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This talk is organized in the following way

� MOTIVATION

� HOCHSCHILD COHOMOLOGY

� QUIVER & KOSZUL ALGEBRAS

� HOMOTOPY LIFTING MAPS

� EXAMPLES & APPLICATIONS
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Motivation



Let k be a field of characteristic 0.

Defnition: A differential graded Lie algebra (DGLA) over k is a

graded vector space L =
⊕

i∈I L
i with a bilinear map

[·, ·] : Li ⊗ Lj → Li+j and a differential d : Li → Li+1 such that

� bracket is anticommutative i.e. [x , y ] = −(−1)|x ||y |[y , x ]

� bracket satisfies the Jacobi identity i.e.

(−1)|x ||z|[x , [y , z ]]+(−1)|y ||x |[y , [z , x ]]+(−1)|z||y |[z , [x , y ]] = 0

� bracket satisfies the Liebniz rule i.e.

d [x , y ] = [d(x), y ] + (−1)|x |[x , d(y)]
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Examples

1 Every Lie algebra is a DGLA concentrated in degree 0.

2 Let A =
⊕

i A
i be an associative graded-commutative

k-algebra i.e. ab = (−1)|a||b|ba for a, b homogeneous and

L =
⊕

i L
i a DGLA. Then L⊗k A has a natural structure of

DGLA by setting:

(L⊗k A)n =
⊕
i

(Li ⊗k A
n−i ), d(x ⊗ a) = d(x)⊗ a,

[x ⊗ a, y ⊗ b] = (−1)|a||y |[x , y ]⊗ ab.

3 Space of Hochschild cochains C ∗(Λ,M) of an algebra Λ is a

DGLA where [·, ·] is the Gerstenhaber bracket, and M a

Λ-bimodule.
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Deformation philosophy

Over a field of characteristic 0,

it is well known that every deformation problem is governed by a

differential graded Lie algebra (DGLA) via solutions of the

Maurer-Cartan equation modulo gauge action.[6]

{Deformation problem} {DGLA} {Deformation functor}

The first arrow is saying that the DGLA you obtain depends on the

data from the deformation problem and the second arrow is saying

for DGLAs that are quasi-isomorphic, we obtain an isomorphism of

deformation functor.

Definition: An element x of a DGLA is said to satisfy the

Maurer-Cartan equation if

d(x) +
1

2
[x , x ] = 0.
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Hochschild cohomology



Hochschild cohomology

Let B = B•(Λ) denote the bar resolution of Λ.

Λe = Λ⊗ Λop the enveloping algebra of Λ.

B : · · ·→Λ⊗(n+2) δn→ Λ⊗(n+1) → · · · δ2→ Λ⊗3 δ1→ Λ⊗2(
π→ Λ)

The differentials δn’s are given by

δn(a0 ⊗ a1 ⊗ · · · ⊗ an+1) =
n∑

i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

for each elements ai ∈ Λ (0 ≤ i ≤ n + 1) and π, the multplication

map.

Let M be a left Λe-module. The Hochschild cohomology of Λ

with coefficients in M is defined as

HH∗(Λ,M) = C ∗(Λ,M) =
⊕
n≥0

Hn(HomΛe (B•(Λ),M))

If M = Λ, we write HH∗(Λ).
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Multiplicative structures on HH∗(Λ)

� Cup product

`: HHm(Λ)× HHn(Λ)→ HHm+n(Λ)

α ` β(a1⊗· · ·⊗am+n) = (−1)mnα(a1⊗· · ·⊗am)β(am+1⊗· · ·⊗am+n)

� Gerstenhaber bracket of degree −1.

[·, ·] : HHm(Λ)× HHn(Λ)→ HHm+n−1(Λ)

defined originally on the bar resolution by

[α, β] = α ◦ β − (−1)(m−1)(n−1)β ◦ α where

where α ◦ β =
∑m

j=1(−1)(n−1)(j−1)α ◦j β with

(α ◦j β)(a1 ⊗ · · · ⊗ am+n−1) = α(a1 ⊗ · · · ⊗ aj−1⊗
β(aj ⊗ · · · ⊗ aj+n−1)⊗ aj+n ⊗ · · · ⊗ am+n−1). (1)
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Make sense of Equation (1) without using B

� Hochschild cohomology as the Lie algebra of the derived

Picard group (B. Keller) - 2004

� Brackets via contracting homotopy using certain resolutions

(C. Negron and S. Witherspoon) - 2014

[α, β] = α ◦φ β − (−1)(m−1)(n−1)β ◦φ α
� Completely determine [HH1(A),HHm(A)] using derivation

operators on any resolution P. (M. Suárez-Álvarez) - 2016

[α1, β] = α1β − βα̃m where α̃m : Pm → Pm.

� Completely determine [HH∗(A),HH∗(A)] using homotopy

lifting on any resolution. (Y. Volkov) - 2016

[α, β] = αψβ − (−1)(m−1)(n−1)βψα
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Quiver algebras and Koszul algebras



Quiver algebras

A quiver is a directed graph where loops and multiple arrows

between vertices are allowed. It is often denoted by

Q = (Q0,Q1, o, t), where Q0 is the set of vertices, Q1 set of

arrows and o, t : Q1 → Q0 taking every path a ∈ Q to its origin

vertex o(a) and terminal vertex t(a).

Define kQ to be the vector k-vector space having the set of all

paths as its basis. If p and q are two paths, we say pq is possible if

t(p) = o(q) otherwise, pq = 0. By this, kQ becomes an

associative algebra. Let kQi be a vector subspace spanned by all

paths of length i , then kQ is graded.

kQ =
⊕
n≥0

kQn
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Examples of quiver algebras

� Let Q be the quiver with a vertex 1 (with a trivial path e1 of

length 0). Then kQ ∼= k .

� Let Q be the quiver with two vertices and a path: 1
α→ 2.

There are two trivial paths e1 and e2 associated with the

vertices 1, 2. There is a relation e1α = e1αe2 = αe2. Define a

map kQ →M2(k), by e1 7→

(
0 0

0 1

)
, e2 7→

(
1 0

0 0

)
and

α 7→

(
0 0

1 0

)
. Then kQ ∼= {A ∈M2(k) : A12 = 0}.

� Let Q be the quiver with a vertex and 3 paths x , y , z .

1

y

x
z

Then kQ ∼= k〈x , y , z〉.
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Koszul algebras

A relation on Q is a k-linear combination of paths of length n ≥ 2

having same origin and terminal vertex. Let I be the subspace

spanned by some relations, we denote by (Q, I ) a quiver with

relations and kQ/I the quiver algebra associated to (Q, I ).

We are interested in quiver algebras that are Koszul. Let Λ = kQ/I

be Koszul:

� Λ is quadratic. This means that I is a homogenous admissible

ideal of kQ2

� Λ admits a grading Λ =
⊕

i≥0 Λi , Λ0 is isomorphic to k or

copies of k and has a minimal graded free resolution.

11



A canonical construction of a projective resolution for Koszul

quiver algebras

Let L −→ Λ0 be a minimal projective resolution of Λ0 as a right

Λ-module, L

� contains all the necessary information needed to construct a

minimal projective resolution of Λ0 as a left Λ-module

� contains all the necessary information to construct a minimal

projective resolution of Λ over the enveloping algebra Λe .

� There exist integers {tn}n≥0 and elements {f ni }
tn
i=0 in R = kQ

such that L can be given in terms of a filtration of right ideals

· · · ⊆
tn⊕
i=0

f ni R ⊆
tn−1⊕
i=0

f n−1
i R ⊆ · · · ⊆

t0⊕
i=0

f 0
i R = R

� The f ni can be choosen so that they satisfy a comultiplicative

structure.
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A result of E.L. Green, G. Hartman, E. Marcos, Ø. Solberg [2]

Theorem 1

Let Λ = kQ/I be a Koszul algebra. Then for each r , with

0 ≤ r ≤ n, and i , with 0 ≤ i ≤ tn, there exist elements cpq(n, i , r)

in k such that for all n ≥ 1,

f ni =
tr∑

p=0

tn−r∑
q=0

cpq(n, i , r)f rp f
n−r
q (comultiplicative structure)

Theorem 2

Let Λ = kQ/I be a Koszul algebra. The resolution (K, d) is a

minimal projective resolution of Λ with Λe-modules

Kn =
tn⊕
i=0

Λo(f ni )⊗k t(f ni )Λ

with each Kn having free basis elements {εni }
tn
i=0 and they are

given explicitly by εni = (0, . . . , 0, o(f ni )⊗k t(f ni ), 0, . . . , 0).
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Homotopy lifting maps



Making sense of Equation (1) using homotopy lifting

Definition

Let K µ−→ Λ be a projective resolution of Λ as Λe-module. Let

∆ : K −→ K⊗Λ K be a chain map lifting the identity map on Λ and

η ∈ HomΛe (Kn,Λ) a cocycle. A module homomorphism

ψη : K −→ K[1− n] is called a homotopy lifting map of η with

respect to ∆ if

dψη − (−1)n−1ψηd = (η ⊗ 1− 1⊗ η)∆ and (2)

µψη is cohomologous to (−1)n−1ηψ (3)

for some ψ : K→ K[1] for which dψ − ψd = (µ⊗ 1− 1⊗ µ)∆.

Remark.

For Koszul algebras Equation (3) holds.
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Theorem [5, a slight variation presented by Y. Volkov ]

Let K→ Λ be a projective resolution of Λe-modules. Suppose that

α ∈ HomΛe (Kn,Λ) and β ∈ HomΛe (Km,Λ) are cocycles

representing elements in HH∗(Λ), ψα and ψβ are homotopy liftings

of α and β respectively, then the bracket

[α, β] ∈ HomΛe (Kn+m−1,Λ) on Hochschild cohomology can be

expressed as

[α, β] = αψβ − (−1)(m−1)(n−1)βψα

at the chain level.

Remark: The above formula is given as reformulated by S.

Witherspoon in her new book [3].
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Homotopy lifting, comultiplicative structure, and K

Notation

If θ : Kn −→ Λ is defined by εn0 7→ λ0, ε
n
1 7→ λ1 and so on until

εntn 7→ λtn , we write θ =
∑

i θ
i

θ =
(
λ

(0)
0 · · · λ

(i)
i · · · λ

(tn)
tn

)
, θi =

(
0 · · · λ

(i)
i · · · 0

)
Theorem 3 [7, T.Oke]

Let Λ = kQ/I and K be the projective resolution of Theorem 2.

Let η : Kn −→ Λ be a cocycle such that

η =
(

0 · · · 0 (f 1
w )(i) 0 · · · 0

)
, for some f 1

w path of length

1. There are scalars bm,r (m − n + 1, s) in k for which the map

ψη : Km → Km−n+1, defined by

ψη(εmr ) = bm,r (m − n + 1, s)εm−n+1
s

is a homotopy lifting map for η, with the scalars satisfying some

equations.
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contd...

Theorem 4 [7, T.Oke]

Let Λ = kQ/I and K be the projective resolution of Theorem 2.

Let η : Kn −→ Λ be a cocycle such that

η =
(

0 · · · 0 (f 2
w )(i) 0 · · · 0

)
, for some f 2

w = f 1
w1
f 1
w2

path

of length 2. There are scalars bm,r (m− n + 1, s) in k for which the

map ψη : Km → Km−n+1, defined by

ψη(εmr ) = bm,r (m−n+1, s+1)f 1
w1
εm−n+1
s+1 +bm,r (m−n+1, s)εm−n+1

s f 1
w2

is a homotopy lifting map for η, with the scalars satisfying some

equations.
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In Theorem 3 for instance, the scalars b∗,∗(∗, ∗) satisfy

For all α,

(i). B =

ci ,α(m, r , 1) when p = w

0 when p 6= w
, and

(ii). B ′ =

(−1)n(m−n)cp,i (m, r ,m − n) when p = w

0 when p 6= w
,

where

B = bm,r (m − n + 1, s)cpα(m − n + 1, s, 1)

+ (−1)nbm−1,j(m − n, α)cpα(m − n + 1, r , 1),

B ′ = (−1)m+1(−1)n[bm,r (m − n + 1, s)cαq(m − n + 1, s,m − n)

+ bm−1,j(m − n, α)cαq(m − n + 1, r ,m − n)].
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Examples



Let Q be the quiver with two vertices and 3 paths a, b, c of length

1. Let Iq = 〈a2, b2, ab − qba, ac〉 be a family of ideal and take

{Λq = kQ/Iq}q∈k Q := 1 2

b

a

c

to be a family of quiver algebras.

� Let η : K1 → Λq defined by η =
(
a 0 0

)
be a degree 1

cocycle. Then for each n and r ,

(ψη)n(εnr ) =

(n − r)εnr when r = 0, 1, 2, . . . , n

(n + 1)εnr when r = n + 1,
are

homotopy lifting maps associated to η.
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� Let χ : K2 → Λq defined by χ =
(

0 0 ab 0
)

be a degree 2

cocycle (ψχ)1(ε1
i ) = 0, (ψχ)2(ε2

i ) =


0 if i = 0

0, if i = 1

aε1
1 + ε1

0b if i = 2

0 if i = 3

,

(ψχ)3(ε3
i ) =



0, if i = 0

0, if i = 1

−aε2
1, if i = 2

ε2
1b, if i = 3

0, if i = 4

are the first, second and third homotopy lifting maps

associated to χ.
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Applications



(1) Cup product and bracket structure

Theorem [R.O. Buchweitz, E. L. Green, N. Snashall, Ø. Solberg]

Let Λ = kQ/I be a Koszul algebra. Suppose that η : Kn → Λ and

θ : Km → Λ represent elements in HH∗(Λ) and are given by

η(εni ) = λi for i = 0, 1, . . . , tn and θ(εmi ) = λ′i for i = 0, 1, . . . , tm.

Then η ^ θ : Kn+m → Λ can be expressed as

(η ^ θ)(εn+m
j ) =

tn∑
p=0

tm∑
q=0

cpq(n + m, i , n)λpλ
′
q,

Theorem [7, T. Oke]

Under the same hypothesis with each λi , λ
′
i = βi paths of length 1,

the r -th component of the bracket on the r -th basis element is

[η, θ]r (εm+n−1
r ) =

tn∑
i=0

tm∑
j=0

bm−n+1,r (n, i)λi

− (−1)(m−1)(n−1)(bm−n+1,r (m, j)βj . 21



(2) Specify solutions to the Maurer-Cartan equation

The space of Hochschild cochains C ∗(Λ,Λ) is a DGLA with

d̄ [α, β] = [d̄(α), β] + (−1)m−1[α, d̄(β)] for all

α ∈ HHm(Λ), β ∈ HHn(Λ) and d̄(α) = (−1)m−1αδ.

Using these results, the Maurer-Cartan equation for an Hochschild

2-cocycle η is the following

(−1)2−1ηd = −1

2
[η, η] = −1

2
(ηψη + ηψη)

ηd(ε3
r ) = ηψη(ε3

r )

η{a k-linear combination of f 1
p ε

2
s , ε

2
s f

1
q }p,q,s = ηψη(ε3

r )

If η(ε2
s ) = f 1

w , the left hand side is a linear combination of paths of

length 2 but the right hand is a linear combination of paths of

length 1. This is a contradiction!. There are solutions however if

η(ε2
s ) = f 2

w for some w .
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Thanks for listening!
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