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base change : Modr — Mod g1/, via M — RY9@r M
Peskine-Szpiro functor F5 : Modr — Modpg via M (Rl/q ®Rpr M)?
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but the Frobenius structure can still be quite powerful for studying vanishing questions.
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Assume:

H%(J) has a finite set of associated primes

(e.g. J is a principal ideal).
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S=R/J and I O .J is an ideal

Extending H-NB?

Hochster and Nunez-Betancourt immediately yield a closed support theorem for the LC of hypersurfaces.

What about higher codimension complete intersection rings? Will require substantial modification. Why?

Example: [Lewis; 2019] Ass H:(.J) can be infinite

even if : = 3 and J is gen'd by a regular sequence of length 2.

Theorem: |Lewis; 2019] Let R be a regular ring of characteristic p > 0, .J be generated by a regular sequence of length at least 2, and I O .J.

e Ass Hi(J) and Ass H; ' (R/J) are always finite if i < 2.

e Assume R/J is a domain. Then Ass H}(J) is finite ifland only if|Ass H7(R/.J) is finite.

e Assume R/.J is a UFD. Then Ass Hj(.J) is finite if and only if Ass H}(R/.J) is finite.

In other words:

There is evidence to suggest that if H;(R/.J) has infinitely many associated primes (the only case where we're asking about closed support ),
then under certain circumstances,

H}(J) necessarily also must have an infinite set of associated primes.

Should not generally expect to use the latter to control the former.
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Back to the drawing board...

The Hochster and Nunez-Betancourt essentially takes the form:

0 - [kernel] 4> [nice object] - S — 0

Another approach we could try taking a look at...

0 — S — [nice object| - [cokernel| |5 0

we really want every map in sight to respect the Frobenius structures.

Will need to take a brief detour to see where we might find some promising options...



Part 3

The Fedder Action



Recall from Fedder's criterion...!
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The Fedder action

S = R/.J is a complete intersection ring, and g € R gives (JP! :.J) = g + JP
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Have a directed system with all transition maps injective.
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Call the resulting Frobenius action on the local cohomology HS(R) sending n + fP~'F(n) the Fedder action.

R/.J embeds an R{F)-stable submodule of Hj(R)s.q, namely (0 :p¢(g) J).

We'll use a subscript H5(R)sea to denote the Fedder action f p—1 F, and [H5(R)uat to denote the natural action F
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(0 :ar f) is stabilized

(0 :5r g) is stabilized

i I]ql ( 1?,"‘ _f]l"t'd ~ ]])l ( 1?."".(]'] fed

Recall: The structure
morphism of this
action has a nontrivial
kernel...

-> Fedder action 1s
*not* Lyubeznik

We extra structure

from these F-submodules.
Let's see how the pieces

fit together....
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Can check: this complex is exact
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Similar picture in codimension 3

Can perform this construction in any codimension. Let fy,---, f. be a regular sequence.
Get a complex that we will call A . (R).

M = H&g,h)(R)&d

We'll look carefull at the
complex associated with c=3 later...

Theorem: [Canton, Lewis; 2020] Let (R, m) be a regular local ring of characteristic p > 0 with finite Frobenius, let f;, , fe be a regular sequence.
then H'(A%, . ;. (R)) =0fori<c
and the augmentation is H' (A}I. .5 (R)) = Hg .. ¢)(R)nat
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Local cohomlogy "at the height + k" level

height + 2 and higher cases are not
necessarily fully general. These can all

be brought to the form height + 1 or lower,
but may possess special properties that
don't hold for all height + 1 modules.
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Targeting the "height + ¢" case

Theorem [Canton, Lewis; 2020] Let (R,m) be a regular local ring with finite Frobenius, and let fi,---, f. be a regular sequence.
Let I O J be an ideal such that R/I is Cohen-Macaulay (will need Peskine-Szpiro vanishing)

htR/] I)—f-('(

Then the support of H, R/J) is closed.

Will sketch the argument for c=3...



The complex in codimension 3, A, (R)
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The complex in codimension 3, A?, ,(R)

codimension 2 terms
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The complex in codimension 3, A7, (R)
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The complex in codimension 3, A7, (R)

@ codimension 2 terms

7o 0 () 24 () o () = e
o~ i M () 24 (gm) @ 4 (7 H;Iq’”.

R : R R , fgh ..
7) & H{y ) ( ) ® Hip ) ( /) = Hiy gy (R)tea == Hiy g p(R)nae = 0
/ﬁ % hypersurface terms

") [E—
Get three important short exact sequences onto which we can apply [I'y(—).

regular ring

regular ring
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R/(f.g.h)

SEEENPN f&% %@f%“)o

H}(R/(g,h)) ® HX(R/(f,h)) ® HL(R/(f. )
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Three key short exact sequences

R/(f.g.h)

0 %@ 9%&% >%ﬂo
V

(outer shell only)

N

V H(?q.h.)(R/f) S2 (?f.h.)(R/g) S H?_f'.g](R/ll')
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e This allows an argument by induction on the codimension.

e Base case is codimension 0 (LC of R itself), where we get key vanishing due to
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The end result when c =3 ...

e This allows an argument by induction on the codimension.

e Base case is codimension 0 (LC of R itself), where we get key vanishing due to
Peskine-Szpiro.

e [ind result: Supp (H'I“m+3 (ﬁ)) is closed!



Thank you!



