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Abstract

The log canonical threshold is an invariant of singularities in algebraic geometry. Given a polynomial
f in n variables such that f(0) = 0, the log canonical threshold of f at the origin is the supremum
over all real numbers c such that |1/f |c is L2 at the origin. Thus, this invariant measures the (possible)
singularity of the hypersurface {f = 0} at the origin. While the invariant was first studied from the
analytic viewpoint in as far back as the 1950s, it currently receives considerable interest in the field of
birational geometry. During this three days course we will discuss
• Basic properties of the log canonical threshold,
• Generic limits and the ACC Conjecture, and
• The space of R-valued valuations over a variety.

Reference:
János Kollár. Which powers of holomorphic functions are integrable? May 6, 2008. arXiv:
0805.0756 [math.AG].
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1 Introduction
Lecture 1

We will be talking about log canonical thresholds, which measure how bad singularities are. The structure of
the course is as follows:
• Basic properties of the log canonical threshold,
• Generic limits and the ACC Conjecture (and partial proof, which is very exciting and beautiful), and
• How log canonical thresholds arise as a minimum on the space of R-valued valuations over a variety.

1.1 Setup

Let f ∈ C[z1, . . . , zn] such that f(0) = 0. We want to study the singularities of the hypersurface {f = 0} ⊂ An

at the origin 0.
Recall the multiplicity ord0(f), defined to be the largest power the maximal ideal f is in, or alternatively

the lowest degree term that exists in f .
• If ord0(f) = 1, then {f = 0} is smooth at 0;
• If ord0(f) > 1, then we have a singularity.

Examples 1.1. The following all have the same order of vanishing:

x2 − y3 = 0 y2 − x3 − x2 = 0 xy = 0

Log canonical thresholds an distinguish them, however.

The order of vanishing can be thought of as using a particular valuation to measure the singularity, but
we will see on Thursday that the log canonical threshold can be thought of as using information from all
valuations.

Today, we will define the log canonical threshold analytically.

Definition 1.2. The log canonical threshold of f at 0 is the real number lct0(f) such that
• 1
|f |λ is L2 in the neighborhood of 0 for λ < lct0(f);

• 1
|f |λ is L2 in the neighborhood of 0 for λ > lct0(f).

We also define lct(f) = minp∈{f=0} lctp(f).

We will see that lct0(f) exists, and that lct0(f) ∈ Q>0.

Example 1.3. Let f = za ∈ C[z]. We want to investigate when∫
1

|za|2λ
<∞

in a neighborhood of 0. We use polar coordinates:∫
1

|za|2λ
=

∫ 2π

0

∫ ε

0

1

ρ2λa
ρ dρ dθ = 2π

∫ ε

0

1

ρ2aλ−1
dρ <∞

which holds if and only if 2aλ− 1 < 1, i.e., λ < 1/a. Thus, lct0(za) = 1/a. Moreover,
• By Fubini’s theorem, this also implies

f = za11 · · · zann ∈ C[z1, . . . , zn]

has lct0(f) = mini{1/ai};
• If {f = 0} is smooth at 0, then f = uz where u is locally invertible, and so lct0(f) = 1.

The following says that the case where {f = 0} is smooth at 0 gives the “best possible” log canonical
threshold.
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Claim 1.4. lct0(f) ≤ 1.

Proof. Note for ε > 0, there always exists p ∈ B0(ε)∩ {f = 0} such that {f = 0} is smooth at p. This implies
that at p, f = uzm where u is locally invertible and m ≥ 1, so that lct0(f) ≤ 1/m ≤ 1.

Example 1.5. Consider the cusp x2 − y3 = 0 from before:

x2 − y3 = 0

To calculate the log canonical threshold, we could just try to determine when the integral∫
1

|x2 − y3|2λ

is finite by using an appropriate change of coordinates. The log canonical threshold ends up being

lct0(x2 − y3) =
5

6
,

but we’ll compute this after introducing another way to compute log canonical thresholds.

1.2 Formula for log canonical thresholds in terms of log resolutions

Let f ∈ C[z1, . . . , zn]. The idea is that log resolutions give “good” changes of coordinates that allow us to
easily calculate log canonical thresholds.

Definition 1.6. π : Y → An is a log resolution of f at 0 if
• π is a proper birational morphism;
• For every point p ∈ π−1(0), both f ◦ π and JacC π are locally monomial, that is, there exists local

coordinates y1, . . . , yn ∈ OY,p such that f ◦ π = uya11 · · · yann and JacC(π) = vyk11 · · · yknn for locally
invertible u, v.

Using the notation from the definition above, we claim the following:

Proposition 1.7. We can calculate lct0(f) as

lct0(f) = min
i

ki + 1

ai
.

Proof. By properness of π, we have that∫
1

|f |2λ
<∞ at 0 ⇐⇒

∫
|JacC(π)|2

|f ◦ π|2λ
<∞ at p for all p ∈ π−1(0).

By using local coordinates, and the fact that both f ◦ π and JacC π are locally monomial, integrability of the
function above is equivalent to the finitude of∫

|yk11 · · · yknn |2

|ya11 · · · y
an
n |2λ

=

∫
1∏

i|yi|2λai−2ki
,

which is a finite integral at p if and only if 2λai − 2ki − 1 < 1 for all i, i.e., λ < ki+1
ai

, so that

lct0(f) = min
i

all charts

ki + 1

ai
.

Note that we are cheating a little here: it’s not clear the minimum exists if we take the infimum over all
charts. We can fix this by thinking about it another way: using the notation of divisors, we can write

div(f ◦ π) =
∑

ajDj div JacC(π) =
∑

kjDj ,

in which case

lct0(f) = min
j

kj + 1

aj
.
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1.3 The relative canonical divisor

Let π : Y → X be a projective birational morphism of smooth varieties of dimension n. Then, we can take
a differential form on X and pull it back to Y , that is, we have a morphism π∗ΩX → ΩY ; taking the nth
wedge power, we get a morphism

π∗ωX −→ ωY

between canonical line bundles. This is a map of line bundles that is nonzero, since looking at the locus
where X and Y are isomorphic, we have an isomorphism of line bundles. Tensoring with the dual of the left
hand side, we get a morphism

OY −→ ωY ⊗ (π∗ωX)∨,

i.e., we get a section of the line bundle ωY ⊗ (π∗ωX)∨. This section gives a divisor which we denote by KY/X ,
satisfying the following properties:
• Exc(π) = Supp(KY/X) (“KY/X measures where the morphism is not étale”);
• Choosing KY ,KX such that π∗KY = KX , we have KY/X = KY − π∗KX ;
• div(JacC(π)) = KY/X (by looking where they vanish).

The relative canonical divisor satisfies the following properties which are useful for computations:

Properties 1.8.

• If Z
φ→ Y

π→ X, then KZ/X = KZ/Y + φ∗KY/X (“chain rule”);
• If Z ⊂ X is a smooth irreducible subvariety, and if E ⊂ BZX → X is the blowup of X along Z, then

KBZX/X = (codimZ − 1)E

which you can remember by the fact that blowing up along a codimension 1 subvariety should have a
trivial relative canonical divisor.

Example 1.9. We return to the example of the cusp C = {x2 − y3 = 0}. Let π : W → A2 be the log
resolution:

C
C̃

E1 E1

C̃

E2

E3

E1 C̃ E2

A2 X Y W

π

Then, using the “chain rule” property

π∗C = C̃ + 2E1 + 3E2 + 6E3 and KW/A2 = E1 + 2E2 + 4E3.

We therefore have

lct0(x2 − y3) = min
i

ki + 1

ai
= min

{
0 + 1

1
,

1 + 1

2
,

2 + 1

3
,

4 + 1

6

}
=

5

6
.

2 Hypersurface thresholds

We first make the following definition:

Definition 2.1. The hypersurface thresholds are defined to be the possible log canonical thresholds for
hypersurfaces, that is:

HT n = {lct0(f) | f ∈ C[z1, . . . , zn]}.

If n = 0, then we define HT 0 := {0}, following the convention that lct0(0) = 0.
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Example 2.2. By our calculation in Example 1.3, we have

HT 1 = {0, 1, 1/2, 1/3, 1/4, . . .}

since lct0(f) = lct0(zau) = 1/a in local coordinates.

Now we observe that
• HT 1 satisfies ACC, that is, there are no infinite increasing sequences in this set.
• The accumulation points of HT 1 is HT 0.

The following Theorem says that these observations hold in general.

Theorem 2.3 (de Fernex–Mustaţă, Kollár, de Fernex–Mustaţă–Ein, Hacon–McKernan–Xu). HT n satisfies
ACC, and the accumulation points of HT n is HT n−1 \ {1}.

The idea behind the proof is to consider all polynomials, and somehow think about how a sequence of
polynomials has a limit point, called the generic limit. To make this precise, we first need some more facts
about log canonical thresholds.

2.1 More properties of log canonical thresholds
Lecture 2

We first restate the definitions for log resolutions and log canonical thresholds using the language of divisors,
including the relative canonical divisor.

Definition 2.4. π : Y → An is a log resolution of f at 0 if
1. π is a proper birational morphism;
2. Y is regular;
3. Exc(π) is a divisor;
4. Exc(π) + div(f ◦ π) has simple normal crossings.

Remark 2.5. Log resolutions exist in the settings we will be interested in:
1. These exist by Hironaka if k is algebraically closed of characteristic 0
2. We may replace An with Ân (i.e., k[x1, . . . , xn] with k[[x1, . . . , xn]]) by Temkin.

We glossed over how to discuss lct0 in the new language, so we do this now.

Definition 2.6. If f ∈ k[x1, . . . , xn], and π : Y → An is a log resolution, and

KY/An =
∑

kiDi and div(f ◦ π) =
∑

aiDi

then

lct0(f) = min
i|0∈π(Di)

ki + 1

ai
and lct(f) = min

i

ki + 1

ai
.

We will be using the same definition for hypersurface singularities in Ân.

Proposition 2.7. If f ∈ k[[x1, . . . , xn]] and f(0) = 0, then

lct0(f) ≤ n

ord0(f)
.

Proof. Choose a log resolution

Y Ân

E ⊂ B0Â
n

π

Then, KY/Ân = (n− 1)E0 + · · · , and div(f ◦ π) = ord0(f)E0 + · · · . Thus,

lct0(f) ≤ (n− 1) + 1

ord0(f)
.
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We will use the following result (which we will not prove):

Proposition 2.8 (Demailly–Kollár). Let f, g be power series such that f(0) = g(0) = 0. Then

lct0(f + g) ≤ lct0(f) + lct0(g).

Sidenote: lct0 gives a norm on power series |f − g| = lct0(f − g).

Corollary 2.9. Suppose f ∈ k[[x1, . . . , xn]], f(0) = 0. Set tm(f) to be the mth truncation of f , which is the
polynomial consisting of the terms in f of order ≤ m. Then,

|lct0(f)− lct0(tm(f))| ≤ n

m+ 1
.

Proof. Apply Propositions 2.7 and 2.8 to tm(f) and f − tm(f). Then,

lct0(f) ≤ lct0(tm(f)) + lct0(f − tm(f)),

and rearranging, we obtain

lct0(f)− lct0(tm(f)) ≤ lct0(f − tm(f)) ≤ n

m+ 1
.

You can get the other inequality by breaking up f differently.

Proposition 2.10. Suppose f(~x), g(~y) are power series in disjoint variables. Then,

lct0(f(~x) + g(~y)) = min{1, lct0(f) + lct0(g)}.

The idea is to take log resolutions for f and g, and then take their product, and then compare the
monomials that show up.

Examples 2.11. We can use Proposition 2.10 to easily compute some log canonical thresholds:
• lct0(x2 − y3) = min{1, 12 + 1

3} = 5/6.
• Choose f(~x) and lct0(f(~x)) < 1. Then, if m� 0,

lct0(f(~x) + ym) = lct0(f) +
1

m
.

Thus, lct0(f(~x) + ym)→ lct0(f) from above (recall that ACC says that we cannot have this limit from
below).

2.2 Accumulation points of hypersurface thresholds

We now return to hypersurface thresholds, which we recall are defined as

HT n = {lct0(f) | f ∈ k[z1, . . . , zn], f(0) = 0}.

We will first show the second statement in Theorem 2.3:

Theorem 2.3∗. The accumulation points of HT n is HT n−1 \ {1}.

One inclusion is easy:

Proof of “⊇”. If f ∈ k[x1, . . . , xn−1] has lct0(f), then f + xmn will have lct0(f + xmn ) converging to lct0(f)
by Example 2.11.

For the other direction, let fi ∈ k[x1, . . . , xn], f(0) = 0, and lct0(fi) → c. We want to find F ∈
K[[x1, . . . , xn]] such that fi → F , lct0(fi)→ lct(F ), where k ⊂ K has countably infinite transcendence degree.
We first mention that the näıve choice for such a limit does not work:
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Example 2.12. Consider fm = x2 + x
m . Then, you would want to say that fm → x2 as m→∞, but this is

a bad notion since lct(fm) = 1, while lct(x2) = 1/2. Instead, we will consider F = x2 + ax ∈ k(a)[x] as a
limit for the sequence fm, for some extra transcendental element a.

We will instead construct what is called the generic limit, which is based on the following observation:

Reminder 2.13. If Z ⊂ An
k is a closed set, then Z gives rise to an n-tuple in K(Z), since there is a map

SpecK(Z)→ Z → An
k , giving a map k[x1, . . . , xn]→ K(Z). Moreover, suppose we have a diagram

Z2 An+d

Z1 An

⊆
dominant

⊆

This gives an injection of fraction fields K(Z1) ↪→ K(Z2), and the process above commutes with such an
injection.

We will now construct a “generic limit” F for the sequence fi.

2.2.1 Generic limits: Easy case

Consider a collection {fi}i∈N of polynomials with fi(0) = 0, such that all non-zero coefficients are in degree
≤ d. You can then consider the following finite dimensional vector space parametrizing the coefficients of
these polynomials:

Pd := k[[x1, . . . , xn]]/(x1, . . . , xn)d+1.

Since this is a finite dimensional vector space, we can also view it as an affine space, in which case each
polynomial fi defines a point [fi] ∈ Pd. Now we choose Id ( N such that

1. Zd = {[fi] | i ∈ Id} is irreducible;
2. For any closed subset Y ( Zd, there are finitely many [fi] with i ∈ Id inside Y .

We can do this by using the noetherian property on Pd.
We now use the following

Fact 2.14 (Log canonical thresholds in families). Consider a set Z ⊂ Pd. Then, there exists an open subset
U ⊂ Z such that U 3 [f ] 7→ lct0(f) is constant.

Using this fact and property (2) above, for all but finitely many i ∈ Id, we have that lct0(fi) is constant.

Definition 2.15. We say that Zd ⊆ Pd is the generic limit. Also, by Reminder 2.13, Zd gives an element
F ∈ K(Zd)[x1, . . . , xn], which we also call the generic limit.

Note that lct0(F ) = lct0(fi) for infinitely many i ∈ Id by construction. Also, note that since the Zd are
not unique, we are really finding one accumulation point of the sequence, but it will not be a unique limit
since F depends on Zd.

2.2.2 Generic limits: General case

Consider a set {fi} with fi(0) = 0 as before. We can truncate all of these to level d to obtain a new set of
polynomials {td(fi)}. Performing this process for each level d, we get the following tower of Pi’s:

...
...

Z3 P3

Z2 P2

Z1 P1

⊂

⊂

⊂
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The content of the Lemma below is that we can choose the sets Zd constructed in the easy case compatibly
with this tower of Pi’s, giving the diagram above.

Lemma 2.16. There exist sets I1 ⊃ I2 ⊃ I3 ⊃ · · · of indices such that
1. Zd = {td(fi) | i ∈ Id} is irreducible;
2. If Y ( Zd is a closed set, it contains only finitely many [td(fi)] with i ∈ Id.
3. Zd+1 99K Zd is dominant.

Note K(Z1) ↪→ K(Z2) ↪→ · · · and set K =
⋃
K(Zd). Then, Zd defines a polynomial Fd ∈ K(Zd)[x1, . . . , xn],

and tdFd+1 = Fd because the diagram above commutes. We then set F = limFd, and claim

Claim 2.17. lct0(F ) = limi lct0(fi).

As in the easy case, it is actually true that for each d,

lct0(td(F )) = lct0(Fd) = lct0(td(fi))

for infinitely many i ∈ Id.

2.3 Conclusion of proof of Theorem 2.3∗
Lecture 3

Recall we wanted to show that the limit points of HT n is HT n−1 \{1}. The generic limit construction started
with a set {fi}i∈N such that fi ∈ k[x1, . . . , xn], and assuming the sequence {lct0(fi)} was non-constant, we
constructed a power series F ∈ K[[x1, . . . , xn]] over a field extension K of k. Recall that the construction
actually produced power series td(F ) that arose as the generic points of closed sets {td(fi) | i ∈ Id} for
N ⊇ I1 ⊃ I2 ⊃ I3 ⊃ · · · .

Example 2.18. Let fi = x2 + yi; then lct0(fi) = 1
2 + 1

i for i ≥ 2. Then, we can set F = x2 and
lct0(fi)→ lct(F ).

The key property of the construction from last time is that lim lct0(fi) = lct0(F ), as is illustrated in this
example.

To finish the proof, we recall the following definition:

Definition 2.19. We say Di′ computes lct0(f) if lct0(f) = ki′+1
ai′

. We say that the center of Di′ on X is the

image π(Di′) under π.

So let f be a holomorphic function such that f(0) = 0 and {f = 0} has an isolated singularity at the

origin. If Y → Ân is a log resolution of f , then it also is for the truncations td(f) for d � 0. Thus,
lct0(td(f)) = lct0(f) for d� 0: you can show that the coefficients showing up in KY/Ân and div(f ◦ π) are
constant for d� 0. The following Theorem encodes the information of centers into this remark:

Theorem 2.20 (Kollár, de Fernex–Mustata–Ein). If f ∈ K[[x1, . . . , xn]] and f(0) = 0, and there exists a

log resolution Y → Ân with an exceptional divisor E such that
• E computes lct0(f), and
• π(E) = 0,

then lct0(f) = lct0(td(f)) for d� 0.

We can now prove the rest of Theorem 2.3∗.

Proof of “⊆”. Consider our set of polynomials {fi} with generic limit F . We choose a log resolution of F :

E ⊂ Y π−→ Ân,

where E computes lct0(F ). There are two cases:

Case 1. π(E) = {0}.

In this case, lct0(F ) = lct0(td(F )) for d � 0, which in turn is equal to lct0(td(fi)) for infinitely many
i ∈ Id (the idea is that you can extend the exceptional divisor computing lct0(td(F )) to ones computing
lct0(td(fi))). Then, this equals lct0(fi) by using Theorem 2.20.

8



Case 2. π(E) ) {0}.

First, localize at the generic point of π(E), and take the completion there, to get a complete regular local
ring of dimension n − dim(π(E)). We denote the image of F by F ∗, in which case lct0(F ) = lct0(F ∗) =
lct0(tdF

∗) ∈ HT n−dimπ(E) (you need to show that localization and completion don’t change the numerics of
the exceptional divisor computing the log canonical threshold), and so we are done by induction.

3 A more general setting

We now would like to explain a slightly different perspective for thinking about log canonical thresholds.
Previously, we discussed pairs (An, {f = 0}), and we looked at singularities of that polynomial. We can

replace this with (X, a), where X is a smooth variety, and a is an ideal sheaf.

Definition 3.1. A divisor over X is the data E ⊂ Y π→ X, where
• π is proper birational;
• Y is normal;
• E is a prime divisor.

Note that OY,E is a DVR, and so we get a valuation ordE , where ordE(a) = e if e is the unique number such
that a · OY,E = (te) for a uniformizing parameter t for OY,E .

Definition 3.2. AX(ordE) is the log dicrepancy 1 + ordE(KY/X). We identify two divisors E,E′ if
ordE = ordE′ . (Exercise: if E,E′ are divisors over X that are identified, then AX(ordE) = AX(ordE′).)

Then,

lct(a) = min
E over X

AX(ordE)

ordE(a)
.

Note 3.3 (Zariski).

{Divisors over X}!


DVR’s (R,mR) of K(X) such that

tdeg(R/mR, k) = dimX − 1

together with a map

SpecR→ X


The left direction you can obtain by blowing up the image of the map SpecR→ X:

SpecR X

· · · X2 X1

and part of the claim is that this process terminates.

We can also define this using all R-valued valuations, instead of restricting to just divisorial ones.
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