The Fedder Action and a Simplicial Complex of Local Cohomologies

Monica Lewis joint with Eric Canton

University of Michigan June 28, 2020

Throughout this talk...

All rings have prime characteristic p > 0

Throughout this talk...

• All rings have prime characteristic p > 0

All but one will be commutative and Noetherian

Part 1

What is a Frobenius action?

Frobenius actions are a fundamental tool in positive characteristic.

Frobenius actions are a fundamental tool in positive characteristic.

Ex: necklaces over \mathbb{F}_p

Frobenius actions are a fundamental tool in positive characteristic.

Ex: necklaces over \mathbb{F}_p

Frobenius actions are a fundamental tool in positive characteristic.

Ex: necklaces over \mathbb{F}_p

$$= 1$$

Frobenius actions are a fundamental tool in positive characteristic.

Ex: necklaces over \mathbb{F}_p

Frobenius actions are a fundamental tool in positive characteristic.

Ex: necklaces over \mathbb{F}_p

For elements of
$$\mathbb{F}_2[x]$$
 module $\frac{\mathbb{F}_2[x]}{x^5-1}$

Frobenius actions are a fundamental tool in positive characteristic.

Ex: necklaces over \mathbb{F}_p

For elements of
$$\mathbb{F}_2[x]$$
 module $\frac{\mathbb{F}_2[x]}{x^5-1}$

Frobenius actions are a fundamental tool in positive characteristic.

Ex: necklaces over \mathbb{F}_p

Frobenius actions are a fundamental tool in positive characteristic.

Ex: necklaces over \mathbb{F}_p

Frobenius actions are a fundamental tool in positive characteristic.

Ex: necklaces over \mathbb{F}_p

$$=1 \qquad x^{4} \qquad x^{3}$$

$$=0 \qquad 1 \qquad x^{4} \qquad x^{2}$$

Frobenius actions are a fundamental tool in positive characteristic.

Ex: necklaces over \mathbb{F}_p

Frobenius actions are a fundamental tool in positive characteristic.

Ex: necklaces over \mathbb{F}_p

For elements of
$$\mathbb{F}_2[x]$$
 module $\frac{\mathbb{F}_2[x]}{x^5-1}$

Studying F-stable necklace classes is a good way to find finite extension fields of \mathbb{F}_p

Frobenius actions are a fundamental tool in positive characteristic.

Ex: necklaces over \mathbb{F}_p

For elements of $\mathbb{F}_2[x]$ module $\frac{\mathbb{F}_2[x]}{x^5-1}$

Studying F-stable necklace classes is a good way to find finite extension fields of \mathbb{F}_p

For example, this necklace class is closed under addition and multiplication.

Frobenius actions are a fundamental tool in positive characteristic.

Ex: necklaces over \mathbb{F}_p

For elements of $\mathbb{F}_2[x]$ module $\frac{\mathbb{F}_2[x]}{x^5-1}$

× ×²×³×⁴×⁵×⁶×⁷×⁸

Studying F-stable necklace classes is a good way to find finite extension fields of \mathbb{F}_p

Frobenius actions are a fundamental tool in positive characteristic.

Ex: necklaces over \mathbb{F}_p

For elements of $\mathbb{F}_2[x]$ module $\frac{\mathbb{F}_2[x]}{x^5-1}$

Studying F-stable necklace classes is a good way to find finite extension fields of \mathbb{F}_p

For example, this necklace class is closed under addition and multiplication.

Gives a copy of \mathbb{F}_{16}

R is a ring of prime characteristic p > 0, M is an R-module

R is a ring of prime characteristic p > 0, M is an R-module

Definition:

R is a ring of prime characteristic p > 0, M is an R-module

Definition: A Frobenius action on M is a choice of a \mathbb{Z} -linear map $\beta: M \to M$ satisfying $\beta(rm) = r^p \beta(m)$

R is a ring of prime characteristic p > 0, M is an R-module

Definition: A Frobenius action on M is a choice of a \mathbb{Z} -linear map $\beta: M \to M$ satisfying $\beta(rm) = r^p \beta(m)$

Equivalent data to giving M the structure of an $R\langle F \rangle$ -module, where $R\langle F \rangle$ is the **noncommutative** ring...

$$R\langle F \rangle := \frac{R\{F\}}{(r^pF - Fr \mid r \in R)}$$

R is a ring of prime characteristic p > 0, M is an R-module

Definition: A Frobenius action on M is a choice of a \mathbb{Z} -linear map $\beta: M \to M$ satisfying $\beta(rm) = r^p \beta(m)$

Equivalent data to giving M the structure of an $R\langle F \rangle$ -module, where $R\langle F \rangle$ is the **noncommutative** ring...

$$R\langle F \rangle := \frac{R\{F\}}{(r^pF - Fr \mid r \in R)}$$

R is a ring of prime characteristic p > 0, M is an R-module

Definition: A Frobenius action on M is a choice of a \mathbb{Z} -linear map $\beta: M \to M$ satisfying $\beta(rm) = r^p \beta(m)$

Equivalent data to giving M the structure of an $R\langle F \rangle$ -module, where $R\langle F \rangle$ is the **noncommutative** ring...

$$R\langle F \rangle := \frac{R\{F\}}{(r^pF - Fr \mid r \in R)}$$

A morphism of R<F>-modules is just an R<F>-linear map.

* Can make sense of finite generation over R<F>

R is a ring of prime characteristic p > 0, M is an R-module

Definition: A Frobenius action on M is a choice of a \mathbb{Z} -linear map $\beta: M \to M$ satisfying $\beta(rm) = r^p \beta(m)$

Equivalent data to giving M the structure of an $R\langle F \rangle$ -module, where $R\langle F \rangle$ is the **noncommutative** ring...

$$R\langle F \rangle := \frac{R\{F\}}{(r^pF - Fr \mid r \in R)}$$

- * Can make sense of finite generation over R<F>
- * Homomorphic image of a f.g. R<F>-module is still f.g.

R is a ring of prime characteristic p > 0, M is an R-module

Definition: A Frobenius action on M is a choice of a \mathbb{Z} -linear map $\beta: M \to M$ satisfying $\beta(rm) = r^p \beta(m)$

Equivalent data to giving M the structure of an $R\langle F \rangle$ -module, where $R\langle F \rangle$ is the **noncommutative** ring...

$$R\langle F \rangle := \frac{R\{F\}}{(r^pF - Fr \mid r \in R)}$$

- * Can make sense of finite generation over R<F>
- * Homomorphic image of a f.g. R<F>-module is still f.g.
- * Finite generation does not necessarily pass to submodules (R<F> is not Noetherian)

R is a ring of prime characteristic p > 0, M is an R-module

Definition: A Frobenius action on M is a choice of a \mathbb{Z} -linear map $\beta: M \to M$ satisfying $\beta(rm) = r^p \beta(m)$

Equivalent data to giving M the structure of an R(F)-module, where R(F) is the **noncommutative** ring...

$$R\langle F \rangle := \frac{R\{F\}}{(r^pF - Fr \mid r \in R)}$$

- * Can make sense of finite generation over R<F>
- * Homomorphic image of a f.g. R<F>-module is still f.g.
- * Finite generation does not necessarily pass to submodules (R<F> is not Noetherian)
- * Finitely generated R<F>-modules can be much larger than finitely generated R-modules.

R is a ring of prime characteristic p > 0, M is an R-module

Definition: A Frobenius action on M is a choice of a \mathbb{Z} -linear map $\beta: M \to M$ satisfying $\beta(rm) = r^p \beta(m)$

Equivalent data to giving M the structure of an R(F)-module, where R(F) is the **noncommutative** ring...

$$R\langle F \rangle := \frac{R\{F\}}{(r^pF - Fr \mid r \in R)}$$

A morphism of R<F>-modules is just an R<F>-linear map.

- * Can make sense of finite generation over R<F>
- * Homomorphic image of a f.g. R<F>-module is still f.g.
- * Finite generation does not necessarily pass to submodules (R<F> is not Noetherian)
- * Finitely generated R<F>-modules can be much larger than finitely generated R-modules.

If N is finitely generated over R, and generates M over R<F>, then Supp(M) = Supp(N) is closed

$$M = H^2_{(x,y)}(\mathbb{F}_2[x,y])$$

$$M = H^2_{(x,y)}(\mathbb{F}_2[x,y])$$

R is a ring of prime characteristic $p>0,\,M$ is an R-module $q = p^e$ for some $e \ge 0$

R is a ring of prime characteristic $p>0,\,M$ is an R-module $q = p^e$ for some e > 0

$$R^{1/q} = \left\{ \text{formal symbols } r^{1/q} \text{ for } r \in R \right\} \quad (\simeq R \text{ as a ring})$$
 $F^e: R \to R^{1/q} \text{ sends } r \mapsto (r^q)^{1/q}, \text{ injective iff } R \text{ is reduced.}$

R is a ring of prime characteristic $p>0,\,M$ is an R-module $q = p^e$ for some e > 0

$$R^{1/q} = \left\{ \text{formal symbols } r^{1/q} \text{ for } r \in R \right\} \quad (\simeq R \text{ as a ring})$$
 $F^e: R \to R^{1/q} \text{ sends } r \mapsto (r^q)^{1/q}, \text{ injective iff } R \text{ is reduced.}$

$$M^{1/q} = \left\{ \text{formal symbols } m^{1/q} \text{ for } m \in M \right\}, \text{ an } R^{1/q} \text{ module}$$
 as an R-module, for $r \in R$, $r \cdot m^{1/q} = (r^q m)^{1/q}$

R is a ring of prime characteristic $p>0,\,M$ is an $R\text{-}\mathrm{module}$ $q = p^e$ for some e > 0

$$R^{1/q} = \left\{ \text{formal symbols } r^{1/q} \text{ for } r \in R \right\} \quad (\simeq R \text{ as a ring})$$
 $F^e: R \to R^{1/q} \text{ sends } r \mapsto (r^q)^{1/q}, \text{ injective iff } R \text{ is reduced.}$

$$M^{1/q} = \left\{ \text{formal symbols } m^{1/q} \text{ for } m \in M \right\}, \text{ an } R^{1/q} \text{ module}$$
 as an R-module, for $r \in R$, $r \cdot m^{1/q} = (r^q m)^{1/q}$

(can similarly make sense of the ring R^q and the R^q module M^q)

R is a ring of prime characteristic $p>0,\,M$ is an R-module $q = p^e$ for some $e \ge 0$

$$R^{1/q} = \left\{ \text{formal symbols } r^{1/q} \text{ for } r \in R \right\} \quad (\simeq R \text{ as a ring})$$
 $F^e: R \to R^{1/q} \text{ sends } r \mapsto (r^q)^{1/q}, \text{ injective iff } R \text{ is reduced.}$

$$M^{1/q} = \left\{ \text{formal symbols } m^{1/q} \text{ for } m \in M \right\}, \text{ an } R^{1/q} \text{ module}$$
 as an R-module, for $r \in R$, $r \cdot m^{1/q} = (r^q m)^{1/q}$

(can similarly make sense of the ring R^q and the R^q module M^q)

base change: $\operatorname{Mod}_R \to \operatorname{Mod}_{R^{1/q}}$ via $M \mapsto R^{1/q} \otimes_R M$ Peskine-Szpiro functor $\mathcal{F}_R^e: \mathrm{Mod}_R \to \mathrm{Mod}_R$ via $M \mapsto (R^{1/q} \otimes_R M)^q$

R is a ring of prime characteristic p > 0, M is an R-module

R is a ring of prime characteristic p > 0, M is an R-module

Definition 2: A Frobenius action on M is a choice of $R^{1/p}$ -linear map $\Theta: R^{1/p} \otimes_R M \to M^{1/p}$, which we will call the structure map.

R is a ring of prime characteristic p > 0, M is an R-module

Definition 2: A Frobenius action on M is a choice of $R^{1/p}$ -linear map $\Theta: R^{1/p} \otimes_R M \to M^{1/p}$, which we will call the structure map.

(could also say an R-linear map $\mathcal{F}_R(M) \to M$)

R is a ring of prime characteristic p > 0, M is an R-module

Definition 2: A Frobenius action on M is a choice of $R^{1/p}$ -linear map $\Theta: R^{1/p} \otimes_R M \to M^{1/p}$, which we will call the structure map. (could also say an R-linear map $\mathcal{F}_R(M) \to M$)

Given a structure map $\Theta: \mathbb{R}^{1/p} \otimes_{\mathbb{R}} M \to M^{1/p}$, define an action of F via $F(m) = \Theta(1 \otimes m)^p$

R is a ring of prime characteristic p > 0, M is an R-module

Definition 2: A Frobenius action on M is a choice of $R^{1/p}$ -linear map $\Theta: R^{1/p} \otimes_R M \to M^{1/p}$, which we will call the structure map. (could also say an R-linear map $\mathcal{F}_R(M) \to M$)

Given a structure map $\Theta: \mathbb{R}^{1/p} \otimes_{\mathbb{R}} M \to M^{1/p}$, define an action of F via $F(m) = \Theta(1 \otimes m)^p$

Given an action $F: M \to M$, define the structure map Θ by $\Theta(s^{1/p} \otimes m) = (sF(m))^{1/p})$

R is a ring of prime characteristic p > 0, M is an R-module

Definition 2: A Frobenius action on M is a choice of $R^{1/p}$ -linear map $\Theta: R^{1/p} \otimes_R M \to M^{1/p}$, which we will call the structure map. (could also say an R-linear map $\mathcal{F}_R(M) \to M$)

Given a structure map $\Theta: \mathbb{R}^{1/p} \otimes_{\mathbb{R}} M \to M^{1/p}$, define an action of F via $F(m) = \Theta(1 \otimes m)^p$

Given an action $F: M \to M$, define the structure map Θ by $\Theta(s^{1/p} \otimes m) = (sF(m))^{1/p})$

A morphism from (M,Θ) to (N,Ψ) is an R-linear map $h:M\to N$ such that

R is a ring of prime characteristic p > 0, M is an R-module

Definition 2: A Frobenius action on M is a choice of $R^{1/p}$ -linear map $\Theta: R^{1/p} \otimes_R M \to M^{1/p}$, which we will call the structure map.

(could also say an R-linear map $\mathcal{F}_R(M) \to M$)

Given a structure map $\Theta: \mathbb{R}^{1/p} \otimes_{\mathbb{R}} M \to M^{1/p}$, define an action of F via $F(m) = \Theta(1 \otimes m)^p$

Given an action $F: M \to M$, define the structure map Θ by $\Theta(s^{1/p} \otimes m) = (sF(m))^{1/p})$

A morphism from (M,Θ) to (N,Ψ) is an R-linear map $h:M\to N$ such that

$$\begin{array}{c} R^{1/p} \otimes_R M \xrightarrow{1 \otimes h} R^{1/p} \otimes_R N \\ \ominus \bigvee_{M^{1/p} \xrightarrow{h^{1/p}} N^{1/p}} & \downarrow \\ M^{1/p} \xrightarrow{h^{1/p}} N^{1/p} & \text{commutes} \end{array}$$

Part 2

Using the Frobenius structure

R is a regular ring of prime characteristic p > 0, M is an R-module

R is a regular ring of prime characteristic $p>0,\,M$ is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta: \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

R is a regular ring of prime characteristic $p>0,\,M$ is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta : \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

(Note: the $R\langle F \rangle$ structure map is the *inverse* of the usual Lyubeznik structure map)

R is a regular ring of prime characteristic $p>0,\,M$ is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta : \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

(Note: the $R\langle F \rangle$ structure map is the *inverse* of the usual Lyubeznik structure map)

An $R\langle F \rangle$ -module that is both (i) finitely generated over $R\langle F \rangle$, and (ii) is a Lyubeznik F-module is called F-finite.

R is a regular ring of prime characteristic $p>0,\,M$ is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta : \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

(Note: the $R\langle F \rangle$ structure map is the *inverse* of the usual Lyubeznik structure map)

An $R\langle F \rangle$ -module that is both (i) finitely generated over $R\langle F \rangle$, and (ii) is a Lyubeznik F-module is called F-finite.

If $m_1, \dots, m_t \in M$ generate over R(F), then $N = Rm_1 + \dots + Rm_t \subseteq M$ is a Lyubeznik root of M.

R is a regular ring of prime characteristic $p>0,\,M$ is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta : \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

(Note: the $R\langle F \rangle$ structure map is the *inverse* of the usual Lyubeznik structure map)

An $R\langle F \rangle$ -module that is both (i) finitely generated over $R\langle F \rangle$, and (ii) is a Lyubeznik F-module is called F-finite.

If $m_1, \dots, m_t \in M$ generate over R(F), then $N = Rm_1 + \dots + Rm_t \subseteq M$ is a Lyubeznik root of M.

F-finiteness is much stronger than finite generation alone...

R is a regular ring of prime characteristic p > 0, M is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta : \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

(Note: the $R\langle F \rangle$ structure map is the *inverse* of the usual Lyubeznik structure map)

An R(F)-module that is both (i) finitely generated over R(F), and (ii) is a Lyubeznik F-module is called F-finite.

If $m_1, \dots, m_t \in M$ generate over R(F), then $N = Rm_1 + \dots + Rm_t \subseteq M$ is a Lyubeznik root of M.

F-finiteness is much stronger than finite generation alone...

• The category of F-finite F-modules is abelian.

R is a regular ring of prime characteristic p > 0, M is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta : \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

(Note: the $R\langle F \rangle$ structure map is the *inverse* of the usual Lyubeznik structure map)

An $R\langle F \rangle$ -module that is both (i) finitely generated over $R\langle F \rangle$, and (ii) is a Lyubeznik F-module is called F-finite.

If $m_1, \dots, m_t \in M$ generate over $R\langle F \rangle$, then $N = Rm_1 + \dots + Rm_t \subseteq M$ is a Lyubeznik root of M.

F-finiteness is much stronger than finite generation alone...

- The category of F-finite F-modules is abelian.
- If N is an R(F)-submodule of M, and both N and M are Lyubeznik F-modules,

R is a regular ring of prime characteristic p > 0, M is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta : \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

(Note: the $R\langle F \rangle$ structure map is the *inverse* of the usual Lyubeznik structure map)

An $R\langle F \rangle$ -module that is both (i) finitely generated over $R\langle F \rangle$, and (ii) is a Lyubeznik F-module is called F-finite.

If $m_1, \dots, m_t \in M$ generate over $R\langle F \rangle$, then $N = Rm_1 + \dots + Rm_t \subseteq M$ is a Lyubeznik root of M.

F-finiteness is much stronger than finite generation alone...

- The category of F-finite F-modules is abelian.
- If N is an R(F)-submodule of M, and both N and M are Lyubeznik F-modules,

M is finitely generated $\implies N$ is finitely generated

R is a regular ring of prime characteristic p > 0, M is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta : \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

(Note: the $R\langle F \rangle$ structure map is the *inverse* of the usual Lyubeznik structure map)

An $R\langle F \rangle$ -module that is both (i) finitely generated over $R\langle F \rangle$, and (ii) is a Lyubeznik F-module is called F-finite.

If $m_1, \dots, m_t \in M$ generate over R(F), then $N = Rm_1 + \dots + Rm_t \subseteq M$ is a Lyubeznik root of M.

F-finiteness is much stronger than finite generation alone...

- The category of F-finite F-modules is abelian.
- If N is an R(F)-submodule of M, and both N and M are Lyubeznik F-modules,

M is finitely generated $\implies N$ is finitely generated

If M is Lyubeznik, then the induced action on H_I(M) is Lyubeznik.

R is a regular ring of prime characteristic p > 0, M is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta : \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

(Note: the $R\langle F \rangle$ structure map is the *inverse* of the usual Lyubeznik structure map)

An $R\langle F \rangle$ -module that is both (i) finitely generated over $R\langle F \rangle$, and (ii) is a Lyubeznik F-module is called F-finite.

If $m_1, \dots, m_t \in M$ generate over R(F), then $N = Rm_1 + \dots + Rm_t \subseteq M$ is a Lyubeznik root of M.

F-finiteness is much stronger than finite generation alone...

- The category of F-finite F-modules is abelian.
- If N is an R(F)-submodule of M, and both N and M are Lyubeznik F-modules,

M is finitely generated $\implies N$ is finitely generated

- If M is Lyubeznik, then the induced action on $H_I^i(M)$ is Lyubeznik.
- If, additionally, M is F-finite, then H_Iⁱ(M) is also F-finite.

R is a regular ring of prime characteristic p > 0, M is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta : \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

(Note: the $R\langle F \rangle$ structure map is the *inverse* of the usual Lyubeznik structure map)

An $R\langle F \rangle$ -module that is both (i) finitely generated over $R\langle F \rangle$, and (ii) is a Lyubeznik F-module is called F-finite.

If $m_1, \dots, m_t \in M$ generate over R(F), then $N = Rm_1 + \dots + Rm_t \subseteq M$ is a Lyubeznik root of M.

F-finiteness is much stronger than finite generation alone...

- The category of F-finite F-modules is abelian.
- If N is an R(F)-submodule of M, and both N and M are Lyubeznik F-modules,

M is finitely generated $\implies N$ is finitely generated

- If M is Lyubeznik, then the induced action on H_I(M) is Lyubeznik.
- If, additionally, M is F-finite, then Hⁱ_I(M) is also F-finite.

This is not true of finite generation!

R is a regular ring of prime characteristic p > 0, M is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta : \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

(Note: the $R\langle F \rangle$ structure map is the *inverse* of the usual Lyubeznik structure map)

An $R\langle F \rangle$ -module that is both (i) finitely generated over $R\langle F \rangle$, and (ii) is a Lyubeznik F-module is called F-finite.

If $m_1, \dots, m_t \in M$ generate over R(F), then $N = Rm_1 + \dots + Rm_t \subseteq M$ is a Lyubeznik root of M.

F-finiteness is much stronger than finite generation alone...

- The category of F-finite F-modules is abelian.
- If N is an R(F)-submodule of M, and both N and M are Lyubeznik F-modules,

M is finitely generated $\implies N$ is finitely generated

- If M is Lyubeznik, then the induced action on $H_I^i(M)$ is Lyubeznik.
- If, additionally, M is F-finite, then Hⁱ_I(M) is also F-finite.

This is not true of finite generation!

R is a regular ring of prime characteristic p > 0, M is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta : \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

(Note: the $R\langle F \rangle$ structure map is the *inverse* of the usual Lyubeznik structure map)

An $R\langle F \rangle$ -module that is both (i) finitely generated over $R\langle F \rangle$, and (ii) is a Lyubeznik F-module is called F-finite.

If $m_1, \dots, m_t \in M$ generate over R(F), then $N = Rm_1 + \dots + Rm_t \subseteq M$ is a Lyubeznik root of M.

F-finiteness is much stronger than finite generation alone...

- The category of F-finite F-modules is abelian.
- If N is an R(F)-submodule of M, and both N and M are Lyubeznik F-modules,

M is finitely generated $\implies N$ is finitely generated

- If M is Lyubeznik, then the induced action on $H_I^i(M)$ is Lyubeznik.
- If, additionally, M is F-finite, then Hⁱ_I(M) is also F-finite.

This is not true of finite generation!

• All Bass numbers of an F-finite F-module are finite.

R is a regular ring of prime characteristic p > 0, M is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta : \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

(Note: the $R\langle F \rangle$ structure map is the *inverse* of the usual Lyubeznik structure map)

An $R\langle F \rangle$ -module that is both (i) finitely generated over $R\langle F \rangle$, and (ii) is a Lyubeznik F-module is called F-finite.

If $m_1, \dots, m_t \in M$ generate over R(F), then $N = Rm_1 + \dots + Rm_t \subseteq M$ is a Lyubeznik root of M.

F-finiteness is much stronger than finite generation alone...

- The category of F-finite F-modules is abelian.
- If N is an R(F)-submodule of M, and both N and M are Lyubeznik F-modules,

M is finitely generated $\implies N$ is finitely generated

- If M is Lyubeznik, then the induced action on H_I(M) is Lyubeznik.
- If, additionally, M is F-finite, then Hⁱ_I(M) is also F-finite.

This is not true of finite generation!

- $\bullet\,$ All Bass numbers of an F-finite F-module are finite.
- An F-finite F-module has finitely many associated primes.

R is a regular ring of prime characteristic p > 0, M is an R-module

Definition: An R(F)-module M is called a F-module (in the sense of Lyubeznik) if its structure map is an isomorphism.

(that is,
$$\Theta : \mathcal{F}_R(M) \xrightarrow{\sim} M$$
)

(Note: the $R\langle F \rangle$ structure map is the *inverse* of the usual Lyubeznik structure map)

An $R\langle F \rangle$ -module that is both (i) finitely generated over $R\langle F \rangle$, and (ii) is a Lyubeznik F-module is called F-finite.

If $m_1, \dots, m_t \in M$ generate over R(F), then $N = Rm_1 + \dots + Rm_t \subseteq M$ is a Lyubeznik root of M.

F-finiteness is much stronger than finite generation alone...

- The category of F-finite F-modules is abelian.
- If N is an R(F)-submodule of M, and both N and M are Lyubeznik F-modules,

M is finitely generated $\implies N$ is finitely generated

- If M is Lyubeznik, then the induced action on H_I(M) is Lyubeznik.
- If, additionally, M is F-finite, then Hⁱ_I(M) is also F-finite.

This is not true of finite generation!

- All Bass numbers of an F-finite F-module are finite.
- An F-finite F-module has finitely many associated primes.
- F-finiteness implies finite length in the category of F-modules.

R is a <u>regular</u> ring of prime characteristic $p>0,\,M$ is an R-module S=R/J is some homomorphic image of R

R is a <u>regular</u> ring of prime characteristic $p>0,\,M$ is an R-module S=R/J is some homomorphic image of R

There is still a natural R<F>-module structure on the local cohomology of S...

$$\mathcal{F}_R(H_I^i(S)) \to H_I^i(S)$$

R is a <u>regular</u> ring of prime characteristic $p>0,\,M$ is an R-module S=R/J is some homomorphic image of R

There is still a natural R<F>-module structure on the local cohomology of S...

$$\mathcal{F}_R(H_I^i(S)) \to H_I^i(S)$$

i.e.,
$$H_I^i(R/J^{[p^e]}) \to H_I^i(R/J)$$

R is a <u>regular</u> ring of prime characteristic $p>0,\ M$ is an R-module

S=R/J is some homomorphic image of R

There is still a natural R<F>-module structure on the local cohomology of S...

$$\mathcal{F}_R(H_I^i(S)) \to H_I^i(S)$$

i.e., $H_I^i(R/J^{[p^e]}) \to H_I^i(R/J)$

This structure map is rarely an isomorphism, and there is in general no reason to expect finite generation.

R is a <u>regular</u> ring of prime characteristic $p>0,\,M$ is an R-module S=R/J is some homomorphic image of R

There is still a natural R<F>-module structure on the local cohomology of S...

$$\mathcal{F}_R(H_I^i(S)) \to H_I^i(S)$$

i.e., $H_I^i(R/J^{[p^e]}) \to H_I^i(R/J)$

This structure map is rarely an isomorphism, and there is in general no reason to expect finite generation.

Some control is definitely lost: e.g., the set of associated primes can be infinite even if S is a hypersurface.

$$H_{(x,y)}^2\left(\frac{K[u,v,w,x,y,z]}{wu^2x^2-(w+z)uxvy+zv^2y^2}\right)$$
 [Katzman; 2002]

R is a <u>regular</u> ring of prime characteristic $p>0,\,M$ is an R-module S=R/J is some homomorphic image of R

There is still a natural R<F>-module structure on the local cohomology of S...

$$\mathcal{F}_R(H_I^i(S)) \to H_I^i(S)$$

i.e., $H_I^i(R/J^{[p^e]}) \to H_I^i(R/J)$

This structure map is rarely an isomorphism, and there is in general no reason to expect finite generation.

Some control is definitely lost: e.g., the set of associated primes can be infinite even if S is a hypersurface.

$$H_{(x,y)}^2\left(\frac{K[u,v,w,x,y,z]}{wu^2x^2-(w+z)uxvy+zv^2y^2}\right)$$
 [Katzman; 2002]

and even if that hypersurface is a strongly F-regular UFD

$$H_{(x,y,z)}^3\left(\frac{K[r,s,t,u,v,w,x,y,z]}{su^2x^2+sv^2y^2+twxy+rw^2z^2}\right)$$
 [Singh, Swanson; 2004]

R is a <u>regular</u> ring of prime characteristic $p>0,\ M$ is an R-module S=R/J is some homomorphic image of R

There is still a natural R<F>-module structure on the local cohomology of S...

$$\mathcal{F}_R(H_I^i(S)) \to H_I^i(S)$$

i.e.,
$$H_I^i(R/J^{[p^e]}) \to H_I^i(R/J)$$

This structure map is rarely an isomorphism, and there is in general no reason to expect finite generation.

Some control is definitely lost: e.g., the set of associated primes can be infinite even if S is a hypersurface.

$$H_{(x,y)}^2\left(\frac{K[u,v,w,x,y,z]}{wu^2x^2-(w+z)uxvy+zv^2y^2}\right)$$
 [Katzman; 2002]

and even if that hypersurface is a strongly F-regular UFD

$$H_{(x,y,z)}^3 \left(\frac{K[r,s,t,u,v,w,x,y,z]}{su^2x^2 + sv^2y^2 + twxy + rw^2z^2} \right)$$
 [Singh, Swanson; 2004]

but the Frobenius structure can still be quite powerful for studying vanishing questions.

 $R \mbox{ is regular}$ $S = R/J, \mbox{ and } I \subseteq R \mbox{ is an ideal}$

R is regular

S=R/J, and $I\subseteq R$ is an ideal

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal).

.

R is regular

S = R/J, and $I \subseteq R$ is an ideal

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal).

$$0 \to J \to R \to R/J \to 0$$

 $R \mbox{ is regular}$ $S = R/J, \mbox{ and } I \subseteq R \mbox{ is an ideal}$

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal).

$$0 \to J \to R \to R/J \to 0$$
 each carries a Frobenius action...

.

R is regular

S = R/J, and $I \subseteq R$ is an ideal

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal).

$$0 \rightarrow \mathcal{F}_R(J) \rightarrow \mathcal{F}_R(R) \rightarrow \mathcal{F}_R(R/J) \rightarrow 0$$

$$0 \to J \to R \to R/J \to 0$$
 each carries a Frobenius action...

R is regular

S=R/J, and $I\subseteq R$ is an ideal

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal).

$$0 \to \mathcal{F}_R(J) \to \mathcal{F}_R(R) \to \mathcal{F}_R(R/J) \to 0$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$0 \to J^{[p]} \to R \to R/J^{[p]} \to 0$$

 $0 \to J \to R \to R/J \to 0$ each carries a Frobenius action...

R is regular

S=R/J, and $I\subseteq R$ is an ideal

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal).

R is regular

S = R/J, and $I \subseteq R$ is an ideal

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal).

functorial long exact sequence from $\Gamma_I(-)$

R is regular

S=R/J, and $I\subseteq R$ is an ideal

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal).

$$0 \to \mathcal{F}_R(J) \to \mathcal{F}_R(R) \to \mathcal{F}_R(R/J) \to 0$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$0 \to J^{[p]} \to R \to R/J^{[p]} \to 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \to J \to R \to R/J \to 0 \quad \text{each carries a Frobenius action...}$$

functorial long exact sequence from $\Gamma_I(-)$

$$\cdots \to H_I^{i-1}(J^{[p]}) \to H_I^{i-1}(R) \to H_I^{i-1}(R/J^{[p]}) \to H_I^i(J^{[p]}) \to H_I^i(R) \to \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \to H_I^{i-1}(J) \to H_I^{i-1}(R) \to H_I^{i-1}(R/J) \to H_I^i(J) \to H_I^i(R) \to \cdots$$

R is regular

S=R/J, and $I\subseteq R$ is an ideal

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal).

functorial long exact sequence from $\Gamma_I(-)$

.

R is regular

S=R/J, and $I\subseteq R$ is an ideal

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal).

$$0 \to \mathcal{F}_R(J) \to \mathcal{F}_R(R) \to \mathcal{F}_R(R/J) \to 0$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$0 \to J^{[p]} \to R \to R/J^{[p]} \to 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \to J \to R \to R/J \to 0 \quad \text{each carries a Frobenius action...}$$

functorial long exact sequence from $\Gamma_I(-)$

$$\begin{array}{c} \cdots \to H_I^{i-1}(J^{[p]}) \to H_I^{i-1}(R) \to H_I^{i-1}(R/J^{[p]}) \to H_I^i(J^{[p]}) \to H_I^i(R) \to \cdots \\ \text{maps are compatible with} \\ \mathbb{R}^{<\mathrm{F}> \text{ structures}} \end{array} \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \cdots \to H_I^{i-1}(J) \to H_I^{i-1}(R) \to H_I^{i-1}(R/J) \to H_I^i(J) \to H_I^i(R) \to \cdots$$

$$0 \to [\text{image of } H_I^{i-1}(R)] \to H_I^{i-1}(R/J) \to [\text{some submodule of } H_I^i(J)] \to 0$$

R is regular

S=R/J, and $I\subseteq R$ is an ideal

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal).

$$0 \to \mathcal{F}_R(J) \to \mathcal{F}_R(R) \to \mathcal{F}_R(R/J) \to 0$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$0 \to J^{[p]} \to R \to R/J^{[p]} \to 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \to J \to R \to R/J \to 0 \quad \text{each carries a Frobenius action...}$$

functorial long exact sequence from $\Gamma_I(-)$

diagram commutes, so maps are compatible with R<F> structures $\begin{array}{c} \cdots \to H_I^{i-1}(J^{[p]}) \to H_I^{i-1}(R) \to H_I^{i-1}(R/J^{[p]}) \to H_I^i(J^{[p]}) \to H_I^i(R) \to \cdots \\ \downarrow \qquad \qquad \downarrow \qquad$

R is regular

S = R/J, and $I \subseteq R$ is an ideal

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal).

$$0 \to \mathcal{F}_R(J) \to \mathcal{F}_R(R) \to \mathcal{F}_R(R/J) \to 0$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$0 \to J^{[p]} \to R \to R/J^{[p]} \to 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \to J \to R \to R/J \to 0 \quad \text{each carries a Frobenius action...}$$

functorial long exact sequence from $\Gamma_I(-)$

diagram commutes, so maps are compatible with R<F> structures $\begin{array}{c} \cdots \to H_I^{i-1}(J^{[p]}) \to H_I^{i-1}(R) \to H_I^{i-1}(R/J^{[p]}) \to H_I^i(J^{[p]}) \to H_I^i(R) \to \cdots \\ \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$

R is regular

S=R/J, and $I\subseteq R$ is an ideal

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal).

$$0 \to \mathcal{F}_R(J) \to \mathcal{F}_R(R) \to \mathcal{F}_R(R/J) \to 0$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$0 \to J^{[p]} \to R \to R/J^{[p]} \to 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \to J \to R \to R/J \to 0 \quad \text{each carries a Frobenius action...}$$

functorial long exact sequence from $\Gamma_I(-)$

 $\begin{array}{c} \cdots \to H_I^{i-1}(J^{[p]}) \to H_I^{i-1}(R) \to H_I^{i-1}(R/J^{[p]}) \to H_I^i(J^{[p]}) \to H_I^i(R) \to \cdots \\ \text{maps are compatible with} \\ \mathbb{R}^{<\mathrm{F}> \text{ structures}} \end{array} \\ \begin{array}{c} \cdots \to H_I^{i-1}(J) \to H_I^{i-1}(R) \to H_I^{i-1}(R/J) \to H_I^i(J) \to H_I^i(R) \to \cdots \\ \end{array}$

finite set of associated primes

$$0 \to \left[\text{image of } H_I^{i-1}(R)\right] \to H_I^{i-1}(R/J) \to \left[\text{some submodule of } H_I^i(J)\right] \to 0$$

R is regular

S = R/J, and $I \subseteq R$ is an ideal

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal).

 $0 \to \left[\text{image of } H_I^{i-1}(R)\right] \to H_I^{i-1}(R/J) \to \left[\text{some submodule of } H_I^i(J)\right] \to 0$

$$0 \to \mathcal{F}_R(J) \to \mathcal{F}_R(R) \to \mathcal{F}_R(R/J) \to 0$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$0 \to J^{[p]} \to R \to R/J^{[p]} \to 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \to J \to R \to R/J \to 0 \quad \text{each carries a Frobenius action...}$$

functorial long exact sequence from $\Gamma_I(-)$

.

R is regular $S = R/J, \text{ and } I \subseteq R \text{ is an ideal}$

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal). $0 \rightarrow F_R(J) \rightarrow F_R(R) \rightarrow F_R(R/J) \rightarrow 0$ $0 \to J^{[p]} \to R \to R/J^{[p]} \to 0$ each carries a Frobenius action... functorial long exact sequence from $\Gamma_I(-)$ $\cdots \to H_I^{i-1}(J^{[p]}) \to H_I^{i-1}(R) \xrightarrow{f} H_I^{i-1}(R/J^{[p]}) \to H_I^i(J^{[p]}) \to H_I^i(R) \xrightarrow{f} \cdots$ Lyubeznik F-finite diagram commutes, so maps are compatible with in particular, finitely R<F> structures generated over R<F> $\cdots \rightarrow H_I^{i-1}(J) \rightarrow H_I^{i-1}(R) \rightarrow H_I^{i-1}(R/J) \rightarrow H_I^i(J) \rightarrow H_I^i(R)$ finite set of associated primes $0 \to \left[\text{image of } H_I^{i-1}(R)\right] \to H_I^{i-1}(R/J) \to \left[\text{some submodule of } H_I^i(J)\right] \to 0$

R<F> structures

R is regular S = R/J, and $I \subseteq R$ is an ideal

Assume: $H_I^i(J)$ has a finite set of associated primes (e.g. J is a principal ideal). $0 \rightarrow F_R(J) \rightarrow F_R(R) \rightarrow F_R(R/J) \rightarrow 0$ $0 \to J^{[p]} \to R \to R/J^{[p]} \to 0$ each carries a Frobenius action... functorial long exact sequence from $\Gamma_I(-)$ $\cdots \to H_I^{i-1}(J^{[p]}) \to H_I^{i-1}(R) \xrightarrow{f} H_I^{i-1}(R/J^{[p]}) \to H_I^i(J^{[p]}) \to H_I^i(R) \xrightarrow{f} \cdots$ Lyubeznik F-finite diagram commutes, so maps are compatible with in particular, finitely generated over R<F> $\cdots \to H_I^{i-1}(J) \to H_I^{i-1}(R) \to H_I^{i-1}(R/J) \to H_I^i(J) \to H_I^i(R)$ finite set of associated primes (f.g. over R<F>, hence closed support)

 $0 \to \left[\text{image of } H_I^{i-1}(R)\right] \to H_I^{i-1}(R/J) \to \left[\text{some submodule of } H_I^i(J)\right] \to 0$

Ex: Following Hochster and Núñez-Betancourt...

R is regular $S = R/J, \text{ and } I \subseteq R \text{ is an ideal}$

Theorem: [Hochster, Núñez-Betancourt; 2017] Let R be a regular ring of characteristic p > 0. If Ass $H_I^i(J)$ is finite, then Supp $H_I^{i-1}(R/J)$ is closed.

Ex: Following Hochster and Núñez-Betancourt...

R is regular $S = R/J, \text{ and } I \subseteq R \text{ is an ideal}$

Theorem: [Hochster, Núñez-Betancourt; 2017] Let R be a regular ring of characteristic p > 0. If Ass $H_I^i(J)$ is finite, then Supp $H_I^{i-1}(R/J)$ is closed.

R is a regular ring $S=R/J \ \ {\rm and} \ I\supseteq J \ \ {\rm is\ an\ ideal}$

R is a regular ring $S=R/J \ \ {\rm and} \ I\supseteq J \ \ {\rm is\ an\ ideal}$

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

R is a regular ring $S=R/J \ \ {\rm and} \ I\supseteq J \ \ {\rm is \ an \ ideal}$

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings?

R is a regular ring $S=R/J \ \ {\rm and} \ I\supseteq J \ \ {\rm is \ an \ ideal}$

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings? Will require substantial modification.

R is a regular ring $S=R/J \ \ {\rm and} \ I\supseteq J \ \ {\rm is \ an \ ideal}$

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings? Will require substantial modification. Why?

R is a regular ring $S=R/J \ \ {\rm and} \ I\supseteq J \ \ {\rm is \ an \ ideal}$

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings? Will require substantial modification. Why?

Example: [Lewis; 2019] Ass $H_I^i(J)$ can be infinite even if i=3 and J is gen'd by a regular sequence of length 2.

R is a regular ring $S=R/J \ \ {\rm and} \ I\supseteq J \ \ {\rm is \ an \ ideal}$

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings? Will require substantial modification. Why?

Example: [Lewis; 2019] Ass $H_I^i(J)$ can be infinite even if i=3 and J is gen'd by a regular sequence of length 2.

R is a regular ring $S=R/J \ \ {\rm and} \ I\supseteq J \ \ {\rm is \ an \ ideal}$

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings? Will require substantial modification. Why?

Example: [Lewis; 2019] Ass $H_I^i(J)$ can be infinite even if i=3 and J is gen'd by a regular sequence of length 2.

Theorem: [Lewis; 2019] Let R be a regular ring of characteristic p > 0, J be generated by a regular sequence of length at least 2, and $I \supseteq J$.

R is a regular ring $S=R/J \ \ {\rm and} \ I\supseteq J \ \ {\rm is \ an \ ideal}$

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings? Will require substantial modification. Why?

Example: [Lewis; 2019] Ass $H_I^i(J)$ can be infinite even if i=3 and J is gen'd by a regular sequence of length 2.

Theorem: [Lewis; 2019] Let R be a regular ring of characteristic p > 0, J be generated by a regular sequence of length at least 2, and $I \supseteq J$.

• Ass $H_I^i(J)$ and Ass $H_I^{i-1}(R/J)$ are always finite if $i \leq 2$.

R is a regular ring $S=R/J \ \ {\rm and} \ I\supseteq J \ \ {\rm is \ an \ ideal}$

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings? Will require substantial modification. Why?

Example: [Lewis; 2019] Ass $H_I^i(J)$ can be infinite even if i=3 and J is gen'd by a regular sequence of length 2.

Theorem: [Lewis; 2019] Let R be a regular ring of characteristic p > 0, J be generated by a regular sequence of length at least 2, and $I \supseteq J$.

- Ass $H_I^i(J)$ and Ass $H_I^{i-1}(R/J)$ are always finite if $i \leq 2$.
- Assume R/J is a domain. Then Ass $H_I^3(J)$ is finite if and only if Ass $H_I^2(R/J)$ is finite.

R is a regular ring S = R/J and $I \supseteq J$ is an ideal

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings? Will require substantial modification. Why?

Example: [Lewis; 2019] Ass $H_I^i(J)$ can be infinite even if i=3 and J is gen'd by a regular sequence of length 2.

Theorem: [Lewis; 2019] Let R be a regular ring of characteristic p > 0, J be generated by a regular sequence of length at least 2, and $I \supseteq J$.

- Ass $H_I^i(J)$ and Ass $H_I^{i-1}(R/J)$ are always finite if $i \leq 2$.
- Assume R/J is a domain. Then Ass $H_I^3(J)$ is finite if and only if Ass $H_I^2(R/J)$ is finite.
- Assume R/J is a UFD. Then Ass $H_I^4(J)$ is finite if and only if Ass $H_I^3(R/J)$ is finite.

R is a regular ring $S=R/J \ \ {\rm and} \ I\supseteq J \ \ {\rm is \ an \ ideal}$

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings? Will require substantial modification. Why?

Example: [Lewis; 2019] Ass $H_I^i(J)$ can be infinite even if i=3 and J is gen'd by a regular sequence of length 2.

Theorem: [Lewis; 2019] Let R be a regular ring of characteristic p > 0, J be generated by a regular sequence of length at least 2, and $I \supseteq J$.

- Ass $H_I^i(J)$ and Ass $H_I^{i-1}(R/J)$ are always finite if $i \leq 2$.
- Assume R/J is a domain. Then Ass $H_I^3(J)$ is finite if and only if Ass $H_I^2(R/J)$ is finite.
- Assume R/J is a UFD. Then Ass $H_I^4(J)$ is finite if and only if Ass $H_I^3(R/J)$ is finite.

In other words:

There is evidence to suggest that if $H_I^i(R/J)$ has infinitely many associated primes (the only case where we're asking about closed support), then under certain circumstances, $H_I^i(J)$ necessarily also must have an infinite set of associated primes.

R is a regular ring S = R/J and $I \supseteq J$ is an ideal

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings? Will require substantial modification. Why?

Example: [Lewis; 2019] Ass $H_I^i(J)$ can be infinite even if i=3 and J is gen'd by a regular sequence of length 2.

Theorem: [Lewis; 2019] Let R be a regular ring of characteristic p > 0, J be generated by a regular sequence of length at least 2, and $I \supseteq J$.

- Ass $H_I^i(J)$ and Ass $H_I^{i-1}(R/J)$ are always finite if $i \leq 2$.
- Assume R/J is a domain. Then Ass $H_I^3(J)$ is finite if and only if Ass $H_I^2(R/J)$ is finite.
- Assume R/J is a UFD. Then Ass $H_I^4(J)$ is finite if and only if Ass $H_I^3(R/J)$ is finite.

In other words:

There is evidence to suggest that if $H_I^i(R/J)$ has infinitely many associated primes (the only case where we're asking about closed support), then under certain circumstances, $H_I^i(J)$ necessarily also must have an infinite set of associated primes.

R is a regular ring $S=R/J \ \ {\rm and} \ I\supseteq J \ \ {\rm is \ an \ ideal}$

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings? Will require substantial modification. Why?

Example: [Lewis; 2019] Ass $H_I^i(J)$ can be infinite even if i=3 and J is gen'd by a regular sequence of length 2.

Theorem: [Lewis; 2019] Let R be a regular ring of characteristic p > 0, J be generated by a regular sequence of length at least 2, and $I \supseteq J$.

- Ass $H_I^i(J)$ and Ass $H_I^{i-1}(R/J)$ are always finite if $i \leq 2$.
- Assume R/J is a domain. Then Ass $H_I^3(J)$ is finite if and only if Ass $H_I^2(R/J)$ is finite.
- Assume R/J is a UFD. Then Ass $H_I^4(J)$ is finite if and only if Ass $H_I^3(R/J)$ is finite.

In other words:

There is evidence to suggest that if $H_I^i(R/J)$ has infinitely many associated primes (the only case where we're asking about closed support), then under certain circumstances, $H_I^i(J)$ necessarily also must have an infinite set of associated primes.

R is a regular ring $S=R/J \ \ {\rm and} \ I\supseteq J \ \ {\rm is \ an \ ideal}$

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings? Will require substantial modification. Why?

Example: [Lewis; 2019] Ass $H_I^i(J)$ can be infinite even if i=3 and J is gen'd by a regular sequence of length 2.

Theorem: [Lewis; 2019] Let R be a regular ring of characteristic p > 0, J be generated by a regular sequence of length at least 2, and $I \supseteq J$.

- Ass $H_I^i(J)$ and Ass $H_I^{i-1}(R/J)$ are always finite if $i \leq 2$.
- Assume R/J is a domain. Then Ass $H_I^3(J)$ is finite if and only if Ass $H_I^2(R/J)$ is finite.
- Assume R/J is a UFD. Then Ass $H_I^4(J)$ is finite if and only if Ass $H_I^3(R/J)$ is finite.

In other words:

There is evidence to suggest that if $H_I^i(R/J)$ has infinitely many associated primes (the only case where we're asking about closed support), then under certain circumstances, $H_I^i(J)$ necessarily also must have an infinite set of associated primes.

R is a regular ring S = R/J and $I \supseteq J$ is an ideal

Hochster and Núñez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings? Will require substantial modification. Why?

Example: [Lewis; 2019] Ass $H_I^i(J)$ can be infinite even if i=3 and J is gen'd by a regular sequence of length 2.

Theorem: [Lewis; 2019] Let R be a regular ring of characteristic p > 0, J be generated by a regular sequence of length at least 2, and $I \supseteq J$.

- Ass $H_I^i(J)$ and Ass $H_I^{i-1}(R/J)$ are always finite if $i \leq 2$.
- Assume R/J is a domain. Then Ass $H_I^3(J)$ is finite if and only if Ass $H_I^2(R/J)$ is finite.
- Assume R/J is a UFD. Then Ass $H_I^4(J)$ is finite if and only if Ass $H_I^3(R/J)$ is finite.

In other words:

There is evidence to suggest that if $H_I^i(R/J)$ has infinitely many associated primes (the only case where we're asking about closed support), then under certain circumstances, $H_I^i(J)$ necessarily also must have an infinite set of associated primes.

Should not generally expect to use the latter to control the former.

The Hochster and Núñez-Betancourt essentially takes the form:

S

4

[nice object]
$$\to S \to 0$$

$$0 \to [\text{kernel}] \to [\text{nice object}] \to S \to 0$$

$$0 \to [\text{kernel}] \to [\text{nice object}] \to S \to 0$$

The Hochster and Núñez-Betancourt essentially takes the form:

$$0 \to [\text{kernel}] \to [\text{nice object}] \to S \to 0$$

The Hochster and Núñez-Betancourt essentially takes the form:

$$0 \to [\text{kernel}] \to [\text{nice object}] \to S \to 0$$

Another approach we could try taking a look at...

 \cdot S

The Hochster and Núñez-Betancourt essentially takes the form:

$$0 \to [\text{kernel}] \to [\text{nice object}] \to S \to 0$$

$$0 \to S \to [\text{nice object}]$$

The Hochster and Núñez-Betancourt essentially takes the form:

$$0 \to [\text{kernel}] \to [\text{nice object}] \to S \to 0$$

$$0 \to S \to [\text{nice object}] \to [\text{cokernel}] \to 0$$

The Hochster and Núñez-Betancourt essentially takes the form:

$$0 \to [\text{kernel}] \to [\text{nice object}] \to S \to 0$$

$$0 \to S \to [\text{nice object}] \to [\text{cokernel}] \to 0$$

The Hochster and Núñez-Betancourt essentially takes the form:

$$0 \to [\text{kernel}] \to [\text{nice object}] \to S \to 0$$

Another approach we could try taking a look at...

$$0 \to S \to [\text{nice object}] \to [\text{cokernel}] \to 0$$

we really want every map in sight to respect the Frobenius structures.

1

The Hochster and Núñez-Betancourt essentially takes the form:

$$0 \to [\text{kernel}] \to [\text{nice object}] \to S \to 0$$

Another approach we could try taking a look at...

$$0 \to S \to [\text{nice object}] \to [\text{cokernel}] \to 0$$

we really want every map in sight to respect the Frobenius structures.

Will need to take a brief detour to see where we might find some promising options...

Part 3

The Fedder Action

For simplicity,

 (R, \mathfrak{m}, K) is a regular local such that $R \to R^{1/p}$ is a finite map S = R/J is some homomorphic image

For simplicity, (R, \mathfrak{m}, K) is a regular local such that $R \to R^{1/p}$ is a finite map S = R/J is some homomorphic image

A key isomorphism from the proof of Fedder's criterion:

-

For simplicity, (R, \mathfrak{m}, K) is a regular local such that $R \to R^{1/p}$ is a finite map S = R/J is some homomorphic image

A key isomorphism from the proof of Fedder's criterion:

$$\left(\frac{(J^{[p]}:J)}{J^{[p]}}\right)^{1/p} \simeq \operatorname{Hom}_{R/J}((R/J)^{1/p},R/J) \text{ as } (R/J)^{1/p}\text{-modules}.$$

-

For simplicity, (R, \mathfrak{m}, K) is a regular local such that $R \to R^{1/p}$ is a finite map S = R/J is some homomorphic image

A key isomorphism from the proof of Fedder's criterion:

$$\left(\frac{(J^{[p]}:J)}{J^{[p]}}\right)^{1/p} \simeq \operatorname{Hom}_{R/J}((R/J)^{1/p},R/J) \text{ as } (R/J)^{1/p}\text{-modules}.$$

Assume S = R/J is Gorenstein, so that $\text{Hom}_S(S^{1/p}, S)$ is cyclic over $S^{1/p}$.

For simplicity, (R, \mathfrak{m}, K) is a regular local such that $R \to R^{1/p}$ is a finite map S = R/J is some homomorphic image

A key isomorphism from the proof of Fedder's criterion:

$$\left(\frac{(J^{[p]}:J)}{J^{[p]}}\right)^{1/p} \simeq \operatorname{Hom}_{R/J}((R/J)^{1/p},R/J) \text{ as } (R/J)^{1/p}\text{-modules}.$$

Assume S = R/J is Gorenstein, so that $\text{Hom}_S(S^{1/p}, S)$ is cyclic over $S^{1/p}$.

 \implies There is some element $g \in R$ such that:

 $\overline{}$

For simplicity, (R, \mathfrak{m}, K) is a regular local such that $R \to R^{1/p}$ is a finite map S = R/J is some homomorphic image

A key isomorphism from the proof of Fedder's criterion:

$$\left(\frac{(J^{[p]}:J)}{J^{[p]}}\right)^{1/p} \simeq \operatorname{Hom}_{R/J}((R/J)^{1/p},R/J) \text{ as } (R/J)^{1/p}\text{-modules}.$$

Assume S = R/J is Gorenstein, so that $\text{Hom}_S(S^{1/p}, S)$ is cyclic over $S^{1/p}$.

 \implies There is some element $g \in R$ such that:

$$(J^{[p]}:J) = g + J^{[p]}$$

For simplicity, (R, \mathfrak{m}, K) is a regular local such that $R \to R^{1/p}$ is a finite map S = R/J is some homomorphic image

A key isomorphism from the proof of Fedder's criterion:

$$\left(\frac{(J^{[p]}:J)}{J^{[p]}}\right)^{1/p} \simeq \operatorname{Hom}_{R/J}((R/J)^{1/p}, R/J) \text{ as } (R/J)^{1/p}\text{-modules}.$$

Assume S = R/J is Gorenstein, so that $\text{Hom}_S(S^{1/p}, S)$ is cyclic over $S^{1/p}$.

 \implies There is some element $g \in R$ such that:

$$(J^{[p]}:J)=g+J^{[p]}$$

i.e., get an injection $0 \to R/J \xrightarrow{g} R/J^{[p]}$ onto (0:J)

For simplicity, (R, \mathfrak{m}, K) is a regular local such that $R \to R^{1/p}$ is a finite map S = R/J is some homomorphic image

A key isomorphism from the proof of Fedder's criterion:

$$\left(\frac{(J^{[p]}:J)}{J^{[p]}}\right)^{1/p} \simeq \operatorname{Hom}_{R/J}((R/J)^{1/p}, R/J) \text{ as } (R/J)^{1/p}\text{-modules}.$$

Assume S = R/J is Gorenstein, so that $\text{Hom}_S(S^{1/p}, S)$ is cyclic over $S^{1/p}$.

 \implies There is some element $g \in R$ such that:

$$(J^{[p]}:J)=g+J^{[p]}$$
 likewise...

i.e., get an injection $0 \to R/J \xrightarrow{g} R/J^{[p]}$ onto (0:J)

For simplicity, (R, \mathfrak{m}, K) is a regular local such that $R \to R^{1/p}$ is a finite map S = R/J is some homomorphic image

A key isomorphism from the proof of Fedder's criterion:

$$\left(\frac{(J^{[p]}:J)}{J^{[p]}}\right)^{1/p} \simeq \operatorname{Hom}_{R/J}((R/J)^{1/p}, R/J) \text{ as } (R/J)^{1/p}\text{-modules}.$$

Assume S = R/J is Gorenstein, so that $\text{Hom}_S(S^{1/p}, S)$ is cyclic over $S^{1/p}$.

 \implies There is some element $g \in R$ such that:

$$(J^{[p]}:J)=g+J^{[p]}$$
 likewise... $(J^{[p^{e+1}]}:J^{[p^e]})=g^{p^e}+J^{[p^{e+1}]}$

i.e., get an injection $0 \to R/J \xrightarrow{g} R/J^{[p]}$ onto (0:J)

For simplicity, (R, \mathfrak{m}, K) is a regular local such that $R \to R^{1/p}$ is a finite map S = R/J is some homomorphic image

A key isomorphism from the proof of Fedder's criterion:

$$\left(\frac{(J^{[p]}:J)}{J^{[p]}}\right)^{1/p} \simeq \operatorname{Hom}_{R/J}((R/J)^{1/p}, R/J) \text{ as } (R/J)^{1/p}\text{-modules}.$$

Assume S = R/J is Gorenstein, so that $\text{Hom}_S(S^{1/p}, S)$ is cyclic over $S^{1/p}$.

 \implies There is some element $g \in R$ such that:

$$(J^{[p]}:J)=g+J^{[p]}$$
 likewise... $(J^{[p^{e+1}]}:J^{[p^e]})=g^{p^e}+J^{[p^{e+1}]}$

i.e., get an injection $0 \to R/J \xrightarrow{g} R/J^{[p]}$ onto (0:J)

likewise, an injection $0 \to R/J^{[p^e]} \xrightarrow{g^{p^e}} R/J^{[p^{e+1}]}$ onto $(0:J^{[p^e]})$

 (R, \mathfrak{m}, K) is a regular local ring, $R \to R^{1/p}$ is finite.

S=R/J is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

 (R, \mathfrak{m}, K) is a regular local ring, $R \to R^{1/p}$ is finite.

S=R/J is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

 (R, \mathfrak{m}, K) is a regular local ring, $R \to R^{1/p}$ is finite.

$$S=R/J$$
 is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

$$R/J \xrightarrow{g} R/J^{[p]}$$

 (R, \mathfrak{m}, K) is a regular local ring, $R \to R^{1/p}$ is finite.

$$S=R/J$$
 is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

$$R/J \xrightarrow{g} R/J^{[p]} \xrightarrow{g^p} R/J^{[p^2]}$$

 (R,\mathfrak{m},K) is a regular local ring, $R\to R^{1/p}$ is finite. S=R/J is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

$$S = R/J$$
 is a Gorenstein ring, and $g \in R$ gives $(J^{[p]}: J) = g + J$

$$R/J \xrightarrow{g} R/J^{[p]} \xrightarrow{g^p} R/J^{[p^2]} \xrightarrow{g^{p^2}} R/J^{[p^3]}$$

$$(R,\mathfrak{m},K)$$
 is a regular local ring, $R\to R^{1/p}$ is finite. $S=R/J$ is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

$$R/J \xrightarrow{g} R/J^{[p]} \xrightarrow{g^p} R/J^{[p^2]} \xrightarrow{g^{p^2}} R/J^{[p^3]} \to \cdots$$

$$(R,\mathfrak{m},K)$$
 is a regular local ring, $R\to R^{1/p}$ is finite. $S=R/J$ is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

$$R/J \xrightarrow{g} R/J^{[p]} \xrightarrow{g^p} R/J^{[p^2]} \xrightarrow{g^{p^2}} R/J^{[p^3]} \to \cdots \to N$$

 (R,\mathfrak{m},K) is a regular local ring, $R\to R^{1/p}$ is finite. S=R/J is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

$$R/J \xrightarrow{g} R/J^{[p]} \xrightarrow{g^p} R/J^{[p^2]} \xrightarrow{g^{p^2}} R/J^{[p^3]} \to \cdots \to N$$

$$R/J \xrightarrow{g} R/J^{[p]} \xrightarrow{g^p} R/J^{[p^2]} \xrightarrow{g^{p^2}} R/J^{[p^3]} \xrightarrow{g^{p^3}} R/J^{[p^4]} \to \cdots \to N$$

 (R,\mathfrak{m},K) is a regular local ring, $R\to R^{1/p}$ is finite. S=R/J is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

$$(R,\mathfrak{m},K)$$
 is a regular local ring, $R\to R^{1/p}$ is finite. $S=R/J$ is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

 (R,\mathfrak{m},K) is a regular local ring, $R\to R^{1/p}$ is finite. S=R/J is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

$$(R,\mathfrak{m},K)$$
 is a regular local ring, $R\to R^{1/p}$ is finite. $S=R/J$ is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

$$(R,\mathfrak{m},K)$$
 is a regular local ring, $R\to R^{1/p}$ is finite. $S=R/J$ is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

 (R,\mathfrak{m},K) is a regular local ring, $R\to R^{1/p}$ is finite.

S=R/J is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

 (R, \mathfrak{m}, K) is a regular local ring, $R \to R^{1/p}$ is finite.

S=R/J is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

 (R,\mathfrak{m},K) is a regular local ring, $R\to R^{1/p}$ is finite. S=R/J is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

Have a directed system with all transition maps injective.

Call the resulting Frobenius action on the direct limit N sending $n \mapsto gF(n)$ the Fedder action.

 (R, \mathfrak{m}, K) is a regular local ring, $R \to R^{1/p}$ is finite.

$$S=R/J$$
 is a Gorenstein ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

Have a directed system with all transition maps injective.

Call the resulting Frobenius action on the direct limit N sending $n \mapsto gF(n)$ the Fedder action.

R/J embeds an $R\langle F \rangle$ -stable submodule of N, namely $(0:_N J)$.

 (R, \mathfrak{m}, K) is a regular local ring, $R \to R^{1/p}$ is finite.

S = R/J is a complete intersection ring, and $g \in R$ gives $(J^{[p]}: J) = g + J^{[p]}$ Let $J = (f_1, \dots, f_c)$, then $g = f^{p-1}$ where $f = f_1 \dots f_c$

Have a directed system with all transition maps injective.

Call the resulting Frobenius action on the direct limit N sending $n \mapsto gF(n)$ the Fedder action.

R/J embeds an $R\langle F \rangle$ -stable submodule of N, namely $(0:_N J)$.

 (R, \mathfrak{m}, K) is a regular local ring, $R \to R^{1/p}$ is finite.

S=R/J is a complete intersection ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

Let $J = (f_1, \dots, f_c)$, then $g = f^{p-1}$ where $f = f_1 \dots f_c$

Have a directed system with all transition maps injective.

Call the resulting Frobenius action on the local cohomology $H_J^c(R)$ sending $n \mapsto f^{p-1}F(n)$ the Fedder action.

R/J embeds an $R\langle F \rangle$ -stable submodule of $H_J^c(R)_{\text{fed}}$, namely $(0:_{H_J^c(R)}J)$.

 (R, \mathfrak{m}, K) is a regular local ring, $R \to R^{1/p}$ is finite.

S=R/J is a complete intersection ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

Let $J = (f_1, \dots, f_c)$, then $g = f^{p-1}$ where $f = f_1 \dots f_c$

Have a directed system with all transition maps injective.

Call the resulting Frobenius action on the local cohomology $H_J^c(R)$ sending $n \mapsto f^{p-1}F(n)$ the Fedder action.

R/J embeds an $R\langle F \rangle$ -stable submodule of $H_J^c(R)_{\text{fed}}$, namely $(0:_{H_J^c(R)}J)$.

We'll use a subscript $H_J^c(R)_{\text{fed}}$ to denote the Fedder action $f^{p-1}F$,

 (R, \mathfrak{m}, K) is a regular local ring, $R \to R^{1/p}$ is finite.

S=R/J is a complete intersection ring, and $g\in R$ gives $(J^{[p]}:J)=g+J^{[p]}$

Let $J = (f_1, \dots, f_c)$, then $g = f^{p-1}$ where $f = f_1 \dots f_c$

Have a directed system with all transition maps injective.

Call the resulting Frobenius action on the local cohomology $H_J^c(R)$ sending $n \mapsto f^{p-1}F(n)$ the Fedder action.

R/J embeds an $R\langle F \rangle$ -stable submodule of $H_J^c(R)_{\text{fed}}$, namely $(0:_{H_J^c(R)}J)$.

We'll use a subscript $H_J^c(R)_{\text{fed}}$ to denote the Fedder action $f^{p-1}F$, and $H_J^c(R)_{\text{nat}}$ to denote the natural action F

$$M = H^2_{(f,g)}(R)_{\text{fed}}$$

 $M = H^2_{(f,g)}(R)_{\text{fed}}$

 $M = H^2_{(f,g)}(R)_{\text{fed}}$

Recall: The structure morphism of this action has a nontrivial kernel...

 $M = H^2_{(f,g)}(R)_{\text{fed}}$

Recall: The structure morphism of this action has a nontrivial kernel...

- -> Fedder action is
- *not* Lyubeznik

Recall: The structure morphism of this action has a nontrivial kernel...

-> Fedder action is

not Lyubeznik

 $\simeq R/(f, g)$ $(0:_M(f,g))$ is stabilized $(0:_M f)$ is stabilized $(0:_M g)$ is stabilized $\simeq H_q^1(R/f)_{fed}$ $\simeq H_f^1(R/g)_{fed}$

We extra structure from these F-submodules. Let's see how the pieces fit together....

 $M = H^2_{(f,q)}(R)_{\text{fed}}$

Recall: The structure morphism of this action has a nontrivial kernel...

-> Fedder action is

not Lyubeznik

$$M = H^2_{(f,g)}(R)_{\text{fed}}$$

$$M = H^2_{(f,g)}(R)_{\text{fed}}$$

$$M = H^2_{(f,g)}(R)_{\text{fed}}$$

$$\underbrace{\frac{R}{(f,g)}}_{\text{codim 2 C.I.}}$$

$$M = H_{(f,g)}^2(R)_{\text{fed}}$$

$$M = H_{(f,g)}^2(R)_{\text{fed}}$$

$$M = H_{(f,g)}^2(R)_{\text{fed}}$$

$$M = H^2_{(f,g)}(R)_{\text{fed}}$$

$$M = H^2_{(f,g)}(R)_{\text{fed}}$$

Can check: this complex is exact

$$M = H_{(f,g)}^2(R)_{\text{fed}}$$

$$M=H^3_{(f,g,h)}(R)_{\mathrm{fed}}$$

$$M = H^3_{(f,g,h)}(R)_{\text{fed}}$$

Can perform this construction in any codimension. Let f_1, \dots, f_c be a regular sequence. Get a complex that we will call $\Delta_{f_1, \dots, f_c}^{\bullet}(R)$.

We'll look carefull at the complex associated with c=3 later...

$$M = H^3_{(f,g,h)}(R)_{\text{fed}}$$

Can perform this construction in any codimension. Let f_1, \dots, f_c be a regular sequence. Get a complex that we will call $\Delta_{f_1, \dots, f_c}^{\bullet}(R)$.

We'll look carefull at the complex associated with c=3 later...

Theorem: [Canton, Lewis; 2020] Let (R, \mathfrak{m}) be a regular local ring of characteristic p > 0 with finite Frobenius, let f_1, \dots, f_c be a regular sequence.

$$M = H^3_{(f,g,h)}(R)_{\text{fed}}$$

Can perform this construction in any codimension. Let f_1, \dots, f_c be a regular sequence. Get a complex that we will call $\Delta_{f_1, \dots, f_c}^{\bullet}(R)$.

We'll look carefull at the complex associated with c=3 later...

Theorem: [Canton, Lewis; 2020] Let (R, \mathfrak{m}) be a regular local ring of characteristic p > 0 with finite Frobenius, let f_1, \dots, f_c be a regular sequence.

then
$$H^i(\Delta_{f_1, \dots, f_c}^{\bullet}(R)) = 0$$
 for $i < c$

$$M = H^3_{(f,g,h)}(R)_{\text{fed}}$$

Can perform this construction in any codimension. Let f_1, \dots, f_c be a regular sequence. Get a complex that we will call $\Delta_{f_1, \dots, f_c}^{\bullet}(R)$.

We'll look carefull at the complex associated with c=3 later...

Theorem: [Canton, Lewis; 2020] Let (R, \mathfrak{m}) be a regular local ring of characteristic p > 0 with finite Frobenius, let f_1, \dots, f_c be a regular sequence.

then
$$H^i(\Delta_{f_1, \cdots, f_c}^{\bullet}(R)) = 0$$
 for $i < c$

and the augmentation is $H^c(\Delta_{f_1,\dots,f_c}^{\bullet}(R)) \simeq H^c_{(f_1,\dots,f_c)}(R)_{\text{nat}}$

Part 4

Applications

$$H_{I}^{\text{ht}(I)+3}(R)$$

$$H_{I}^{\text{ht}(I)+2}(R)$$

$$H_{I}^{\text{ht}(I)+1}(R)$$

$$H_{I}^{\text{ht}(I)}(R)$$

$$H_{I}^{\text{ht}(I)-1}(R)$$

$$H_{I}^{\text{ht}(I)-2}(R)$$

$$H_{I}^{\text{ht}(I)-3}(R)$$

$$H_{I}^{\operatorname{ht}(I)+3}(R)$$

$$H_{I}^{\operatorname{ht}(I)+2}(R)$$

$$H_{I}^{\operatorname{ht}(I)+1}(R)$$

$$H_{I}^{\operatorname{ht}(I)}(R)$$

$$H_{I}^{\operatorname{ht}(I)-1}(R)$$

$$H_{I}^{\operatorname{ht}(I)-2}(R)$$

$$H_{I}^{\operatorname{ht}(I)-3}(R)$$
•

* vanishes if R is Cohen-Macaulay

* if (R,m) is not C-M, behavior can be
quite subtle, even when I = m

* cf. Grothendieck's finiteness theorem

The height + 1 and lower cases are fully general see [Hellus; 2000] (R is C-M local) or [L-; 2019] (R is Noetherian)

 $H_I^{\mathrm{ht}(I)+3}(R)$

 $H_I^{\mathrm{ht}(I)+2}(R)$

 $H_r^{\operatorname{ht}(I)+1}(R)$

 $H_I^{\mathrm{ht}(I)}(R)$

 $H_I^{\operatorname{ht}(I)-1}(R)$

 $H_I^{\mathrm{ht}(I)-3}(R)$

that is, for each i, there is a possibly larger ideal I' depending on i, such that $H_I^i(R) \simeq H_{I'}^i(R)$ with $i \leq \operatorname{ht}(I') + 1$

LC above the height of I properties are open, even in the Cohen-Macauly setting

* many questions about finiteness

LC at the height of I * if $depth_I(R) = ht(I)$, set of ass. primes is always finite * support = V(I), if all min. primes

of I have the same height

LC below the height of I * vanishes if R is Cohen-Macaulay * if (R,m) is not C-M, behavior can be quite subtle, even when I = m

* cf. Grothendieck's finiteness theorem

 $H_I^{\operatorname{ht}(I)+3}(R)$

 $H_I^{\operatorname{ht}(I)-1}(R)$

 $H_I^{\mathrm{ht}(I)-3}(R)$

 $H_I^{\operatorname{ht}(I)+1}(R)$ $H_I^{\operatorname{ht}(I)}(R)$

The height + 1 and lower cases are fully general see [Hellus; 2000] (R is C-M local) or [L-; 2019] (R is Noetherian)

that is, for each i, there is a possibly larger ideal I' depending on i, such that $H_I^i(R) \simeq H_{I'}^i(R)$ with $i \leq \operatorname{ht}(I') + 1$

As far as associated/minimal primes go, a proof that works for height + 1 would suffice for everything in the C-M setting

* many questions about finiteness properties are open, even in the Cohen-Macauly setting

LC above the height of I

LC at the height of I

* if depth_I(R) = ht(I), set of ass.
primes is always finite
* support = V(I), if all min. primes of I have the same height

LC below the height of I
* vanishes if R is Cohen-Macaulay
* if (R,m) is not C-M, behavior can be
 quite subtle, even when I = m
* cf. Grothendieck's finiteness theorem

Local cohomlogy "at the height + k" level height + 2 and higher cases are not

necessarily fully general. These can all be brought to the form height + 1 or lower, but may possess special properties that don't hold for all height + 1 modules.

The height + 1 and lower cases are fully general see [Hellus; 2000] (R is C-M local) or [L-; 2019] (R is Noetherian)

 $h^{\operatorname{ht}(I)+1}(R)$

 $H_I^{\mathrm{ht}(I)}(R)$

 $H_I^{\operatorname{ht}(I)-1}(R)$

that is, for each i, there is a possibly larger ideal I' depending on i, such that $H_I^i(R) \simeq H_{I'}^i(R)$ with $i \leq \operatorname{ht}(I') + 1$

As far as associated/minimal primes go, a proof that works for height + 1 would suffice for everything in the C-M setting LC above the height of I * many questions about finiteness properties are open, even in the Cohen-Macauly setting

LC at the height of I

primes is always finite * support = V(I), if all min. primes of I have the same height

* if $depth_I(R) = ht(I)$, set of ass.

LC below the height of I * vanishes if R is Cohen-Macaulay * if (R,m) is not C-M, behavior can be quite subtle, even when I = m

* cf. Grothendieck's finiteness theorem

Theorem [Canton, Lewis; 2020] Let (R, \mathfrak{m}) be a regular local ring with finite Frobenius, and let f_1, \dots, f_c be a regular sequence.

Theorem [Canton, Lewis; 2020] Let (R, \mathfrak{m}) be a regular local ring with finite Frobenius, and let f_1, \dots, f_c be a regular sequence. Let $I \supseteq J$ be an ideal such that R/I is Cohen-Macaulay

Theorem [Canton, Lewis; 2020] Let (R, \mathfrak{m}) be a regular local ring with finite Frobenius, and let f_1, \dots, f_c be a regular sequence. Let $I \supseteq J$ be an ideal such that R/I is Cohen-Macaulay

Theorem [Canton, Lewis; 2020] Let (R, \mathfrak{m}) be a regular local ring with finite Frobenius, and let f_1, \dots, f_c be a regular sequence. Let $I \supseteq J$ be an ideal such that R/I is Cohen-Macaulay (will need Peskine-Szpiro vanishing)

Theorem [Canton, Lewis; 2020] Let (R, \mathfrak{m}) be a regular local ring with finite Frobenius, and let f_1, \dots, f_c be a regular sequence. Let $I \supseteq J$ be an ideal such that R/I is Cohen-Macaulay (will need Peskine-Szpiro vanishing)

Then the support of $H_I^{\operatorname{ht}_{R/J}(I)+c}(R/J)$ is closed.

Theorem [Canton, Lewis; 2020] Let (R, \mathfrak{m}) be a regular local ring with finite Frobenius, and let f_1, \dots, f_c be a regular sequence. Let $I \supseteq J$ be an ideal such that R/I is Cohen-Macaulay (will need Peskine-Szpiro vanishing)

Then the support of $H_I^{\operatorname{ht}_{R/J}(I)+c}(R/J)$ is closed.

Will sketch the argument for c=3...

The complex in codimension 3, $\Delta_{(f,g,h)}^{\bullet}(R)$

$$0 \to \frac{R}{(f,g,h)} \to H_f^1\left(\frac{R}{(g,h)}\right) \oplus H_g^1\left(\frac{R}{(f,h)}\right) \oplus H_h^1\left(\frac{R}{(f,g)}\right) \to H_{(g,h)}^2\left(\frac{R}{f}\right) \oplus H_{(f,h)}^2\left(\frac{R}{g}\right) \oplus H_{(f,g)}^2\left(\frac{R}{g}\right) \to H_{(f,g,h)}^3(R)_{\text{fed}} \xrightarrow{fgh} H_{(f,g,h)}^3(R)_{\text{nat}} \to 0$$

The complex in codimension 3, $\Delta^{\bullet}_{(f,g,h)}(R)$

$$0 \rightarrow \frac{R}{(f,g,h)} \rightarrow H_f^1\left(\frac{R}{(g,h)}\right) \oplus H_g^1\left(\frac{R}{(f,h)}\right) \oplus H_h^1\left(\frac{R}{(f,g)}\right) \rightarrow H_{(g,h)}^2\left(\frac{R}{f}\right) \oplus H_{(f,h)}^2\left(\frac{R}{g}\right) \oplus H_{(f,g)}^2\left(\frac{R}{g}\right) \rightarrow H_{(f,g,h)}^3(R)_{\text{fed}} \xrightarrow{fgh} H_{(f,g,h)}^3(R)_{\text{nat}} \rightarrow 0$$
regular ring

hypersurface terms

The complex in codimension 3, $\Delta_{(f,g,h)}^{\bullet}(R)$

codimension 2 terms

$$0 \to \frac{R}{(f,g,h)} \to H_f^1\left(\frac{R}{(g,h)}\right) \oplus H_g^1\left(\frac{R}{(f,h)}\right) \oplus H_h^1\left(\frac{R}{(f,g)}\right) \to H_{(g,h)}^2\left(\frac{R}{f}\right) \oplus H_{(f,h)}^2\left(\frac{R}{g}\right) \oplus H_{(f,g)}^2\left(\frac{R}{g}\right) \to H_{(f,g,h)}^3(R)_{\text{fed}} \xrightarrow{fgh} H_{(f,g,h)}^3(R)_{\text{nat}} \to 0$$

$$\to H^2_{(g,h)}\left(\frac{R}{f}\right) \oplus H^2_{(f,h)}\left(\frac{R}{g}\right) \oplus H^2_{(f,g)}\left(\frac{R}{g}\right) \to H$$

hypersurface terms

The complex in codimension 3, $\Delta_{(f,g,h)}^{\bullet}(R)$

Get three important short exact sequences onto which we can apply $\Gamma_I(-)$.

• This allows an argument by induction on the codimension.

- This allows an argument by induction on the codimension.
- Base case is codimension 0 (LC of R itself), where we get key vanishing due to Peskine-Szpiro.

- This allows an argument by induction on the codimension.
- Base case is codimension 0 (LC of R itself), where we get key vanishing due to Peskine-Szpiro.
- End result: Supp $\left(H_I^{\operatorname{ht}(I)+3}\left(\frac{R}{(f,g,h)}\right)\right)$ is closed!

Thank you!