Λ.

Throughout
$$\mathbb{R}$$
 is a noetherian domain of prime char. pro
and
 $K := \operatorname{Frac}(\mathbb{R}).$
Frobenius : $F^e: \mathbb{R} \longrightarrow F^e_* \mathbb{R}$ [Detects singularitied of
 $(e > 0)$ $r \mapsto r^{p^e}$ \mathbb{R}]
Here $F^e_* \mathbb{R}$ is \mathbb{R} as a ring but with \mathbb{R} -mod structure
given by
 $re\mathbb{R}, x \in F^e_* \mathbb{R} \implies r \cdot x = r^{p^e_*}$ (restriction of
 $scalars$)
 $A p^e_{-linear}$ map is an \mathbb{R} -linear map
 $\varphi: F^e_* \mathbb{R} \implies \mathbb{R}$.
Example : $\mathbb{R} = \operatorname{Trp}[x, y]$, then $F_* \mathbb{R}$ is a fee \mathbb{R} -mud
with basis
 $x^i y^i$, $0 \leq i, j \leq p \cdot 1$.
 $\varphi: F_* \mathbb{R} \implies \mathbb{R}$
on the basis given by $\varphi(x^i y^j) = \begin{cases} 1 & \text{if } i = 0 = j \\ 0 & \text{otherwise}. \end{cases}$.

- Why do we care about existence of nonzero p^{-e}-linear maps?
 - global variants of such maps on a variety X, especially splittings, imply X satisfies Kodaira vanishing [Menta-Ramanathan]
 Menta-Ramanathan]
 Menta-Ramanathan]
 Menta-Ramanathan]
 - used extensively in the theory of test ideals, a prime char. analogue of multiplier ideals
 - [Hochster, Huneke, Smith, Hara, Yoshida, Takagi, Watanabe, Lyubeznik, Aberbach, Enescu, Schwede, Blickle, Tucker, Sharp among others]
 - used in the study of F-signature, and more recently,
 its non-local variant.
 - [Smith, Van den Borgh, Huneke, Leushke, Tucker, Aberbach, Enescu, Yao, Singh, De Stefani, Polstra among others]
 - existence of "sufficiently many" such maps implier R is Cohen-Macaulay [Hochster-Huncke]
 Strongly F-regular rings.

- Large class of rings that behave well under integral closures, completions, openness of regular and other loci.
- Deep thms such as Resolution of Singularities conjectured to hold for this class.

Question: When does R have nonzero p^{-e}-linear maps?

Example/Exercise: If
$$F: R \to F_*R$$
 is finite, then nonzero
 p^{-e} -linear maps exist [
If $[K:K^P] < \infty$, then existence of a nonzero p^{-e} -linear
maps \Rightarrow Frobenius is finite. [Smith - D]

Open (??) Question: Are three non-excellent local R that admit
non-trivial
$$p^{c}$$
-linear maps?
If we drop local hypothesis then can construct such examples
(forthcoming work Murayann-D)

$$\frac{\text{Thm A prof sketch Krull dim 1}: We use a construction from
rigid analytic geometry.
A NA field $(R, 11)$ is a field equipped with
II: $k \rightarrow R_{70}$
satisfying
 $0 |x| = 0 \iff x = 0$
 $(R, 11)$ becomes a metric space via $|x-y|$ and we assume R
is complete wort this
To such k have the Tate algebra
 $T_1(k) := \left\{\sum_{i=0}^{\infty} a_i x^i \in k[[x_i]]: |a_i| \rightarrow 0 \text{ as } i \rightarrow \infty\right\}.$
Rigid analytic analyze $q \ R[x]. - regular (we to local) - execution (Kichi)
 $- Euclidean domain.$$$$

Murayama - D: For (k, 11) of char p>0, T₁(k) has a
non zero p^{-e} - linear map
$$\iff$$
 k has a
non zero continuous p^{-e} - linear map.

Gabber / Blaszczok (now Rzepka) - Kuhlmann: I NA
fields k that DONT admit continuous p⁻¹ - linear maps.
This was non-Archimedean functional analysis.

BLACK	LIVES	MATTER	
INDIGENOUS	LIVES	MATTER) D
LGBTQ	LIVES	MATTER	