for all $e \gg 0$. Thus, we have

$$cd\mathfrak{a}^{\lceil p^et\rceil}\mathfrak{b}^{\lceil p^es\rceil} \otimes rx = cd\mathfrak{a}^{\lceil p^et\rceil}\mathfrak{b}^{\lceil p^es\rceil}r^{p^e} \otimes x \subseteq c\mathfrak{b}^{\lceil p^es\rceil}\tau(\mathfrak{a}^t)^{\lceil p^e\rceil} \otimes x = 0,$$
$$\square$$

hence $x \in (0_E^{*\mathfrak{a}^t\mathfrak{b}^s} :_E \tau(\mathfrak{a}^t)^{*\mathfrak{a}^t}).$

Theorem 3.2 (Subadditivity, cf. [HY03, Thm. 6.10(2); Tak06, Thm. 2.4]). Let R be a regular ring that is F-finite or complete local, and let \mathfrak{a} and \mathfrak{b} be ideals in R intersecting \mathbb{R}° . Then, for every $t, s \in \mathbb{R}_{\geq 0}$, we have

$$au(\mathfrak{a}^t\mathfrak{b}^s)\subseteq au(\mathfrak{a}^t)\cdot au(\mathfrak{b}^s)$$

Proof. We note that if R is not complete local, then we can reduce to the complete local case using Proposition 1.5.

We first claim that it suffices to show that

$$\tau(\mathfrak{a}^t)^{*\mathfrak{a}^t} = R. \tag{4}$$

By Proposition 3.1 and Lemma 1.7, we have

$$0_E^{*\mathfrak{a}^t\mathfrak{b}^s} = \left(0_E^{*\mathfrak{a}^t\mathfrak{b}^s} :_E R\right) = \left(0_E^{*\mathfrak{a}^t\mathfrak{b}^s} :_E \tau(\mathfrak{a}^t)^{*\mathfrak{a}^t}\right) \supseteq \left(0_E^{*\mathfrak{b}^s} :_E \tau(\mathfrak{a}^t)\right) \supseteq \left(0 :_E \tau(\mathfrak{a}^t) \cdot \tau(\mathfrak{b}^s)\right)$$

Taking annihilators, Matlis duality (Proposition 1.6) implies $\tau(\mathfrak{a}^t\mathfrak{b}^s) \subseteq \tau(\mathfrak{a}^t) \cdot \tau(\mathfrak{b}^s)$.

To show (4), it suffices to show that

$$\mathfrak{a}^{\lceil p^e t \rceil} \subseteq \tau(\mathfrak{a}^t)^{[p^e]}$$

for $e \gg 0$ by the definition of \mathfrak{a}^t -tight closure. By [HY03, Thms. 1.7(2) and 6.4], since R is regular, 1 is a test element for \mathfrak{a}^t -tight closure. Thus, we have

$$0 = \mathfrak{a}^{\lceil p^e t \rceil} \otimes 0_E^{*\mathfrak{a}^t}$$

in $F^e_* R \otimes_R E$. By Matlis duality (Proposition 1.6), we then have

$$0 = \mathfrak{a}^{\lceil p^e t \rceil} \otimes \left(0 :_E \tau(\mathfrak{a}^t) \right) = \mathfrak{a}^{\lceil p^e t \rceil} \cdot \left(0 :_E \tau(\mathfrak{a}^t)^{\lceil p^e \rceil} \right).$$
(5)

Here, the second equality follows from the isomorphism

$$F^e_*R \otimes_R E \simeq E$$

coming from the fact that $R \to F_*^e R$ is flat [Kun69, Thm. 2.1] and the description of E as $H^d_{\mathfrak{m}}(R)$. Under this identification, we have $F_*^e R \otimes (0 :_E \tau(\mathfrak{a}^t)) \simeq (0 :_E \tau(\mathfrak{a}^t)^{[p^e]})$. Finally, (5) implies

$$\mathfrak{a}^{\lceil p^e t \rceil} \subseteq \operatorname{Ann}_R (0 :_E \tau(\mathfrak{a}^t)^{[p^e]}) = \tau(\mathfrak{a}^t)^{[p^e]}$$

by Matlis duality (Proposition 1.6).

We now give the second application of the theory.

Theorem 3.3 (cf. [HH02, Thm. 1.1(a)]). Let R be a regular ring with reduced formal fibers, let $\mathfrak{a} \subseteq R$ be an ideal intersecting \mathbb{R}° , and let h be the maximal height of the associated primes of \mathfrak{a} . Then, $\mathfrak{a}^{(hn+kn)} \subseteq (\mathfrak{a}^{(k+1)})^n$ for all integers $n \ge 1$ and $k \ge 0$. In particular, $\mathfrak{a}^{(hn)} \subseteq \mathfrak{a}^n$.

Proof. By replacing R with R[X] for an indeterminate X, we may assume that the residue fields of R are infinite [HH02, Discussion 2.3]. The proof below is written for F-finite regular rings R, although if R is not F-finite, then one may reduce to the case where R is complete local using the assumption on formal fibers and the strategy in [MS18, Thm. 7.4].

Since R is regular, it is also strongly F-regular, hence Proposition 1.3(v) and subadditivity (Theorem 3.2) imply

$$\mathfrak{a}^{(hn+kn)} \subseteq \tau(\mathfrak{a}^{(hn+kn)}) \subseteq \left(\tau\left((\mathfrak{a}^{(hn+kn)})^{1/n}\right)\right)^{n}$$

for all $n \geq 0$. It therefore suffices to show $\tau((\mathfrak{a}^{(hn+kn)}R_{\mathfrak{p}})^{1/n}) \subseteq \mathfrak{a}^{k+1}R_{\mathfrak{p}}$. We have

$$\tau((\mathfrak{a}^{(hn+kn)}R_{\mathfrak{p}})^{1/n}) = \tau\left((\mathfrak{a}^{hn+kn}R_{\mathfrak{p}})^{1/n}\right) = \tau(\mathfrak{a}^{h+k}R_{\mathfrak{p}}) \subseteq \mathfrak{a}^{k+1}R_{\mathfrak{p}}$$

by the definition of symbolic powers, Proposition 1.3(iv), and (2) in the modified Briançon–Skoda theorem (Corollary 2.2), where we use the infinite residue field to use [HS06, Prop. 8.3.7].

Remark 3.4. The proof here follows [Har05, Thm. 2.21]. This uniform containment theorem was originally proved by Ein–Lazarsfeld–Smith for smooth C-algebras using multiplier ideals [ELS01, Thm. A]. Hochster–Huneke generalized their result to regular rings containing a field using tight closure and reduction modulo p [HH02, Thm. 1.1(a)]. The mixed characteristic case (with the addititional assumption on formal fibers) was not proved until recently by Ma–Schwede using perfectoid techniques [MS18, Thm. 7.4].

References

- [ELS01] L. Ein, R. Lazarsfeld, and K. E. Smith. "Uniform bounds and symbolic powers on smooth varieties." *Invent. Math.* 144.2 (2001), pp. 241–252. DOI: 10.1007/s002220100121. MR: 1826369. 1, 6
- [Har05] N. Hara. "A characteristic p analog of multiplier ideals and applications." Comm. Algebra 33.10 (2005), pp. 3375–3388. DOI: 10.1080/AGB-200060022. MR: 2175438. 6
- [HH90] M. Hochster and C. Huneke. "Tight closure, invariant theory, and the Briançon-Skoda theorem." J. Amer. Math. Soc. 3.1 (1990), pp. 31–116. DOI: 10.2307/1990984. MR: 1017784. 1, 2, 4
- [HH02] M. Hochster and C. Huneke. "Comparison of symbolic and ordinary powers of ideals." Invent. Math. 147.2 (2002), pp. 349–369. DOI: 10.1007/s002220100176. MR: 1881923. 1, 6
- [Hoc07] M. Hochster. Foundations of tight closure theory. Lecture notes from a course taught at the University of Michigan, Fall 2007. URL: http://www.math.lsa.umich.edu/~hochster/711F07/fndtc.pdf. 3
- [Hoc14] M. Hochster. Lectures on integral closure, the Briançon-Skoda theorem and related topics in commutative algebra. Lecture notes from a course taught at the University of Michigan, Winter 2014. URL: http://www. math.lsa.umich.edu/~hochster/615W14/615.pdf 1
- [HS06] C. Huneke and I. Swanson. Integral closure of ideals, rings, and modules. London Math. Soc. Lecture Note Ser., Vol. 336. Cambridge: Cambridge Univ. Press, 2006. URL: http://people.reed.edu/~iswanson/book/ SwansonHuneke.pdf. MR: 2266432. 3, 6
- [HT04] N. Hara and S. Takagi. "On a generalization of test ideals." Nagoya Math. J. 175 (2004), pp. 59–74. DOI: 10.1017/S0027763000008904. MR: 2085311. 1, 2, 3, 4
- [HY03] N. Hara and K. Yoshida. "A generalization of tight closure and multiplier ideals." Trans. Amer. Math. Soc. 355.8 (2003), pp. 3143–3174. DOI: 10.1090/S0002-9947-03-03285-9. MR: 1974679. 1, 2, 4, 5
- [Kun69] E. Kunz. "Characterizations of regular local rings for characteristic p." Amer. J. Math. 91 (1969), pp. 772– 784. DOI: 10.2307/2373351. MR: 0252389. 5
- [LS81] J. Lipman and A. Sathaye. "Jacobian ideals and a theorem of Briançon-Skoda." Michigan Math. J. 28.2 (1981), pp. 199–222. DOI: 10.1307/mmj/1029002510. MR: 0616270. 1, 4
- [LS01] G. Lyubeznik and K. E. Smith. "On the commutation of the test ideal with localization and completion." *Trans. Amer. Math. Soc.* 353.8 (2001), pp. 3149–3180. DOI: 10.1090/S0002-9947-01-02643-5. MR: 1828602. 2, 3
- [MS18] L. Ma and K. Schwede. "Perfectoid multiplier/test ideals in regular rings and bounds on symbolic powers." Invent. Math. 214.2 (2018), pp. 913–955. DOI: 10.1007/s00222-018-0813-1. MR: 3867632. 1, 6

- [SB74] H. Skoda and J. Briançon. "Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de Cⁿ." C. R. Acad. Sci. Paris Sér. A 278 (1974), pp. 949-951. URL: https://gallica.bnf.fr/ark:/ 12148/bpt6k6236817d/f315.item. MR: 0340642. 1, 4
- [Sch10] K. Schwede. "Centers of F-purity." Math. Z. 265.3 (2010), pp. 687–714. DOI: 10.1007/s00209-009-0536-5. MR: 2644316. 2
- [ST12] K. Schwede and K. Tucker. "A survey of test ideals." Progress in commutative algebra 2. Berlin: Walter de Gruyter, 2012, pp. 39–99. DOI: 10.1515/9783110278606.39. MR: 2932591. 1
- [Tak04] S. Takagi. "An interpretation of multiplier ideals via tight closure." J. Algebraic Geom. 13.2 (2004), pp. 393–415. DOI: 10.1090/S1056-3911-03-00366-7. MR: 2275023. 2
- [Tak06] S. Takagi. "Formulas for multiplier ideals on singular varieties." Amer. J. Math. 128.6 (2006), pp. 1345–1362.
 DOI: 10.1353/ajm.2006.0049. MR: 2047704. 5
- [TW18] S. Takagi and K.-i. Watanabe. "F-singularities: applications of characteristic p methods to singularity theory." Translated from the Japanese by the authors. Sugaku Expositions 31.1 (2018), pp. 1–42. DOI: 10. 1090/suga/427. MR: 3784697. 1

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109-1043, USA *Email address*: takumim@umich.edu *URL*: http://www-personal.umich.edu/~takumim/