Specialization of Integral Closure of Ideals by General Elements

Based on joint work with Rachel Lynn

Lindsey Hill

Purdue University

June 2020

June 2020

Basic Definitions

Definition

Let I be an ideal of a ring R. An element $x \in R$ is integral over I if it satisfies an equation of integral dependence of the form

$$x^n + a_1 x^{n-1} + \ldots + a_n = 0$$

with $a_i \in I^i$. The collection of all elements integral over I is the integral closure of I, denoted \overline{I} .

Example of Integral Closure

Example

Let
$$R = k[x, y]$$
 and $I = (x^3, x^2y, y^3)$. Then $\overline{I} = (x^3, x^2y, xy^2, y^3)$.

- Fact: The integral closure of a monomial ideal is a monomial ideal.
- Notice that xy^2 satisfies $z^2 (x^2y)(y^3) = 0$, so $(x, y)^3 \subset \overline{I}$.
- Any monomial integral over I has degree at least 3, hence $\overline{I} \subset (x, y)^3$.

Question

Given an integrally closed ideal, can we reduce the height and maintain integral closedness?

An example

Let R = k[x, y] and let m = (x, y). Notice $m^2 = (x^2, xy, y^2)$ is integrally closed ideal of height two. Is $\frac{m^2}{(x^2)}$ an integrally closed ideal of $\frac{R}{(x^2)}$? The answer: No. Notice that x satisfies an equation of integral dependence $z^2 = 0$ in $R/(x^2)$ and therefore, $x \in \overline{m^2/(x^2)} \setminus m^2/(x^2)$.

The generic element approach

Let *R* be a Noetherian (local) ring and $I = (a_1, \ldots, a_n)$ an *R*-ideal. Let T_1, \ldots, T_n be variables over *R*. Recall that $R[T_1, \ldots, T_n]$ and $R(T) = R[T_1, \ldots, T_n]_{m_R R[T]}$ are faithfully flat extensions of *R*. Then

• ht
$$I = \operatorname{ht} IR[T] = \operatorname{ht} IR(T)$$

- $\overline{I}R[T] = \overline{IR[T]}$
- $\overline{I}R(T) = \overline{IR(T)}$

and $\alpha = a_1 T_1 + a_2 T_2 + \ldots + a_n T_n$ is a generic element of IR[T] or IR(T).

A theorem of Itoh (1989)

Let (R, m) be an analytically unramified, Cohen-Macaulay local ring of dimension $d \ge 2$. Let I be a parameter ideal for R. Assume that R/m is infinite. Then there exists a system of generators x_1, \ldots, x_d for I such that if we put $x = \sum_i x_i T_i$ and I' = IR(T), where $R(T) = R[T]_{m[T]}$ with $T = (T_1, \ldots, T_d) d$ indeterminates, then

$$\overline{I'/(x)} = \overline{I'}/(x).$$

A generalization by Hong-Ulrich (2014)

Let *R* be a Noetherian, locally equidimensional, universally catenary ring such R_{red} is locally analytically unramified. Let $I = (a_1, \ldots, a_n)$ be an *R*-ideal of height at least 2. Let $R' = R[T_1, \ldots, T_n]$ be a polynomial ring in the variables T_1, \ldots, T_n , I' = IR', and $x = \sum_{i=1}^n T_i a_i$. Then

$$\overline{I'/(x)} = \overline{I'}/(x).$$

Applications of Hong-Ulrich

- 1. Enables proofs by induction on the height of an integrally closed ideal.
- 2. Gives a quick proof of a result proved independently by Huneke and Itoh: Let R be a Noetherian, locally equidimensional, universally catenary ring such that R_{red} is locally analytically unramified. Let I be a complete intersection R-ideal. Then $\overline{I^{n+1}} \cap I^n = \overline{I}I^n$ for all $n \ge 0$.

Specialization by general elements (-, Lynn)

Let (R, m) be a local equidimensional excellent k-algebra, where k is a field of characteristic 0. Let I be an R-ideal of height at least 2 and let x be a general element of I. Then $\overline{I}/(x) = \overline{I/(x)}$.

Main Ingredients of the Proof

- 1. (Extended) Rees Algebras and Their Integral Closures
- 2. General Elements and Bertini's Theorems

Rees Algebras

Let R be a ring, I an ideal of R and t a variable over R. The Rees algebra of I is a subring of R[t] defined by

$$R[It] = \oplus_{n \ge 0} I^n t^n.$$

The extended Rees algebra of I is the subring of $R[t, t^{-1}]$ defined as

$$R[It,t^{-1}] = \oplus_{n \in \mathbb{Z}} I^n t^n$$

with $I^n = R$ for $n \leq 0$.

Connections between the Integral Closure of Ideal and the Rees Algebra

Let R be a ring, t a variable over R and I an ideal of R. Then

$$\overline{R[It]}^{R[t]} = R \oplus \overline{I}t \oplus \overline{I^2}t^2 \oplus \overline{I^3}t^3 \oplus \dots$$

and

$$\overline{R[lt,t^{-1}]}^{R[t,t^{-1}]} = \ldots \oplus Rt^{-2} \oplus Rt^{-1} \oplus R \oplus \overline{l}t \oplus \overline{l^2}t^2 \oplus \ldots$$

Bertini's Theorems

Let $I = (x_1, \ldots, x_n)$. Then a general element x_α of I is $x_\alpha = \sum_{i=1}^n \alpha_i x_i$ where $\alpha = (\alpha_1, \ldots, \alpha_n)$ is in a Zariski open subset of k^n .

A theorem of Bertini

Let A be a local excellent k-algebra over the field k of characteristic 0 and let $x_1, \ldots, x_n \in m_A$. Let $U \subseteq D(x_1, \ldots, x_n)$ be open, so that for $p \in U$ the ring A_p satisfies Serre's Conditions (S_r) or (R_s) respectively. For general $\alpha \in k^n$ and $p \in U \cap V(x_\alpha)$ the ring $(A/x_\alpha A)_p$ also satisfies the conditions (S_r) or (R_s) .

Sketch of the proof

1. Reduce to the case where R is a local normal domain.

2. Define:

$$\mathcal{A} = R[It, t^{-1}]$$
$$\mathcal{B} = \frac{R}{(x)} \left[\frac{I}{(x)} t, t^{-1} \right]$$
$$\overline{\mathcal{A}} = \overline{R[It, t^{-1}]}^{R[t, t^{-1}]}$$
$$\overline{\mathcal{B}} = \overline{\frac{R}{(x)} \left[\frac{I}{(x)} t, t^{-1} \right]}^{\frac{R}{(x)} [t, t^{-1}]}$$

ヨト イヨト

Sketch of the proof

3. Consider the natural map

$$\varphi: \frac{\overline{\mathcal{A}}}{xt\overline{\mathcal{A}}} \to \overline{\mathcal{B}}.$$

Notice that $\left[\frac{\overline{A}}{xt\overline{A}}\right]_1 = \overline{I}/(x)$ and $\left[\overline{B}\right]_1 = \overline{I/(x)}$. For this reason, it suffices to show that the $C = \operatorname{coker}(\varphi)$ vanishes in degree 1.

- Define J = (It, t⁻¹)A. Show that for p ∈ Spec(A) \ V(JA), φ_p is an isomorphism. In the case where It ⊈ p, we apply Bertini's Theorem to A to say (A/xtA)_p is normal, and since the extension (A/xtA)_p → B_p is integral, φ_p is an isomorphism.
- 5. Step 4 implies that $C = H_J^0(C)$. From this, we have an embedding $[C]_n \hookrightarrow [H_J^2(\overline{A})]_{n-1}$. We use a local cohomology vanishing theorem proved by Hong and Ulrich to say $[C]_1 = 0$.

References

Lindsey Hill (Purdue University) Specialization of Integral Closure of Ideals by General Elements

June 2020

æ

<ロト <問ト < 目ト < 目ト