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1 Preliminaries on vector bundles

Let X be a (quasi-projective) variety over k. We follow [Shal3, Chap. 6, §1.2].

Definition. A family of vector spaces over X is a morphism of varieties 7: £ — X
such that for each x € X, the fiber E, := n~1(x) is isomorphic to a vector space
A’,;(x). A morphism of a family of vector spaces 7: £ — X and n': £/ — X is a
morphism f: E — E’ such that the following diagram commutes:

E—>E’

N /-

and the map f,: E, — E! is linear over k(x). f is an isomorphism if f, is an
isomorphism for all x.

A wvector bundle is a family of vector spaces that is locally trivial, i.e., for each
x € X, there exists a neighborhood U > =z such that there is an isomorphism
o: mY(U) = U x A" that is an isomorphism of families of vector spaces by the
following diagram:

—> Ux A"
\ / (1.1)

where pr; denotes the first projection. We call 7=1(U) — U the restriction of the
vector bundle 7: E — X onto U, denoted by E|y.

r is locally constant, hence is constant on every irreducible component of X. If
it is constant everywhere on X, we call r the rank of the vector bundle.
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The following lemma tells us how local trivializations of a vector bundle glue
together on the entire space X.

Lemma 1.1. For a vector bundle w: E — X and any nondisjoint open subsets
Ua,Ug C X with isomorphisms ., pg satisfying the diagram above with the
same value for r, the map ¢p o @ ': Uys x AT — U, X A is given by an r X r
invertible matriz in Ox(Uap), where Uyg = U, N Up.

Proof. Note that g0 ¢, ! defines an automorphism of the vector bundle pr;: U, X
A" — Uyp. It therefore suffices to show that an automorphism of a trivial vector
bundle, i.e., the vector bundle for which commutes for U = X, is given by an
r X r invertible matrix in O(X).

Let f denote our automorphism of the trivial bundle pry: X x A" — X, and let
e1,...,e. be abasis for A", with corresponding coordinates 1, ..., &, in O(A"). The
second projection pry: X x A”™ — A" give elements z; = pri(&;) € O(X x A"). A
point a = {x} x A" for fixed € X is then uniquely determined by the values z;(«).
So f is uniquely determined by specifying f*(z;) € X x A’.

Defining ¢; as the composite X = X x {e;} — X x A’, and setting a;; =
P (f(2;) € O(X), we have

[ (z;) = Zaijxi, (1.2)

since f,: {x} x A" — {x} x A" must be linear, and (a;;) is an r x r invertible matrix
in O(X) by repeating the process above for the inverse morphism f~!'. Conversely,
any such matrix defines an automorphism of the trivial bundle by (|1.2)). O

Since a vector bundle is locally trivial, we can construct one by gluing together
trivial bundles over an open cover of V. Let V' = (JU, be an open cover such that
m: E — V is trivial on each U,. For each U, first fix an isomorphism ¢, : W_I(Ua) 5
Uy x A", Over U, = U, NUpg, then, we have that ¢, o gogl gives an automorphism
of the trivial vector bundle U,3 x A", and is therefore given by an invertible r x r
matrix Cop in Ox (Uag) by Lemma [1.1] These matrices satisfy the conditions

Cag =1id and C’oW = 0qap o0 Cﬁv on UoégV = Ua N Uﬁ N UV' (13)

We see conversely that specifying such matrices with entries in Ox(U,p) define a
vector bundle provided they satisfy by gluing together the varieties U, x A"
along these isomorphisms.

We now show how different choices of ¢, give different matrices. Any other
isomorphism ¢/, is of the form ¢!, = f,p where f, is an automorphism of U, x A" —
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U,. By Lemma , fa can be expressed as a matrix B, with entries in Ox(U,)
with an inverse matrix of the same form; thus, we have new transition matrices
Cip = BaCagBﬂ_l. Conversely, any such change of the matrices C, leads to different
isomorphisms ¢,. Any such change, however, leads to isomorphic vector bundles via

the morphism of varieties defined by the ¢ ' o ¢/,

2 Vector bundles on A"

We would like to prove the following theorem:
Theorem 2.1. Every vector bundle over A™ is trivial.

There are two ways to go about this proof: if & = C we can use the analytic topology
on A" and E and prove this using topological methods. On the other hand, we can
also use purely algebraic methods, and so the lemma will hold for algebraic vector
bundles over any field k. We will present the latter. We will not prove the most
general case.

2.1 Vector bundles and locally free sheaves

Vector bundles over X, in fact, correspond to locally free sheaves of Ox-modules of
finite rank.

Definition. A section of a vector bundle 7: E — X is a morphism o: X — E such
that Too =id on X. Denote ['(U, E) to be the set of sections of the restriction F|y.

Proposition 2.2 ([Serb5, n°® 4]). There is a one-to-one correspondence between vec-
tor bundles over a variety X and locally free Ox-modules of finite rank, and between
trivial bundles and free Ox-modules of finite rank.

Proof. We assume X is irreducible, for if it is not, it suffices to show the proposition
on each irreducible component. Note this means that both the rank of a vector
bundle and the rank of a locally free Ox-module are constant.

If o(x) € I'(U,E) is a section on U, and f(z) € Ox(U), then f(x) - o(x) is
another section in I'(U, F), using the vector space structure on FE,. Similarly, if
o'(x) € I'(U, E), then o(x) + o'(x) is another section. Thus, I'(U, E) is an Ox(U)-
module for all U, and . (E): U — T'(U, E) is a presheaf of Ox(U)-modules, and is
a sheaf since morphisms of varieties are defined locally. Since 7: E — X is locally
isomorphic to the trivial bundle U x A", we see that the sheaf . is locally isomorphic
to O%.



Conversely, let .# be a locally free Ox-module of finite rank. Then, there exists
an open cover {U,} of X such that there are isomorphisms ¢o: F|y, = Oxlf; .
Then,

va 0wy Oxli, = Oxlp,

is an isomorphism of Ox|y,,-modules, given by a matrix C,s = (i) with ¢;; €
Ox(Uqp). These obviously satisfy (L.3)), and so we get a vector bundle E(.%).
Since these two operations . (—) and E(—) clearly define a correspondence be-
tween trivial bundles and free Ox-modules of finite rank, and since vector bundles
(resp. sheaves) can be uniquely glued together using the matrices C,5, we see that
we have a correspondence between vector bundles and locally free Ox-modules. [J

This reduces questions about vector bundles to questions about locally free sheaves
of finite rank.

2.2 Serre’s correspondence

We can reduce this question about locally free sheaves of finite rank further for affine
spaces to questions about modules using Serre’s correspondence [FAC, Ch. II, §4].

Let X = Spec A be the affine variety of a noetherian k-algebra A, and Oy its
structure sheaf.

Definition (Sheaf associated to a module). Let M be an A-module. A defines a
constant sheaf of rings on X denoted by &7, and M defines a constant sheaf of .o7-
modules denoted by .#Z. Put &/ (M) = Ox ®. #, the tensor product sheaf. We
call &7 (M) the sheaf associated to M. If ¢: M — M’ is an A-homomorphism, then
we get a morphism &7 (p) = id®p: & (M) — o/ (M'), and so o/ (—) is a functor.

Definition (Module associated to a sheaf). Let .# be an Ox-module. Define the
module associated to F asT'(F) = ['(X, F#); I'(F) is then an A-module. If¢p: F —
¢ is a morphism of Ox-modules, we get a morphism I'(¢)) by taking global sections.

If M is finitely generated, </ (M) is a coherent Ox-module; conversely, if .#
is a coherent Ox-module, I'(.#) is finitely generated [FAC| n°s 48, 49]. The two
operations &/ (—) and I'(—) are then “inverse” to each other:

Theorem 2.3 ([FAC| n° 49, Thm. 1]).
(a) If M is a finitely generated A-module, T'(o/ (M)) is canonically isomorphic
to M.
(b) If .Z is a coherent Ox-module, o7 (I'(:F)) is canonically isomorphic to F .



Using this correspondence, we find that vector bundles have a characterization
based on their global sections. Recall that an A-module M is projective if it is the
direct summand of a free A-module, or equivalently if M), is isomorphic to Aj for
some r for all p € X [FAC| n° 50, Prop. 4].

Now if .7 is a coherent Ox-module, and if .7, is isomorphic to O% ,, then it is
isomorphic to Ox|j; in a neighborhood U of p. If this holds for all p € X, then .#
is locally free of rank r, where r is constant on every irreducible component of X.
Applying the functor &7 (—) and using Prop. gives:

Corollary. Let F be a coherent Ox-module over an irreducible affine variety X.
Then, the following are equivalent:

(1) T'(F) is a projective A-module.

(13) Z is locally free of rank r.
(i13) F is of the form S (E) for some vector bundle E — X.

Moreover, if E is a vector bundle over X = Spec A, F — I'(<(F)) is then a
one-to-one correspondence between vector bundles and finitely generated projective
A-modules, in which trivial bundles correspond to free modules.

Theorem then takes the form:

Theorem . FEvery finitely generated projective A-module P for A = k[z1, ..., x,]
s free.

Note that the proof of this theorem in full generality is fairly involved; we will only
show a couple special cases.

2.3 The case n =1
The case n = 1 is rather simple. Recall that k[z] is a PID.

Proof of Theorem 2.1 Suppose P is a finitely generated projective module over
A = k[z]. Since k[x] is a PID, by the classification of finitely generated modules over
a PID, it can be decomposed into into A" @ T', where T is the torsion submodule of
P. But since P is projective, it is the direct summand of a free A-module, and so
cannot contain torsion elements. Hence T'=0 and P = A", i.e., P is free. ]

2.4 The case of rank 1 projectives

Let K be the fraction field of A = k[zy,...,x,]. If P is a projective A-module, let
rk P = dimg P ®4 K be the rank of P. We consider the case when rk P = 1. Recall
that k[zq,...,z,] is a UFD. We follow |[CE56, VII.3].
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Proof of Theorem [2.1[} Since P is torsion free, P C K ®g P = K since P has rank
1. Let ¢: FF — P be a homomorphism of a free module with base {e,} onto P;
then, the a, = ¥(e,) generate P. Since P is finitely generated, we can take F' to
be of finite rank. Since P is a finitely generated A-submodule of K, by clearing
denominators of its generators, we can identify P with some ideal of A, and assume
a, € A for all a.

Now P being projective is equivalent to the existence of a section p: P — F' such
that ¢ o ¢ = idp. Writing ¢(p) = >, ¢a(p)eq, we obtain morphisms ¢,: P — A.
The condition ¥ o ¢ = idp is then equivalent with

P=> Palp)ta. (2.1)

Now for each «, we have 2, (y) = po(2y) = ypa(z). Letting q, = po(z)/x € K for
some z # 0 in P gives ¢oy = ypa(z)/r = @u(y) for all y € P. Thus ¢, - P C A for
all ¢o, and so @ - P C A where Q =) A-¢,. (2.1) then becomes

P=> ¢aP)ta = (4uP)aa =P Gata,

(e}

and 50 ) ¢alq = 1.
Now write ¢, = fl—o‘ for b,,d, € A such that they share no common non-unit

factors. Since Z—Zaa € A for all «, f, it follows from unique factorization that dgs
divides a, for all pairs «, 5. So, letting d = fecm{dsz}, we have a, € A-d = P C
A -d. We also have the relation 1 = > ba g, from above; multiplying by d gives

a dg,

d=3 bag-0s € P. Thus, P=A-d= A O

3 Vector bundles on P!

We can now classify all vector bundles on P! following [HM82].

Let Uy = Speck[s] and U; = Speck[t], Uy = Speck(s,s7!] = Uy \ {0} and
Uip = Speck[t,t™1] = U; \ {0}. P! is then obtained by gluing together Uy, U; along
the isomorphism identifying Uy, and Uy by the isomorphism induced by k[s, s™1] =
k[t,t™1] defined by s+ ¢t~

Let 7: E — P! be a rank r vector bundle. By Theorem , E|y, is trivial for
i =0,1, ie., Ely, =2 U; x A”. Thus, up to isomorphism, E can be considered as
the result of gluing together Uy x A" and U; x A" along an isomorphism Uy \ {0} x
A" 5 Uy \ {0}A" which is given by (s,v) — (s7% A(s,s71)v), where A(s,s7') €



GL(r, k[s,s71]), i.e., it has nonzero determinant for all s # 0,s™1 # 0, and so
det A(s,s ') =c-s", n€Z, cek”. (3.1)

By the discussion at the end of §I] we note that depending on our choice of iso-
morphisms ¢;: 7~ H(U;) = U; x A", we can have different matrices A(s,s™!) that
give isomorphic vector bundles. But isomorphisms of Uy x A" are of the form
(s,v) — (s,U(s)v) for U(s) € GL(r, k[s]), so detU(s) € k*; similarly, isomor-
phisms of U; x A" correspond to V(s™!) € GL(r, k[s™']), so det V(s™!) € k*. This

gives us the following:

Proposition 3.1. Isomorphism classes of rank r vector bundles over P! are in one-
to-one correspondence to the set

{GL(r,k[s,s*D/A(S,S—l) ~ Al(s,57Y) = Al(s,s71) = V(s‘l)A(s,s_l)U(s)}

where U(s) € GL(r, k[s]), V(s7') € GL(r, k[s™']).

In particular, this means that we can assume that in (3.1]), the constant ¢ = 1.

3.1 A canonical form for matrices in GL(r, k[s, s71])/~

We now want to find a canonical form for matrices in this set GL(r, k[s, s7'])/~

defined in Proposition [3.1] above.

Proposition 3.2. Let A(s,s™ ') € GL(r, k[s, s7']) with det A(s,s™!) = s™ forn € Z.
Then, there exist U(s) € GL(r, k[s]), V(s™') € GL(r, k[s™']) such that

s 0

with dy > dy > -+- > d,, d; € Z. The d; are uniquely determined by A(s,s™1).

Proof. We first prove uniqueness. Write D(dy,...,d,) for the matrix on the right
side of (3.2). If there are two matrices D(dy,...,d,) and D(d},...,d.) equivalent to

»

A(s,s71), then there are U(s) € GL(r, k[s]), V(s™') € GL(r, k[s™']) such that

C=V(s"HYD(dy,...,d.)=D(d,...,d)U(s). (3.3)



We now recall the Cauchy-Binet formula [Gan59, I, §2.5]. If A is an m x n matrix
and B is an n X ¢ matrix, denoting

A i.l i.2 Zik
Ji o J2 o Jk

to be the minor of A obtained by taking the determinant of A after removing all
rows with index in {1,...,r}\ {i1,...,i} and removing all columns with index in

{1,....,7}\ {1, .-, Jx}, then
(AB)(il iy - ik): Z A(il iy - Z'k)B(gl Oy - gk)
giode code) A, T\ e ) T\ G e )

We want to apply this to (3.3]). We first note

D(dl,...,dr)(g.l b 15.’“);&0 = ;= j;Vi.
Ju o J2 o Jk

Thus, we have

o2 Bavien (L2 )

1 12 3% (AT R 7
= st (02 )
11 19 - 1
for all k& and sequences i; < iy < -+ < ig. Since det U(s) # 0, for all k, there exists
at least one sequence i; < iy < --- < i such that
1 2 ... k
U(s) <i1 i e Zk;) # 0.

Thus, d} +d5+---d, < d;, +diy +---+d;, < dy+do+---dy for all k. Multiplying
on the right by U(s)™! and on the left by V(s71)~! in and applying the same
argument, we get dy +do + ---dp < dy +dy, + ---dj, for all k. Thus, d; = d} for all
1=1,...,r.

We now prove existence. We proceed by induction. For r» = 1, the proposition
clearly holds. Now for arbitrary r, we assume it works for (r — 1) x (r — 1) matrices.
First multiply A(s,s™!) by s™ for some n € Zsq so that we obtain a polynomial matrix
B(s). Now by multiplying B(s) by suitable U(s) on the right, i.e., by performing
elementary column operations, we can find a B = (b;) with b}, # 0 and b}, = 0 for
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all i = 2,...,r (then, b}, = ged{by;}). Then, b}, = s* for some k; since det B(s) is
some power of s. Denoting By(s) to be the lower-right (r — 1) x (r — 1) submatrix
of B, by induction there exist Us(s), Va(s™!) such that Va(s71)Ba(s)Us(s) is of the
form on the right hand side of . Then, we have

0 0
0= ue) 2l o) =TT "] 6o
¢ 0 ghr

for some ki, ..., k., € Zso and cs, ..., ¢, € k[s,s™!]. By multiplying C(s) by suitable
V(s71) on the left, i.e., by performing elementary row operations, we can assume
that ¢; € k[s] for all .

Now consider all matrices equivalent to B(s) of the form (3.4). There is one
representative with k; maximal, for ko,..., k. > 0 implies k; < deg(det B(s)). We
claim that ky > k; for all © = 2,...,r. So suppose k; < k;. Subtracting a suitable
k[s~!]-multiple of the first row, then has ¢; = s¥171¢/(s) for some ¢/(s) € k[s].
Interchanging the first and i-th rows, we get a polynomial matrix B’(s) such that
the greatest common divisor of the first row is s with &/ > k; + 1. But applying
to B'(s) the same process as above for B(s), we get a C’(s) of the form (3.4)) with
K} > k1, contradicting maximality of k.

We can therefore assume in that k; > k; and ¢; € k[s] for i = 2,...,r. Now
subtracting suitable k[s]-multiples of the ith column for i = 2,... r from the first
column (i.e., multiplying by suitable U(s) on the right) we get a matrix (3.4) with
degc; < k; for all . Then, degc; < ki, and so subtracting suitable k[s~!]-multiples
of the first row from the ith row (i.e., multiplying by suitable V(s7!) on the left),
we get g = c3 = --- = ¢, = 0in (3.4). This shows that there are ky,..., k. € Z>,
ky > kg >+ >k, and U(s) € GL(r, k[s]), V(s™') € GL(r, k[s™']) such that

V(s 1)s"A(s,s YU (s) = V(s HB(s)U(s) = D(k1,..., k).
Multiplying by s~ gives
V(s HA(s,s )U(s) = D(dy,...,d,), di=Fk —n. O

3.2 Classification of vector bundles over P!

Let O(d), d € Z be the line bundle over P! defined by the gluing matrix A(s,s™!) =
574, Then, the bundle defined by the gluing matrix A(s,s™!) = D(dy,...,d,) is
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equal to the direct sum O(—dy), ..., O(—d,), for the direct sum of two vector bundles
defined by gluing matrices Co3 and D, on the same cover is defined as the vector
bundle defined by gluing matrices Cog ® Dyg. We then have

Theorem 3.3. Let E be a rank r vector bundle over P which is defined over k.
Then E is isomorphic over k to a direct sum of line bundles

E=0k)® - ®0(k), k1> >k K EZL i=1,...,m

and the k; are uniquely determined by the isomorphism class of E.

4 Line bundles on P"

Recall that Pic(X) (as a set) is the isomorphism classes of line bundles (vector
bundles of rank 1) on X. Theorem in the case r = 1 then gives

Corollary. Pic(P') =Z = {0(d) | d € Z}.

We would like to generalize this to P™ = Proj k[so, . . ., s,). Since we have shown
Theorem for arbitrary n in the case r = 1, we see that as before, a line bundle is
trivial on each affine chart Uy, ..., U,, where U; = {s; # 0}.

In this case, we see that the transition matrices Cj; are given by

for some d, by the same reasoning as in . The cocycle condition ([1.3]) gives us

d; dii d;
ZT; k ZT; J l’j gk
Tk T Tp ’

and so d;; = dj for all i, j, k. Defining O(d) as the line bundle defined by gluing
matrices C;; = (x;/2;)® (note that this matches what we had for P! since we defined
s = x1/xg), we see that then, all line bundles on P™ are isomorphic to O(d) for some
d e Z, and so

Theorem 4.1. Pic(P") =Z = {O(d) | d € Z}.
Finally, we prove the following:

Theorem 4.2. I'(X, O(d)) = k[zo, ..., Tu)a, the d-graded piece of k[xy, ..., x,]| con-
sisting of homogeneous polynomials of degree d in k[xq,. .., Ty]q.
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Proof. Recall that sections are morphisms o: P" — E such that 7w oo = idp». Since
E|ly, = U; x A! for each open affine U; = {z; # 0}, and these U; are glued via
transition matrices above, we see that a morphism o consists of all n+ 1-tuples
of regular functions (oo, ...,0,) such that o; = o; on U;; for all ¢,j via the gluing

defined in (4.1), i.e., Cj;0; = 0. Thus, we have

d
Z;
J}j 7

where 0; € k[22, ... R T ] and similarly for o, for all 4, j. But this is

possible if and only if deg 0 S d for all 1; we also note that one choice of ¢; uniquely
determines all other ¢;. But the polynomials in A[20,... #=t 1 %= 2e] of de-

gree less than d are in bijection with the homogeneous polynomials of degree d in
k[xo, ..., z,] by multiplying o; by x;. Thus, we are done. O
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