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1 Preliminaries on vector bundles

Let X be a (quasi-projective) variety over k. We follow [Sha13, Chap. 6, §1.2].

Definition. A family of vector spaces over X is a morphism of varieties π : E → X
such that for each x ∈ X, the fiber Ex := π−1(x) is isomorphic to a vector space
Ar
k(x). A morphism of a family of vector spaces π : E → X and π′ : E ′ → X is a

morphism f : E → E ′ such that the following diagram commutes:

E E ′

X

f

π π′

and the map fx : Ex → E ′x is linear over k(x). f is an isomorphism if fx is an
isomorphism for all x.

A vector bundle is a family of vector spaces that is locally trivial, i.e., for each
x ∈ X, there exists a neighborhood U 3 x such that there is an isomorphism
ϕ : π−1(U)

∼→ U × Ar that is an isomorphism of families of vector spaces by the
following diagram:

π−1(U) U ×Ar

U

∼
ϕ

π pr1
(1.1)

where pr1 denotes the first projection. We call π−1(U) → U the restriction of the
vector bundle π : E → X onto U , denoted by E|U .

r is locally constant, hence is constant on every irreducible component of X. If
it is constant everywhere on X, we call r the rank of the vector bundle.
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The following lemma tells us how local trivializations of a vector bundle glue
together on the entire space X.

Lemma 1.1. For a vector bundle π : E → X and any nondisjoint open subsets
Uα, Uβ ⊂ X with isomorphisms ϕα, ϕβ satisfying the diagram (1.1) above with the
same value for r, the map ϕβ ◦ ϕ−1α : Uαβ × Ar → Uαβ × Ar is given by an r × r
invertible matrix in OX(Uαβ), where Uαβ := Uα ∩ Uβ.

Proof. Note that ϕβ ◦ϕ−1α defines an automorphism of the vector bundle pr1 : Uαβ ×
Ar → Uαβ. It therefore suffices to show that an automorphism of a trivial vector
bundle, i.e., the vector bundle for which (1.1) commutes for U = X, is given by an
r × r invertible matrix in O(X).

Let f denote our automorphism of the trivial bundle pr1 : X ×Ar → X, and let
e1, . . . , er be a basis for Ar, with corresponding coordinates ξ1, . . . , ξr in O(Ar). The
second projection pr2 : X ×Ar → Ar give elements xi = pr∗2(ξi) ∈ O(X ×Ar). A
point α = {x}×Ar for fixed x ∈ X is then uniquely determined by the values xi(α).
So f is uniquely determined by specifying f ∗(xi) ∈ X ×Ar.

Defining ϕi as the composite X
∼→ X × {ei} ↪→ X × Ar, and setting aij =

ϕ∗i (f
∗(xj)) ∈ O(X), we have

f ∗(xj) =
∑

aijxi, (1.2)

since fx : {x}×Ar → {x}×Ar must be linear, and (aij) is an r× r invertible matrix
in O(X) by repeating the process above for the inverse morphism f−1. Conversely,
any such matrix defines an automorphism of the trivial bundle by (1.2).

Since a vector bundle is locally trivial, we can construct one by gluing together
trivial bundles over an open cover of V . Let V =

⋃
Uα be an open cover such that

π : E → V is trivial on each Uα. For each Uα, first fix an isomorphism ϕα : π−1(Uα)
∼→

Uα ×Ar. Over Uαβ := Uα ∩Uβ, then, we have that ϕα ◦ ϕ−1β gives an automorphism
of the trivial vector bundle Uαβ ×Ar, and is therefore given by an invertible r × r
matrix Cαβ in OX(Uαβ) by Lemma 1.1. These matrices satisfy the conditions

Cαβ = id and Cαγ = Cαβ ◦ Cβγ on Uαβγ := Uα ∩ Uβ ∩ Uγ. (1.3)

We see conversely that specifying such matrices with entries in OX(Uαβ) define a
vector bundle provided they satisfy (1.3) by gluing together the varieties Uα × Ar

along these isomorphisms.
We now show how different choices of ϕα give different matrices. Any other

isomorphism ϕ′α is of the form ϕ′α = fαϕα where fα is an automorphism of Uα×Ar →
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Uα. By Lemma 1.1, fα can be expressed as a matrix Bα with entries in OX(Uα)
with an inverse matrix of the same form; thus, we have new transition matrices
C ′αβ = BαCαβB

−1
β . Conversely, any such change of the matrices Cαβ leads to different

isomorphisms ϕα. Any such change, however, leads to isomorphic vector bundles via
the morphism of varieties defined by the ϕ−1α ◦ ϕ′α.

2 Vector bundles on An

We would like to prove the following theorem:

Theorem 2.1. Every vector bundle over An is trivial.

There are two ways to go about this proof: if k = C we can use the analytic topology
on An and E and prove this using topological methods. On the other hand, we can
also use purely algebraic methods, and so the lemma will hold for algebraic vector
bundles over any field k. We will present the latter. We will not prove the most
general case.

2.1 Vector bundles and locally free sheaves

Vector bundles over X, in fact, correspond to locally free sheaves of OX-modules of
finite rank.

Definition. A section of a vector bundle π : E → X is a morphism σ : X → E such
that π ◦σ = id on X. Denote Γ(U,E) to be the set of sections of the restriction E|U .

Proposition 2.2 ([Ser55, no 4]). There is a one-to-one correspondence between vec-
tor bundles over a variety X and locally free OX-modules of finite rank, and between
trivial bundles and free OX-modules of finite rank.

Proof. We assume X is irreducible, for if it is not, it suffices to show the proposition
on each irreducible component. Note this means that both the rank of a vector
bundle and the rank of a locally free OX-module are constant.

If σ(x) ∈ Γ(U,E) is a section on U , and f(x) ∈ OX(U), then f(x) · σ(x) is
another section in Γ(U,E), using the vector space structure on Ex. Similarly, if
σ′(x) ∈ Γ(U,E), then σ(x) + σ′(x) is another section. Thus, Γ(U,E) is an OX(U)-
module for all U , and S (E) : U 7→ Γ(U,E) is a presheaf of OX(U)-modules, and is
a sheaf since morphisms of varieties are defined locally. Since π : E → X is locally
isomorphic to the trivial bundle U×Ar, we see that the sheaf S is locally isomorphic
to OrX .
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Conversely, let F be a locally free OX-module of finite rank. Then, there exists
an open cover {Uα} of X such that there are isomorphisms ϕα : F |Uα

∼→ OX |rUα .
Then,

ϕα ◦ ϕ−1β : OX |rUαβ
∼→ OX |rUαβ

is an isomorphism of OX |Uαβ -modules, given by a matrix Cαβ = (cij) with cij ∈
OX(Uαβ). These obviously satisfy (1.3), and so we get a vector bundle E(F ).

Since these two operations S (−) and E(−) clearly define a correspondence be-
tween trivial bundles and free OX-modules of finite rank, and since vector bundles
(resp. sheaves) can be uniquely glued together using the matrices Cαβ, we see that
we have a correspondence between vector bundles and locally free OX-modules.

This reduces questions about vector bundles to questions about locally free sheaves
of finite rank.

2.2 Serre’s correspondence

We can reduce this question about locally free sheaves of finite rank further for affine
spaces to questions about modules using Serre’s correspondence [FAC, Ch. II, §4].

Let X = SpecA be the affine variety of a noetherian k-algebra A, and OX its
structure sheaf.

Definition (Sheaf associated to a module). Let M be an A-module. A defines a
constant sheaf of rings on X denoted by A , and M defines a constant sheaf of A -
modules denoted by M . Put A (M) = OX ⊗A M , the tensor product sheaf. We
call A (M) the sheaf associated to M . If ϕ : M → M ′ is an A-homomorphism, then
we get a morphism A (ϕ) := id⊗ϕ : A (M)→ A (M ′), and so A (−) is a functor.

Definition (Module associated to a sheaf). Let F be an OX-module. Define the
module associated to F as Γ(F ) := Γ(X,F ); Γ(F ) is then an A-module. If ψ : F →
G is a morphism of OX-modules, we get a morphism Γ(ψ) by taking global sections.

If M is finitely generated, A (M) is a coherent OX-module; conversely, if F
is a coherent OX-module, Γ(F ) is finitely generated [FAC, nos 48, 49]. The two
operations A (−) and Γ(−) are then “inverse” to each other:

Theorem 2.3 ([FAC, no 49, Thm. 1]).
(a) If M is a finitely generated A-module, Γ(A (M)) is canonically isomorphic

to M .
(b) If F is a coherent OX-module, A (Γ(F )) is canonically isomorphic to F .
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Using this correspondence, we find that vector bundles have a characterization
based on their global sections. Recall that an A-module M is projective if it is the
direct summand of a free A-module, or equivalently if Mp is isomorphic to Arp for
some r for all p ∈ X [FAC, no 50, Prop. 4].

Now if F is a coherent OX-module, and if Fp is isomorphic to OrX,p, then it is
isomorphic to OX |rU in a neighborhood U of p. If this holds for all p ∈ X, then F
is locally free of rank r, where r is constant on every irreducible component of X.
Applying the functor A (−) and using Prop. 2.2 gives:

Corollary. Let F be a coherent OX-module over an irreducible affine variety X.
Then, the following are equivalent:

(i) Γ(F ) is a projective A-module.
(ii) F is locally free of rank r.

(iii) F is of the form S (E) for some vector bundle E → X.

Moreover, if E is a vector bundle over X = SpecA, E 7→ Γ(S (E)) is then a
one-to-one correspondence between vector bundles and finitely generated projective
A-modules, in which trivial bundles correspond to free modules.

Theorem 2.1 then takes the form:

Theorem 2.1*. Every finitely generated projective A-module P for A = k[x1, . . . , xn]
is free.

Note that the proof of this theorem in full generality is fairly involved; we will only
show a couple special cases.

2.3 The case n = 1

The case n = 1 is rather simple. Recall that k[x] is a PID.

Proof of Theorem 2.1*. Suppose P is a finitely generated projective module over
A = k[x]. Since k[x] is a PID, by the classification of finitely generated modules over
a PID, it can be decomposed into into Ar ⊕ T , where T is the torsion submodule of
P . But since P is projective, it is the direct summand of a free A-module, and so
cannot contain torsion elements. Hence T = 0 and P = Ar, i.e., P is free.

2.4 The case of rank 1 projectives

Let K be the fraction field of A = k[x1, . . . , xn]. If P is a projective A-module, let
rkP = dimK P ⊗AK be the rank of P . We consider the case when rkP = 1. Recall
that k[x1, . . . , xn] is a UFD. We follow [CE56, VII.3].
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Proof of Theorem 2.1*. Since P is torsion free, P ⊂ K ⊗R P ∼= K since P has rank
1. Let ψ : F → P be a homomorphism of a free module with base {eα} onto P ;
then, the aα = ψ(eα) generate P . Since P is finitely generated, we can take F to
be of finite rank. Since P is a finitely generated A-submodule of K, by clearing
denominators of its generators, we can identify P with some ideal of A, and assume
aα ∈ A for all α.

Now P being projective is equivalent to the existence of a section ϕ : P → F such
that ψ ◦ ϕ = idP . Writing ϕ(p) =

∑
α ϕα(p)eα, we obtain morphisms ϕα : P → A.

The condition ψ ◦ ϕ = idP is then equivalent with

p =
∑
α

ϕα(p)aα. (2.1)

Now for each α, we have xϕα(y) = ϕα(xy) = yϕα(x). Letting qα = ϕα(x)/x ∈ K for
some x 6= 0 in P gives qαy = yϕα(x)/x = ϕα(y) for all y ∈ P . Thus qα · P ⊂ A for
all qα, and so Q · P ⊂ A where Q :=

∑
αA · qα. (2.1) then becomes

p =
∑
α

ϕα(p)aα =
∑
α

(qαp)aα = p
∑
α

qαaα,

and so
∑

α qαaα = 1.
Now write qα = bα

dα
for bα, dα ∈ A such that they share no common non-unit

factors. Since
bβ
dβ
aα ∈ A for all α, β, it follows from unique factorization that dβ

divides aα for all pairs α, β. So, letting d = `cm{dβ}, we have aα ∈ A · d =⇒ P ⊂
A · d. We also have the relation 1 =

∑
α
bα
dα
aα from above; multiplying by d gives

d =
∑

α bα
d
dα
aα ∈ P . Thus, P = A · d ∼= A.

3 Vector bundles on P1

We can now classify all vector bundles on P1 following [HM82].
Let U0 = Spec k[s] and U1 = Spec k[t], U01 = Spec k[s, s−1] = U0 \ {0} and

U10 = Spec k[t, t−1] = U1 \ {0}. P1 is then obtained by gluing together U0, U1 along
the isomorphism identifying U01 and U10 by the isomorphism induced by k[s, s−1]

∼→
k[t, t−1] defined by s 7→ t−1.

Let π : E → P1 be a rank r vector bundle. By Theorem 2.1, E|Ui is trivial for
i = 0, 1, i.e., E|Ui ∼= Ui × Ar. Thus, up to isomorphism, E can be considered as
the result of gluing together U0 ×Ar and U1 ×Ar along an isomorphism U0 \ {0} ×
Ar ∼→ U1 \ {0}Ar which is given by (s, v) 7→ (s−1, A(s, s−1)v), where A(s, s−1) ∈
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GL(r, k[s, s−1]), i.e., it has nonzero determinant for all s 6= 0, s−1 6= 0, and so

detA(s, s−1) = c · sn, n ∈ Z, c ∈ k×. (3.1)

By the discussion at the end of §1, we note that depending on our choice of iso-
morphisms ϕi : π

−1(Ui)
∼→ Ui × Ar, we can have different matrices A(s, s−1) that

give isomorphic vector bundles. But isomorphisms of U0 × Ar are of the form
(s, v) 7→ (s, U(s)v) for U(s) ∈ GL(r, k[s]), so detU(s) ∈ k×; similarly, isomor-
phisms of U1 ×Ar correspond to V (s−1) ∈ GL(r, k[s−1]), so detV (s−1) ∈ k×. This
gives us the following:

Proposition 3.1. Isomorphism classes of rank r vector bundles over P1 are in one-
to-one correspondence to the set{

GL(r, k[s, s−1])
/
A(s, s−1) ∼ A′(s, s−1) ⇐⇒ A′(s, s−1) = V (s−1)A(s, s−1)U(s)

}
where U(s) ∈ GL(r, k[s]), V (s−1) ∈ GL(r, k[s−1]).

In particular, this means that we can assume that in (3.1), the constant c = 1.

3.1 A canonical form for matrices in GL(r, k[s, s−1])/∼
We now want to find a canonical form for matrices in this set GL(r, k[s, s−1])/∼
defined in Proposition 3.1 above.

Proposition 3.2. Let A(s, s−1) ∈ GL(r, k[s, s−1]) with detA(s, s−1) = sn for n ∈ Z.
Then, there exist U(s) ∈ GL(r, k[s]), V (s−1) ∈ GL(r, k[s−1]) such that

V (s−1)A(s, s−1)U(s) =


sd1 0

sd2

. . .

0 sdr

 (3.2)

with d1 ≥ d2 ≥ · · · ≥ dr, di ∈ Z. The di are uniquely determined by A(s, s−1).

Proof. We first prove uniqueness. Write D(d1, . . . , dr) for the matrix on the right
side of (3.2). If there are two matrices D(d1, . . . , dr) and D(d′1, . . . , d

′
r) equivalent to

A(s, s−1), then there are U(s) ∈ GL(r, k[s]), V (s−1) ∈ GL(r, k[s−1]) such that

C = V (s−1)D(d1, . . . , dr) = D(d′1, . . . , d
′
r)U(s). (3.3)
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We now recall the Cauchy-Binet formula [Gan59, I, §2.5]. If A is an m × n matrix
and B is an n× q matrix, denoting

A

(
i1 i2 · · · ik
j1 j2 · · · jk

)
to be the minor of A obtained by taking the determinant of A after removing all
rows with index in {1, . . . , r} \ {i1, . . . , ik} and removing all columns with index in
{1, . . . , r} \ {j1, . . . , jk}, then

(AB)

(
i1 i2 · · · ik
j1 j2 · · · jk

)
=

∑
`1<`2<···<`k

A

(
i1 i2 · · · ik
`1 `2 · · · `k

)
B

(
`1 `2 · · · `k
j1 j2 · · · jk

)
.

We want to apply this to (3.3). We first note

D(d1, . . . , dr)

(
`1 `2 · · · `k
j1 j2 · · · jk

)
6= 0 ⇐⇒ ri = ji∀i.

Thus, we have

C

(
1 2 · · · k
i1 i2 · · · ik

)
= V (s−1)

(
1 2 · · · k
i1 i2 · · · ik

)
sdi1+di2+···+dik

= sd
′
1+d

′
2+···+d′kU(s)

(
1 2 · · · k
i1 i2 · · · ik

)
for all k and sequences i1 < i2 < · · · < ik. Since detU(s) 6= 0, for all k, there exists
at least one sequence i1 < i2 < · · · < ik such that

U(s)

(
1 2 · · · k
i1 i2 · · · ik

)
6= 0.

Thus, d′1 + d′2 + · · · d′k ≤ di1 + di2 + · · ·+ dik ≤ d1 + d2 + · · · dk for all k. Multiplying
on the right by U(s)−1 and on the left by V (s−1)−1 in (3.3) and applying the same
argument, we get d1 + d2 + · · · dk ≤ d′1 + d′2 + · · · d′k for all k. Thus, di = d′i for all
i = 1, . . . , r.

We now prove existence. We proceed by induction. For r = 1, the proposition
clearly holds. Now for arbitrary r, we assume it works for (r− 1)× (r− 1) matrices.
First multiply A(s, s−1) by sn for some n ∈ Z≥0 so that we obtain a polynomial matrix
B(s). Now by multiplying B(s) by suitable U(s) on the right, i.e., by performing
elementary column operations, we can find a B = (b′ij) with b′11 6= 0 and b′1i = 0 for
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all i = 2, . . . , r (then, b′11 = gcd{b1i}). Then, b′11 = sk1 for some k1 since detB(s) is
some power of s. Denoting B2(s) to be the lower-right (r − 1) × (r − 1) submatrix
of B, by induction there exist U2(s), V2(s

−1) such that V2(s
−1)B2(s)U2(s) is of the

form on the right hand side of (3.2). Then, we have

C(s) =

(
1 0
0 V2(s

−1)

)
B

(
1 0
0 U2(s)

)
=


sk1 0 · · · 0
c2 sk2 0
...

. . .

cr 0 skr

 (3.4)

for some k1, . . . , kr ∈ Z≥0 and c2, . . . , cr ∈ k[s, s−1]. By multiplying C(s) by suitable
V (s−1) on the left, i.e., by performing elementary row operations, we can assume
that ci ∈ k[s] for all i.

Now consider all matrices equivalent to B(s) of the form (3.4). There is one
representative with k1 maximal, for k2, . . . , kr ≥ 0 implies k1 ≤ deg(detB(s)). We
claim that k1 ≥ ki for all i = 2, . . . , r. So suppose k1 < ki. Subtracting a suitable
k[s−1]-multiple of the first row, (3.4) then has ci = sk1+1c′(s) for some c′(s) ∈ k[s].
Interchanging the first and i-th rows, we get a polynomial matrix B′(s) such that
the greatest common divisor of the first row is sk

′
1 with k′1 ≥ k1 + 1. But applying

to B′(s) the same process as above for B(s), we get a C ′(s) of the form (3.4) with
k′1 > k1, contradicting maximality of k1.

We can therefore assume in (3.4) that k1 ≥ ki and ci ∈ k[s] for i = 2, . . . , r. Now
subtracting suitable k[s]-multiples of the ith column for i = 2, . . . , r from the first
column (i.e., multiplying by suitable U(s) on the right) we get a matrix (3.4) with
deg ci ≤ ki for all i. Then, deg ci < k1, and so subtracting suitable k[s−1]-multiples
of the first row from the ith row (i.e., multiplying by suitable V (s−1) on the left),
we get c2 = c3 = · · · = cr = 0 in (3.4). This shows that there are k1, . . . , kr ∈ Z≥0,
k1 ≥ k2 ≥ · · · ≥ kr and U(s) ∈ GL(r, k[s]), V (s−1) ∈ GL(r, k[s−1]) such that

V (s−1)snA(s, s−1)U(s) = V (s−1)B(s)U(s) = D(k1, . . . , kr).

Multiplying by s−n gives

V (s−1)A(s, s−1)U(s) = D(d1, . . . , dr), di = ki − n.

3.2 Classification of vector bundles over P1

Let O(d), d ∈ Z be the line bundle over P1 defined by the gluing matrix A(s, s−1) =
s−d. Then, the bundle defined by the gluing matrix A(s, s−1) = D(d1, . . . , dr) is
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equal to the direct sum O(−d1), . . . ,O(−dr), for the direct sum of two vector bundles
defined by gluing matrices Cαβ and Dαβ on the same cover is defined as the vector
bundle defined by gluing matrices Cαβ ⊕Dαβ. We then have

Theorem 3.3. Let E be a rank r vector bundle over P1 which is defined over k.
Then E is isomorphic over k to a direct sum of line bundles

E ∼= O(κ1)⊕ · · · ⊕ O(κr), κ1 ≥ · · · ≥ κr, κi ∈ Z, i = 1, . . . , r,

and the κi are uniquely determined by the isomorphism class of E.

4 Line bundles on Pn

Recall that Pic(X) (as a set) is the isomorphism classes of line bundles (vector
bundles of rank 1) on X. Theorem 3.3 in the case r = 1 then gives

Corollary. Pic(P1) = Z = {O(d) | d ∈ Z}.

We would like to generalize this to Pn = Proj k[s0, . . . , sn]. Since we have shown
Theorem 2.1 for arbitrary n in the case r = 1, we see that as before, a line bundle is
trivial on each affine chart U0, . . . , Un, where Ui = {si 6= 0}.

In this case, we see that the transition matrices Cij are given by

Cij =

(
xi
xj

)d
(4.1)

for some d, by the same reasoning as in §3. The cocycle condition (1.3) gives us(
xi
xk

)dik
=

(
xi
xj

)dij (xj
xk

)djk
,

and so dij = djk for all i, j, k. Defining O(d) as the line bundle defined by gluing
matrices Cij = (xi/xj)

d (note that this matches what we had for P1 since we defined
s = x1/x0), we see that then, all line bundles on Pn are isomorphic to O(d) for some
d ∈ Z, and so

Theorem 4.1. Pic(Pn) = Z = {O(d) | d ∈ Z}.

Finally, we prove the following:

Theorem 4.2. Γ(X,O(d)) = k[x0, . . . , xn]d, the d-graded piece of k[x0, . . . , xn] con-
sisting of homogeneous polynomials of degree d in k[x0, . . . , xn]d.

10



Proof. Recall that sections are morphisms σ : Pn → E such that π ◦ σ = idPn . Since
E|Ui ∼= Ui × A1 for each open affine Ui = {xi 6= 0}, and these Ui are glued via
transition matrices (4.1) above, we see that a morphism σ consists of all n+ 1-tuples
of regular functions (σ0, . . . , σn) such that σi = σj on Uij for all i, j via the gluing
defined in (4.1), i.e., Cijσi = σj. Thus, we have(

xi
xj

)d
σi = σj,

where σi ∈ k[x0
xi
, . . . , xi−1

xi
, 1, xi+1

xi
, . . . , xn

xi
], and similarly for σj, for all i, j. But this is

possible if and only if deg σi ≤ d for all i; we also note that one choice of σi uniquely
determines all other σj. But the polynomials in k[x0

xi
, . . . , xi−1

xi
, 1, xi+1

xi
, . . . , xn

xi
] of de-

gree less than d are in bijection with the homogeneous polynomials of degree d in
k[x0, . . . , xn] by multiplying σi by xi. Thus, we are done.
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