
THE MINIMAL MODEL PROGRAM

TAKUMI MURAYAMA

Abstract. These notes are taken by Matt Stevenson during the summer mini course on “The Minimal Model

Program” from May 30-June 2, 2016. Any and all errors are due to the scribe.

The references for this week, listed from easiest to hardest, are the following:

• Kollár, “The structure of algebraic threefolds.”
• Debarré, “Higher-dimensional algebraic geometry.”
• Clemens-Kollár-Mori, “Higher dimensional complex geometry.”
• Kollár-Mori, “Birational geometry of algebraic varieties.”

0. Introduction

In the 19th century, mathematicians knew how to classify topological (orientable) surfaces by genus g: g = 0
was the sphere S2, g = 1 was the torus T, and g ≥ 2 were the connected sum of tori T# . . .#T. Alternatively,
they can be classified by curvature: S2 has positive curvature, T has flat curvature, and higher-genus surfaces
have negative curvature.

This also gives a classification of Riemann surfaces: a Riemann surface C of genus g = 0 is isomorphic CP1,
one with g = 1 is isomorphic to C/Z2, and if C has genus g ≥ 2, then it is isomorphic to H/π1(C).

Question 0.1. What can we do in higher-dimensions?

Definition 0.2. Two varieties X,Y are birational if there are Zariski opens U ⊂ X, V ⊂ Y such that U ' V .

It is too difficult to classify isomorphism classes of algebraic varieties in higher-dimensions, so we want instead
a way to classify varieties by birational equivalence.

This week we focus on how the presence of rational curves on a variety affects its birational geometry. As an
example of this phenomenon, consider the following.

Theorem 0.3 (Castelnuovo). Let X be a smooth proper surface. There exists a nontrivial birational morphism

X
f→ Y for some smooth surface Y iff there exists a smooth rational curve C ⊂ X with (C2) = −1.

We would like to generalize this to higher-dimensions. The idea is that if X has rational curves, it should be
“more complicated” and we should be able to simplify it without changing its birational equivalence (as is done
in Castelnuovo’s theorem by blowing down the curve C).

Conventions. We always work over a field k = k, and at present we do not assume that chark = 0. A variety
will mean an integral separated scheme of finite-type over k.

Date: June 1, 2016.
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1. Bend & Break Techniques

We want a method to find rational curves on a smooth projective variety. Mori’s idea was that certain curves
can be degenerated (“bend”) into a union of rational curves (“break”).

Theorem 1.1 (Mori, ’82). Let X be a smooth projective variety and let H be an ample divisor on X. Suppose
there is a curve C ′ ⊂ X such that (C ′ · −KX) > 0, then there exists a rational curve E ⊂ X such that

(1) dimX + 1 ≥ (E · −KX) > 0;
(2)

(E · −KX)

(E ·H)
≥ (C ′ · −KX)

(C ′ ·H)
.

This theorem will be proven in 2 parts: first we show that C ′ deforms in some 1-parameter family, and second
we show that this family degenerates into rational curves.

1.1. Break Lemmas.

Theorem 1.2 (Deformation Lemma). Let X be a proper variety, let C be a smooth projective curve, let p ∈ C,
and let g0 : C → X be a nonconstant morphism. Suppose there is a nontrivial 1-parameter family of morphisms
gt : C → X parametrized by t ∈ D0, where D0 is a (not necessarily proper) curve, such that g0(p) = gt(p) for all
t ∈ D0. Then, X contains a rational curve through g0(p).

This is the main technical tool used to get rational curves.

Lemma 1.3 (Rigidity Lemma). Let Y
f→ Z be a proper surjective with connected fibres of dimension n and let

Y
g→ X be another morphism. If g(f−1(z0)) is a point for some z0 ∈ Z, then g(f−1(z)) is a point for all z ∈ Z.

Proof. Set W := im(h := f × g) ⊂ Z ×X, so we get a commutative diagram

Y W

Z X

h

f
p

q

where p.q are the projections . Both h and p are proper. Then, p−1(z) = h(f−1(z)) and dim p−1(z0) = 0,
by assumption. By the upper semicontinuity of fibre dimension, there is an open z0 ∈ U ⊂ Z such that
dim p−1(z) = 0 for all z ∈ U . Then h has fibre dimension n over p−1(U), so h has fibre dimension ≥ n
everywhere (by upper semicontinuity).

Now, for all w ∈W , h−1(w) ⊂ f−1(p(w)) and dimh−1(w) ≥ n and dim f−1(p(w)) = n, so h−1(w) is a union
of irreducible components of f−1(p(w)). Thus, h(f−1(p(w))) = p−1(p(w)) is finite; in fact, it is a single point,
since f−1(p(w)) is connected. Now,

g(f−1(z)) = q(h(f−1(p(w))))

is a point, where we choose z = p(w). �

Proof of Deformation Lemma. Compactify D0 ↪→ D, where D is a proper curve, so we have a rational map
g : C ×D 99K X. Assume that g is regular and defined everywhere, then g({p} ×D) is a point, by assumption.
The Rigidity Lemma implies that g({c} × D) is a point for all c ∈ C, so gt is a trivial family, which is a
contradiction.

Therefore, we know that g is not defined somewhere along {p} ×D. Let

Zn → Zn−1 . . .→ C ×D
be a minimal sequence of blowups resolving the indeterminacies of the rational map g : C ×D 99K X, so we a

morphism Zn
f→ X. Let E ⊂ Zn be the exceptional divisor of the last blowup.
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We want to show that f(E) is a rational curve. As E ' P1, the only way that f(E) is not birational to P1

is if f(E) is a point. However, if f(E) is a point, then the last blowup Zn → Zn−1 would not be necessary.
Therefore, f(E) is birational to P1 and g0(p) ∈ f(E), as f arose by blowing up centres along {p} ×D. �

In the context of Theorem 1.1, the Deformation Lemma says that if C ′ bends, then it breaks.

1.2. Bend Lemmas & Proof of the Theorem. We proceed in several steps.

Step 1. Let f : C → C ′ ↪→ X be the normalization of C ′, then we want to deform f . A deformation of C looks
like a section of H0(C, f∗TX). This is made precise by the following fact from deformation theory.

Fact 1.4. The dimension of deformations of f : C → X is bounded below by h0(C, f∗TX)− h1(C, f∗TX).

See Chapter 2 of Debarré for a proof of the above fact. Using Riemann-Roch for vector bundles, we see that

h0(C, f∗TX)− h1(C, f∗TX) = deg f∗TX + (1− g(C)) rank(TX) = (f∗C · −KX) + (1− g(C)) dimX,

where the last equality follows from the projection formula. The quantity (f∗C ·−KX) is assumed to be positive
in the statement of Theorem 1.1. We want to keep the image of p ∈ C fixed so that the deformation space has
dimension greater than or equal to

(f∗C · −KX)− g(C) dimX (∗)
As long as this number is positive, we get deformations and can use the Deformation Lemma.

Step 2. Let’s make this number positive.

• If g(C) = 0, then (∗) is positive by hypothesis, so we can deform (but this is not needed since the curve
C ′ is already rational).

• If g(C) = 1, then let C
n→ C be the “multiplication-by-n” morphism, so

((f ◦ n)∗(C) · −KX) = n2(f∗C · −KX),

since “multiplication-by-n” has degree n2. Then, (∗) is eventually positive, as g(C) doesn’t change.
• If g(C) ≥ 2, then C has no endomorphisms of degree > 1, by Hurwitz. Similarly, sheeted covers of C

don’t work.

Question 1.5. How can we get self-maps of C?

The solution is to pass to chark > 0 and use Frobenius! Suppose chark = p, then(
(f ◦ Fmp )∗(C) · −KX

)
= pm (f∗C · −KX) ,

where Fp denotes the Frobenius morphism in characteristic p. Then, (∗) is positive for m� 0.

Step 3. Reducing mod p.
Embed C ′ ⊂ X ⊂ PN , then C ′ and X are defined by polynomials over R = Z[ai], a finite algebra extension

of Z viewed as a subring of k (e.g. take the ai’s to be the coefficients of the polynomials cutting out C ′ and X
in PN ). By enlarging R, we can assume f : C → X is also defined over R. Therefore, we get the diagram

X X0 X

Spec R Spec K Spec k

where K = Frac(R) and k = K. By generic flatness/freeness, the quantities ((fp)∗(Cp) · −KXp
), g(Cp), and

χ(f∗p (Cp)) are constant as a function of p ∈ U , for some open set U ⊂ Spec R (because they are all defined by
cohomological data which is constant in flat families).



4 TAKUMI MURAYAMA

Let p = charR/p, then the Frobenius Fp acts on Cp, so we can compose

Cp

Fm
p−→ Cp

f−→ Xp,

and hence

(∗) = pm
(
(fp)∗(Cp) · −KXp

)
− g(Cp) dimXp

is positive for m� 0. The Deformation Lemma then implies that the cycle pmf∗(Cp) is algebraically equivalent
to f1m(Cp) + Z1

p,m, where Z1
p,m is some algebraic cycle equal to a sum of rational curves and f1m(Cp) is the rest.

So far, we have shown the theorem for the fibres Xp for p ∈ U ⊂ Spec R (or at least we know rational curves exist).

Step 4. Ensure that inequality (2) holds. Set

M :=
(C ′ · −KX)

(C ′ ·H)
,

then our goal is to show that (E·−KX)
(E·H) > M − ε for all ε > 0. We make two observations:

• By generic freeness,
(f∗(Cp)·−KXp )

(f∗(Cp)·Hp)
= M for all p ∈ U .

• This ratio M does not change under precomposition with the Frobenius.

We claim that f1m(Cp) satisfies

(f1m(Cp) · −KXp
) ≤ g(Cp) dimXp.

If not, then (fsm(Cp) · −KXp
)− g(Cp) dimXp > 0, so by the Deformation Lemma,

fsm(Cp) + Zsp,m ∼ fs+1
m (Cp) + Zs+1

p,m

and we can repeat this procedure until the claim is satisfied. Let

a = (fsm(Cp) · −KXp
),

b = (Zsp,m · −KXp
),

c = (fsm(Cp) ·Hp),

d = (Zsp,m ·Hp).

Then, M = a+b
c+d .

Claim. For any ε > 0 and m� 0, there is an irreducible component Ep of Zsp,m such that

(Ep · −KXp
)

(Ep ·Hp)
> M − ε.

We first require the following lemma.

Lemma 1.6. If c, d > 0, then a+b
c+d ≤ max

{
a
c ,

b
d

}
.

Proof of Claim. There are 2 cases to consider: when c gets large for m � 0 or when c stays bounded. Note
that, for large m, c+ d gets large, so a+ b must get large. But by the previous claim, a is bounded, so b must
get large.

Case 1: if c gets large, then a
c < M for m� 0, so b

d ≥M . From Lemma 1.6, we can split off the requisite Ep.

Case 2: if c stays bounded, then b and d get large, so b
d + ε > a+b

c+d = M . For m� 0, b
d > M − ε, so one again

Ep exists. �
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Step 5. Ep satisfies inequality (1). If this is not the case, then (Ep · −KXp
) > dimX + 1, so by the Deformation

Lemma,
(Ep · −KXp

) + dimXp > 2 dimXp + 1 > 0,

so Ep moves in a ≥ 2-dimensional family; in particular, Ep moves in a 1-dimensional family. Repeat this and
then the number (Ep · −KXp

) goes down.

Step 6 Lift to characteristic zero. Observe that (Ep · Hp) ≤ dimX+1
M , which is independent of p. Thus, these

curves Ep all have bounded degree when embedding in X ⊂ PN , using H.

Proposition 1.7. LetR be a finite Z-algebra. If a homogeneous system of algebraic equations withR-coefficients
has a nontrivial solution in R/p for p in a Zariski open set U ⊂ Spec R, then the equations also have a solution
over FracR.

Proof. The equations define a closed subscheme Z ⊂ PN
Spec R. The projection π : PN

Spec R → Spec R is proper,

so π(Z) is closed. But, we know that π(Z) ⊃ U , so U = Spec R = π(Z). �

For us, we want rational curves E ⊂ X, i.e. we want maps P1 → X ⊂ PN , given by [t0 : t1] 7→ [gp0 : . . . : gpn ]
a tuple of homogeneous forms. We claim that we can make

deg gpi
≤ dimX + 1

M
.

Let hj(x0, . . . , xn) be the homogeneous polynomials defining X (which have coefficients in R), then having a
morphism P1 → X of this form is equivalent to a set of equations with variables being coefficients of the gpi

’s.
By Proposition 1.7, we know solutions exist for all p ∈ U ⊂ Spec R, so we get solutions over the generic point.

This concludes the proof of bend and break (though we have not shown that the lifts to characteristic zero
also satisfy the inequalities (1) and (2)).

Remark 1.8. • Mori’s motivation for bend and break was to prove Hartshorne’s conjecture, which states
that TX is ample iff X ' Pn

k , but he needed that Fano varieties are covered by rational curves (i.e. each
point has a rational curve through it).
• With this technique, Kollár-Miyaoka-Mori (’92) showed that Fano varieties are rationally connected

(that is, any 2 points have a rational curve passing through them).
• Using bend and break, Boucksom-Demailly-Páun-Peternell showed that KX is not pseudoeffective iff X

is uniruled.

2. Cones of Curves

The key idea of Hironaka, which inspired much of what we study below, is that maps of projective varieties
are in fact determined by what they do to curves (that is, by which curves the maps contract). We will package
all of this information into one geometric object, which we call the Mori cone.

Definition 2.1. A subset N ⊆ Rn is a cone if 0 ∈ N and N is closed under multiplication by R>0. A subcone
M ⊂ N is extremal if for u, v ∈ N , u + v ∈ M implies that u, v ∈ M ; that is, “N lies on one side of M”. The
cone N is convex if u, v ∈ N implies that u+ v ∈ N .

Definition 2.2. The cone of effective curves on X is

NE(X) = {
∑
i

ai[Ci] : Ci ⊂ X curve, ai ∈ R≥0 ⊂ N1(X),

where N1(X) is the Néron-Severi group (which consists of algebraic 1-cycles on X modulo numerical equivalence).
For X/C, NE(X) is a subset of H2(X,R). The Mori cone is defined to be the closure of NE(X), and it is denoted
NE(X). The Mori cone is convex.
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The “simplified” version of the cone theorem for smooth varieties is given below.

Theorem 2.3 (Mori, ’82). Let X be a nonsingular projective variety. There are countably-many rational curves
Ci ⊂ X such that

0 < (Ci · −KX) ≤ dimX + 1

and so that

NE(X) = NE(X)KX≥0 +
∑
i

R≥0 · [Ci],

where NE(X)KX≥0 is the subset of NE(X) consisting of those curves C such that (C ·KX) ≥ 0.

2.1. Examples.

Lemma 2.4. Let X be a smooth projective surface. Then,

(1) (C2) ≤ 0 implies that [C] ∈ ∂NE(X).
(2) (C2) < 0 implies that [C] is extremal.

Proof. Let D be an irreducible curve in X. If (D · C) < 0, then D = C, so

NE(X) = R≥0 · [C] + NE(X)C≥0.

This gives (2). �

Example 2.5. P2, thought of analytically, has H2(P2,R) = R; thus, the Mori cone is the ray R≥0 and it is
generated by the class of a line `.

Example 2.6. The Mori cone of BlpP
2 is generated by the exceptional divisor E and `−E, which is the strict

transform of a line through the point p.

Example 2.7. For X = Blp1,...,p10P
2, the Cone Theorem implies that the Mori cone decomposes into 3 “pieces”:

where (KX · −) < 0, the boundary consists of a countable number of extremal rays. There are also the pieces
where (KX · −) = 0 and (KX · −) > 0, but no one knows what happens in the latter.

2.2. Proof of the Cone Theorem. Consider the subset

{C ∈ NE(X) : 0 < (C · −KX) ≤ dimX + 1 and the coefficients of C are in Q},

then this is countable (since it consists of certain points with rational coordinates in the finite-dimensional real
vector space N1(X)), and these will be our Ci’s. Set

W := NE(X)KX≥0 +
∑
i

R≥0 · [Ci],

then we would like to show that W = NE(X). To show that W is already a closed cone involves some convex
geometry, which we will not discuss here.

The inclusion W ⊆ NE(X) is trivial. To show the opposite inclusion, the idea is to argue by contradiction
and suppose that we can find a divisor M which is positive on W , but zero somewhere on NE(X), say at Z. We
can approximate M by an ample and Z by an effective and then apply bend and break.

Step 1. Find a suitable ample divisor.
First we claim that there is a divisor D such that (D · −) is positive on W\{0}, and (D · −) is negative

somewhere on NE(X). To see this, we need the following fact.

Fact 2.8. The dual of NE(X) is Nef(X).
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If W ( NE(X), then W
∗ ) Nef(X), so we can take D ∈W ∗\Nef(X). Take an ample divisor H, then we will

use M = H + µD lies on the boundary of the nef cone, for some µ ∈ R≥0. We will use H + µ′D as our ample
divisor, for µ′ < µ.

Step 2. Find a suitable effective divisor.
By assumption, (Z · (H + µD)) = 0 for some Z ∈ NE(X)\W and also (Z · KX) < 0, since otherwise

NE(X)KX≥0 ⊂W . Pick a sequence Zk =
∑
j akjZkj ∈ NE(X) such that Zk → Z as k →∞. By Lemma 1.6,

max
j

(Zkj · −KX)

(Zkj · (H + µ′D))
≥ (Zk · −KX)

(Zk + (H + µ′D))
,

and say they are achieved by Zk0 .

Step 3. Apply bend and break to Zk0 and H + µ′D to get rational curves Ei(k) such that

dimX + 1 ≥ (Ei(k) · −KX) > 0

and so that

(Zk · −KX)

(Zk + (H + µ′D))
≤ (Zk0 · −KX)

(Zk0 + (H + µ′D))
≤

(Ei(k) · −KX)

(Ei(k) · (H + µ′D))
≤

(Ei(k) · −KX)

(Ei(k) ·H)
≤M,

where the second-to-last inequality follows since Ei(k) ≡num Ci for some i, so Ei(k) ∈ W and (Ei(k) · D) ≥ 0.
The constant M � 0 is chosen so that MH +KX is ample, in which case (Ei(k) · (MH +KX)) ≥ 0, so

M ≥
(Ei(k) · −KX)

(Ei(k) ·H)
.

Sending k →∞ and µ′ → µ we get that (Z · (H + µD)) = 0, which is a contradiction. Therefore, W = NE(X).
This completes our proof of the cone theorem.

3. Contractions Theorems and the MMP

We now know something about the structure of NE(X) and we want to use it to produce “contraction
morphisms”.

Theorem 3.1 (Contraction Theorem). Let F ⊂ NE(X) be an extremal face lying in NE(X)KX<0, then there
is a contraction morphism contF : X → Y such that contF (C) is a point iff [C] ∈ F .

The proof of this result is quite involved and it will not be discussed. The basic idea for surfaces is to use
Castelnuovo’s theorem. There are 3 possible cases for contraction morphisms produced by the theorem:

(1) dimX > dimY ;
(2) dimX = dimY (e.g. a blowup) and either:

2.1. (Divisorial Contractions) the exceptional locus exc(contF ) has codim (exc(contF )) = 1.
2.2. (Small Contractions) codim (exc(contF )) ≥ 2.

3.1. MMP for Surfaces. For surfaces, small contractions don’t exist. The Contraction Theorem in this context
is the following.

Theorem 3.2. Let X be a smooth projective surface and let R ⊂ NE(X)KX<0 be an extremal ray (i.e. it is
extremal and 1-dimensional), then contR : X → Z exists and it is one of the following types:

(1) Z is a smooth surface, X → Z is the blowup at a point, and dimN1(X) > dimN1(Z).
(2) Z is a smooth curve and X is a minimal ruled surface (the contraction map is the structure map for the

ruled surface).
(3) Z is a point and in fact X ' P2.
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We can repeat this process again and again so that the surface becomes simpler and simpler; the process
terminates because dimN1(X) <∞ and blowing down a point decreases the dimension. The end result is that
we are either in case (2) or (3), or KX becomes nef and there are no more extremal rays to contract (since
NE(X)KX<0 = ∅).

3.2. Threefolds. The situation in higher-dimensions is considerably more complicated, as the case of 3-folds
illustrates.

Theorem 3.3. Let X be a smooth projective 3-fold over C, then contR : X → Y exists as before and it is one
of the following types:

(1) (C) contR is a conic bundle, i.e. dimY = 2 and the fibres are conics;
(2) (D) contR is a del Pezzo fibration, i.e. dimY = 1 and the fibres are del Pezzo surfaces;
(3) (F) dimY = 0 and X is a Fano variety;
(4) (E) The exceptional cases: dimY = 3, contR is birational, and one of the following holds:

4.1. (E1) contR is the blowup of a curve;
4.2. (E2) contR is the blowup of a point;
4.3. (E3-E5) Y is singular, and one of the following holds:

(i) (E3) Y is the blowup of a double point, i.e. it is locally

C[[x, y, z, w]]/(x2 + y2 + z2 + w2);

(ii) (E4) Y is the blowup of a singular point of the form

C[[x, y, z, w]]/(x2 + y2 + z2 + w3);

(iii) (E5) contR contract a projective plane P2 with normal bundle O(−2), i.e. it is locally

C[[x2, y2, z2, xy, yz, zw]]

The issue is that for 3-folds we cannot just repeatedly apply the Cone and Contraction Theorems, since these
theorems (or at least our proofs) only work for smooth varieties. We therefore need to enlarge our category of
varieties to include some singular ones.

To decide which singular ones we want, we make the following observations:

(1) the class should be normal (so that we have Weil divisors);
(2) KX should be (Q-)Cartier, so that intersecting KX with a curve makes sense (even better, we could ask

that X be Q-factorial; that is, all Weil divisors are Q-Cartier).

It looks like we need Cone and Contractions theorems for arbitrary normal Q-factorial varieties. This presents
another issue, as (2) does not behave well with respect to small contractions.

Proposition 3.4. Let X be a normal Q-factorial variety and let f : X → Y be a small contraction, then KY is
not Q-Cartier.

Proof. Suppose KY is Q-Cartier, so that mKY and mKX are Cartier for m divisible enough. Then, f∗(mKY )
and mKX are still Cartier. Moreover, mKX and f∗(mKY ) are linearly equivalent outside of the exceptional
locus of f . As X is normal, Hartog’s lemma implies that mKX and mf∗KY are in fact linearly equivalent,
which is a contradiction: if [C] is a curve class which is contracted, then

0 = (f∗C ·mKY ) = (C · f∗mKY ) = (C ·mKX) < 0.

�
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3.3. Flips. The notion of flips provide a way to use the Contraction Theorem, even when small contractions
can occur. The idea is the following: if (KX ·C) < 0, then we “cut out” the curve C and replace it with another
curve C+ such that (KX · C+) > 0 and so that it cannot be contracted any further.

Example 3.5. Let’s start backwards and describe the end result of the flip: consider a 3-fold X+ containing a
rational curve C+ such that (KX+ · C+) > 0 with normal bundle O(−1)⊕O(−2) (e.g. take

X+ = P(OP1 ⊕OP1(1)⊕OP1(2)),

and C+ is the section corresponding to OP1 ⊕ OP1(1) ⊕ OP1(2) → OP1 → 0), and consider the morphism
X+ → Y given by contracting C+. Construct X1 → X+ by blowing up C+, giving an exceptional divisor
E1 ⊂ X1; construct X2 → X1 by blowing up E1; this gives a copy of P1 × P1 ⊂ X2, from which we build X3

with a copy of P2 intersecting a copy of P1. Contract the P2 to a curve C get X, then (C ·KX) < 0.
This fixes the issue: we no longer have the Contraction Theorem telling us that C+ can be contracted. See

Debarré’s book for the details of this example.

Definition 3.6. Let f : X → Y be a proper birational morphism with codim (exc(f)) ≥ 2 in X, KX is Q-Cartier,
and −KX is f -ample (in particular, the intersection with a contracted curve is positive). Then, a variety X+

with a proper birational morphism f+ : X+ → Y is called a flip provided

(1) KX+ is Q-Cartier;
(2) KX+ is f+-ample;
(3) codim (exc(f+)) ≥ 2 in X+.

In particular, we have the following commutative diagram:

X X+

Y

f

φ

f+

Question 3.7. Do flips exist?

In ’04, Hacon-McKernan showed that flips do exist, given certain singularity assumptions on X.

Question 3.8. Do flips terminate?

This is true in dimension-3 (due to Reid-Shokurov), but it is open in higher dimensions.

4. Generalizations to the singular setting

We can no longer use bend and break methods if X is singular, so our proofs of the Cone and Contraction
Theorems do not hold. The idea will be to prove things “in reverse”: we show the Nonvanishing Theorem, then
the Basepoint-Free Theorem, the Contraction Theorem, and finally the Cone Theorem.

4.1. Preliminaries. We would like a class of singularities in which the MMP stays and works well; this will be
the class of klt singularities.

Definition 4.1. (1) A (log) pair (X,∆) consists of a normal variety X and a Q-Weil divisor ∆ such that
KX + ∆ is Q-Cartier.

(2) Let f : Y → X be a log resolution of a log pair (X,∆) (that is, a proper birational morphism with Y
smooth and f∗(KX + ∆), then we may write

KY ∼ f∗(KX + ∆) +
∑
E

a(E,∆) · E,

where the sum runs over the (prime) exceptional divisors of f . The coefficient a(E,∆) is called the (log)
discrepancy of E with respect to (X,∆).
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(3) Assuming ∆ =
∑
i diDi for di ∈ Q ∩ [0, 1] and Di prime, we say that a log pair (X,∆) is{

klt

lc
if for all exceptional divisors E over X, a(E,∆)

{
> −1 and b∆c = 0

≥ −1.

These abbreviations stand for Kawamata log terminal (klt) and log canonical (lc).

Remark 4.2. A few comments on why we care about pairs:

• Log pairs are useful to study open varieties: if X0 is a non-proper variety, take X to be a compactification
and ∆ to be the boundary, then (X,∆) is a log pair. Iitaka showed that, using (X,∆), one still has
well-defined de Rham cohomology groups for X0, independent of the choice of compactification.

• Log pairs offer more flexibility: there is more room to change ∆ without worrying about KX not being
Q-Cartier, or even to avoid issues like KX ≡num 0.

• Inductive proofs: in our applications, we will often modify ∆ so as to be able to run an induction
argument.

4.2. Statements of the Theorems.

Theorem 4.3 (Nonvanishing Theorem). Let (X,∆) be a klt pair and let L be a nef Cartier divisor on X.
Suppose there is p > 0 such that pL− (KX + ∆) is big and nef, then the linear system |nL| is nonempty for all
n� 0.

Theorem 4.4 (Basepoint-Free Theorem). Under the assumptions of Theorem 4.3, the linear system |nL| is
basepoint-free for all n� 0.
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