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Basic Definitions

Definition

Let I be an ideal of a ring R. An element x ∈ R is integral over I if it
satisfies an equation of integral dependence of the form

xn + a1x
n−1 + . . .+ an = 0

with ai ∈ I i . The collection of all elements integral over I is the integral
closure of I , denoted I .
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Example of Integral Closure

Example

Let R = k[x , y ] and I = (x3, x2y , y3). Then I = (x3, x2y , xy2, y3).

Fact: The integral closure of a monomial ideal is a monomial ideal.

Notice that xy2 satisfies z2 − (x2y)(y3) = 0, so (x , y)3 ⊂ I .

Any monomial integral over I has degree at least 3, hence I ⊂ (x , y)3.
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Question

Given an integrally closed ideal, can we reduce the height and maintain
integral closedness?
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An example

Let R = k[x , y ] and let m = (x , y).
Notice m2 = (x2, xy , y2) is integrally closed ideal of height two.

Is m2

(x2)
an integrally closed ideal of R

(x2)
?

The answer: No. Notice that x satisfies an equation of integral
dependence z2 = 0 in R/(x2) and therefore, x ∈ m2/(x2) \m2/(x2).
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The generic element approach

Let R be a Noetherian (local) ring and I = (a1, . . . , an) an R-ideal.
Let T1, . . . ,Tn be variables over R. Recall that R[T1, . . . ,Tn] and
R(T ) = R[T1, . . . ,Tn]mRR[T ] are faithfully flat extensions of R. Then

ht I = ht IR[T ] = ht IR(T )

IR[T ] = IR[T ]

IR(T ) = IR(T )

and α = a1T1 + a2T2 + . . .+ anTn is a generic element of IR[T ] or IR(T ).
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A theorem of Itoh (1989)

Let (R,m) be an analytically unramified, Cohen-Macaulay local ring of
dimension d ≥ 2. Let I be a parameter ideal for R. Assume that R/m is
infinite. Then there exists a system of generators x1, . . . , xd for I such that
if we put x =

∑
i xiTi and I ′ = IR(T ), where R(T ) = R[T ]m[T ] with

T = (T1, . . . ,Td) d indeterminates, then

I ′/(x) = I ′/(x).
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A generalization by Hong-Ulrich (2014)

Let R be a Noetherian, locally equidimensional, universally catenary ring
such Rred is locally analytically unramified. Let I = (a1, . . . , an) be an
R-ideal of height at least 2. Let R ′ = R[T1, . . . ,Tn] be a polynomial ring
in the variables T1, . . . ,Tn, I ′ = IR ′, and x =

∑n
i=1 Tiai . Then

I ′/(x) = I ′/(x).
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Applications of Hong-Ulrich

1. Enables proofs by induction on the height of an integrally closed ideal.

2. Gives a quick proof of a result proved independently by Huneke and
Itoh: Let R be a Noetherian, locally equidimensional, universally
catenary ring such that Rred is locally analytically unramified. Let I be
a complete intersection R-ideal. Then I n+1 ∩ I n = I I n for all n ≥ 0.
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Specialization by general elements (–, Lynn)

Let (R,m) be a local equidimensional excellent k-algebra, where k is a
field of characteristic 0. Let I be an R-ideal of height at least 2 and let x
be a general element of I . Then I/(x) = I/(x).
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Main Ingredients of the Proof

1. (Extended) Rees Algebras and Their Integral Closures

2. General Elements and Bertini’s Theorems
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Rees Algebras

Let R be a ring, I an ideal of R and t a variable over R. The Rees algebra
of I is a subring of R[t] defined by

R[It] = ⊕n≥0I
ntn.

The extended Rees algebra of I is the subring of R[t, t−1] defined as

R[It, t−1] = ⊕n∈ZI
ntn

with I n = R for n ≤ 0.
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Connections between the Integral Closure of Ideal and the
Rees Algebra

Let R be a ring, t a variable over R and I an ideal of R. Then

R[It]
R[t]

= R ⊕ I t ⊕ I 2t2 ⊕ I 3t3 ⊕ . . .

and

R[It, t−1]
R[t,t−1]

= . . .⊕ Rt−2 ⊕ Rt−1 ⊕ R ⊕ I t ⊕ I 2t2 ⊕ . . .

Lindsey Hill (Purdue University) Specialization of Integral Closure of Ideals by General Elements June 2020



Bertini’s Theorems

Let I = (x1, . . . , xn). Then a general element xα of I is xα =
∑n

i=1 αixi
where α = (α1, . . . , αn) is in a Zariski open subset of kn.

A theorem of Bertini

Let A be a local excellent k-algebra over the field k of characteristic 0 and
let x1, . . . , xn ∈ mA. Let U ⊆ D(x1, . . . , xn) be open, so that for p ∈ U the
ring Ap satisfies Serre’s Conditions (Sr ) or (Rs) respectively. For general
α ∈ kn and p ∈ U ∩ V (xα) the ring (A/xαA)p also satisfies the conditions
(Sr ) or (Rs).
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Sketch of the proof

1. Reduce to the case where R is a local normal domain.

2. Define:
A = R[It, t−1]

B =
R

(x)

[
I

(x)
t, t−1

]
A = R[It, t−1]

R[t,t−1]

B =
R

(x)

[
I

(x)
t, t−1

] R
(x)

[t,t−1]
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Sketch of the proof

3. Consider the natural map

ϕ :
A
xtA

→ B.

Notice that
[
A
xtA

]
1

= I/(x) and
[
B
]
1

= I/(x). For this reason, it

suffices to show that the C = coker(ϕ) vanishes in degree 1.

4. Define J = (It, t−1)A. Show that for p ∈ Spec(A) \ V (JA), ϕp is an
isomorphism. In the case where It 6⊆ p, we apply Bertini’s Theorem to
A to say

(
A/xtA

)
p

is normal, and since the extension(
A/xtA

)
p
→ Bp is integral, ϕp is an isomorphism.

5. Step 4 implies that C = H0
J (C ). From this, we have an embedding

[C ]n ↪→ [H2
J (A)]n−1. We use a local cohomology vanishing theorem

proved by Hong and Ulrich to say [C ]1 = 0.
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