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1. Introduction

Consider G a compact, connected Lie group. A maximal torus is a subgroup of G that is also a torus
Tk ' Rk/Zk, and is a maximal such subgroup with respect to inclusion. The Weyl group of G, defined as
W = N(T )/T for a maximal torus T , depends definitionally on the choice of a maximal torus T , but by
showing that any two tori are conjugate, we can see that W is unique up to isomorphism. This also shows
that every conjugacy class in G meets T , and so to compute the integral of a class function, i.e., a function
invariant under conjugation (such as the inner product of two characters), it should suffice to integrate only
over the torus. The formula that allows this is the important Weyl Integration Formula (Theorem 4.1),
which is fundamental in representation theory and in other areas like random matrix theory.

What is in fact remarkable about the conjugacy theorem and the Weyl Integration formula is the variety
of approaches one can take in proving them, although the conjugacy theorem was first found by Élie Cartan
and the Weyl Integration formula by Hermann Weyl. Some are based on the Hopf-Rinow theorem from
differential geometry [4], others are based on André Weil’s proof using the Lefschetz fixed-point formula
from algebraic topology [1], and still others are based on a (rather tedious, yet enlightening) move back
and forth between G and its associated Lie algebra, where there is a similar theorem on the conjugacy of
Cartan subalgebras, which has an elegant proof due to Hunt [7], [8]. In previous versions of this paper, I
have actually written up (most of) the Hopf-Rinow and Lie algebraic proofs, which I can provide for those
interested. Here we take yet another approach, mostly following [3], which relies on the notion of mapping
degree (see Theorem 3.3).

I would like to thank Tasho Kaletha for his guidance throughout our seminar, and Simon Segert for
helping me in revising this paper.

2. Definitions and Preliminaries

In this paper, “Lie group” will mean “finite dimensional real Lie group,” and G will refer to a compact
connected Lie group, unless stated otherwise.

Definition. A Lie subgroup T 6 G is a maximal torus if T is a torus, i.e., a compact, connected, abelian
subgroup, and is a maximal such subgroup with respect to inclusion.

{ e } is a torus. Since tori are compact and connected, if T ( T ′, then dimT < dimT ′. Since dimG <∞,
this shows maximal tori exist. We also note that a torus is a maximal abelian subgroup, for if A is larger,
then A is a closed connected abelian subgroup, and hence a torus, contradicting maximality. The converse
does not hold in general.

Our notion of tori is not the “intuitive” one of Tk ' Rk/Zk, the torus of dimension k. We would like to
show they are equivalent. But first, we give two examples in Lie groups we have already studied closely:

Example 2.1 (SU(n)). Let

T = { diag(exp(iθ1), . . . , exp(iθn)) |
∑

θj = 0 } 6 SU(n) = {X ∈ SL(n,C) | X∗X = I } .

T is compact, connected, and abelian since it is isomorphic to Tn−1, and maximal since any non-diagonal
matrix would not commute with elements in T ; thus, T is a maximal torus of SU(n).

Example 2.2 (Sp(n)). Let

T = { diag(exp(iθ1), . . . , exp(iθn)) } 6 Sp(n) = {X ∈ GL(n,H) | X∗X = I }
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T is compact, connected, and abelian since it is isomorphic to Tn, and maximal since any non-diagonal
matrix would not commute with elements in T , and moreover, any diagonal matrix with entries in H \ C
would not commute either; thus, T is a maximal torus of Sp(n).

We now will show that any maximal torus is isomorphic to Tk for some k, but we first need a few lemmas.

Lemma 2.3. Let G be a connected Lie group and U a neighborhood of e. Then U generates G, i.e.,
G =

⋃∞
n=1 U

n where Un consists of all n-fold products of elements of U .

Proof. Let V = U ∩U−1, where U−1 is the set of inverses of elements in U ; V is open since the inverse map
is continuous. Let H =

⋃∞
n=1 V

n, which is an open subgroup containing e. For g ∈ G, gH = { gh | h ∈ H }
contains g and is open for any g ∈ G, since left multiplication by g−1 is continuous. If we pick a representative
gαH for each coset in G/H, then G =

∐
α gαH. Connectedness of G implies G = eH. �

We recall our definitions for the various “adjoint” actions. Recall from 10/12 that for any g ∈ G, we have
the conjugation action:

Ad(g) : G→ G, h 7→ ghg−1.

The differential of Ad at e ∈ G provides a linear map

Ad(g) : g→ g.

From the chain rule, Ad(gh) = Ad(g) ◦Ad(h), and so we have a homomorphism of Lie groups

Ad : G→ GL(g).

Differentiating this homomorphism we obtain

ad : g→ End(g).

We then have the following theorem from 10/12 concerning the exponential map and its relationship with
these adjoint actions:

Theorem 2.4. There exists a smooth map expG : g→ G with the following properties:
(a) d expG(e) = idg.
(b) Ad ◦ expG = expGL(g) ◦ ad.

(c) Ad(x) ◦ expG = expG ◦Ad(x), x ∈ G.

from which we have the easy consequence

Lemma 2.5. Let G be a compact Lie group, and g = Lie(G).
(a) The map exp : g→ G is a local diffeomorphism near 0.
(b) When G is connected, exp g generates G.

Proof. (b) follows from (a) and Lemma 2.3, and so it suffices to show (a). Since d exp(e) = idg from Theorem
2.4, we are done by the Inverse Mapping theorem. �

Note that this does not prove that exp is onto; for this to hold, it is sufficient to have exp be a homomorphism,
which we prove in the lemma below. The lemma gives a relationship between the commutativity of a Lie
group and its Lie algebra. Given the examples above, it is not too surprising that, as a result, we can
establish a one-to-one correspondence between Cartan subalgebras and maximal tori; see [8], Theorem 5.4,
or one of my previous drafts.

Lemma 2.6. Let G be a compact Lie group, and g = Lie(G). If X,Y ∈ g, [X,Y ] = 0, then eX and eY

commute. Moreover, g is abelian if and only if G0 is abelian, and in this case eX+Y = eXeY .

Proof. Suppose [X,Y ] = 0. From Theorem 2.4 we have

Ad(expX)(expY ) = exp(Ad(eX)Y ) = exp(eadXY ) = exp(Y ),

since ad(X)Y = 0 =⇒ eadX(Y ) = Y . It follows that if ad = 0, then the group generated by exp g, which
equals G0 by Lemmas 2.3 and 2.5, is abelian. Conversely, if G0 is abelian, then Ad(x)|G0 = idG0 , and so its
differential Ad(x) = I on g. Differentiating with respect to x at x = 1 we get ad = 0.

The last statement is a consequence of the Campbell-Baker-Hausdorff formula:

eXeY = exp

(
X + Y +

1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [Y,X]] + · · ·

)
,
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where the remaining terms involve high-order iterations of bracket operations; see [6], Theorem I.5.5. �

Finally, we have the result desired:

Theorem 2.7. If T is a torus with dimT = k, then T ' Rk/Zk ' Tk, as Lie groups.

Proof. Let t = Lie(T ). exp is a homomorphism t → T by Lemma 2.6. Since exp is surjective by Lemma
2.5 and Lemma 2.6, this implies T ' t/ ker(exp). Since t ' Rk as a vector space and since ker(exp)
is discrete by Lemma 2.5(a) (it is a local bijection at the origin), ker(exp) ' Zr for r ≤ k. But since
T ' Rk/Zr ' Tk × Rk−r must be compact, k = r, and so T ' Rk/Zk ' Tk. �

Now let ϕ ∈ Aut(T ). This induces the following commutative diagram of homomorphisms:

0 Zk Rk Tk 0

0 Zk Rk Tk 0

⊆

Lϕ

exp

Lϕ ϕ

⊆ exp

where we identify T with Tk ' Rk/Zk and Lie(T ) with Rk. The pullback of ϕ is Lϕ ∈ Aut(Rk), so is an
invertible matrix with integral entries by the fact that it preserves Z. Thus, we can define

L : Aut(Tk) ' Aut(Zk) = GL(k,Z), ϕ 7→ Lϕ|Zk.

In a similar fashion, we can analyze a function f : T → S1; this gives us a way to represent T as a
subgroup generated by some element. This is useful later in making our analysis of the torus easier, and so
we make it precise:

Definition. An element t ∈ Tk is a generator if the subgroup 〈t〉 generated by t is dense in Tk.

Theorem 2.8 (Kronecker). Let (t1, . . . , tk) ∈ Rk, and let t be its image in Tk = (R/Z)k. Then t is a
generator of Tk if and only if 1, t1, . . . , tk are linearly independent over Q.

Proof. A homomorphism f : Tk → S1 induces the commutative diagram

0 Zk Rk Tk 0

0 Z R S1 0

⊆

L f

exp

L f f

⊆ exp

and so L f(t1, . . . , tk) = α1t1 + · · ·+ αktk for αi ∈ Z. Now the following are equivalent:
i) 1, t1, . . . , tk are linearly dependent over Q.
ii)
∑
qiti ∈ Q for some n-tuple 0 6= (q1, . . . , qk) ∈ Qk.

iii)
∑
αiti ∈ Z for some n-tuple 0 6= (α1, . . . , αk) ∈ Zk.

iv) t mod Zn is in the kernel of a nontrivial homomorphism f : Tk → S1.
v) t mod Zn is not a generator.

i⇔ ii⇔ iii are trivial, and iii⇔ iv follows from what was said.
It remains to show iv ⇔ v. Let t̄ = t mod Zk ∈ ker f . If f is nontrivial, this kernel is not all of Tk and

hence is a proper closed subgroup of Tk, so t̄ is not a generator. Conversely, a nongenerator t̄ is contained in
a proper closed subgroup H 6 Tk, and the quotient group Tk/H is a nontrivial compact connected abelian
Lie group. Thus Tk/H is a torus Tr, r > 0, and t̄ is in the kernel of

Tk → Tk/H ' Tr = S1 × · · · × S1 proj→ S1. �

Corollary 2.9. Every torus T has a generator; indeed, they are dense in T .

Proof. By Theorem 2.8, it suffices to show that k-tuples (t1, . . . , tk) such that 1, t1, . . . , tk are linearly in-
dependent over Q are dense in Rk. If 1, t1, . . . , ti−1 are linearly independent, then linear independence of
1, t1, . . . , ti excludes only countably many ti, and the result follows since R is uncountable. �

We now define the Weyl group mentioned in the introduction.
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Definition. Let T be a maximal torus in G and N = N(T ) := { g ∈ G | gTg−1 = T }, the normalizer of T
in G. Then, the group W = N/T is called the Weyl group of G.

Although it appears that the Weyl group depends on choice of T , we will show all maximal tori are conjugate,
implying that different T yield isomorphic Weyl groups. Note the normalizer N is compact since if t ∈ T is
a generator, N is the preimage of T under g 7→ gtg−1.

The normalizer N of T operates on T by conjugation

N × T → T, (n, t) 7→ ntn−1,

but since the operation of T on T is trivial, we have the induced action of the Weyl group

W × T → T, (nT, t) 7→ ntn−1,

which is well-defined since if n, n′ are in the same coset, say nT , then n′ = nt′ for some t′ ∈ T , and so t
maps to n′tn′−1 = nt′tt′−1n−1 = ntn−1 since T is abelian. This gives us the following result:

Theorem 2.10. The Weyl group is finite.

Proof. Using the isomorphism above, we view the action of N above on T as the continuous map

N → Aut(T )
L' GL(k,Z), n 7→ Ad(n)|Lie(T ).

Then, the identity map id ∈ Im(N0) by definition, where N0 is the connected component of the identity
in N , and moreover since Im(N0) is a connected subset of the discrete space GL(k,Z) ⊆ Aut(Lie(T )),
Im(N0) = { id }, so N0 acts trivially on T .

Now let α be a one-parameter subgroup, i.e., a homomorphism R → N0. Then, since α(R) ⊆ N0, and
conjugation by N0 acts trivially on T , conjugation by α(R) also acts trivially on T . Thus, α(R)T is a
connected abelian group containing T (α(R) is path connected by definition and is connected to e, which
is in T ), but since T is a maximal connected abelian subgroup of G, then α(R)T = T . Thus, α(R) ⊆ T .
Now, since the exponential maps exp(tX) are one-parameter subgroups which are locally bijective by Lemma
2.5, the groups α(R) cover an open neighborhood of the identity in N0 and hence generate N0. Therefore,
T = N0.

This implies W = N/N0, and so W is compact and discrete since N is compact, i.e., W is finite. �

This is important since otherwise, the Weyl Integration Formula (Theorem 4.1) would not make sense. We
also remark that given w ∈W , H ∈ Lie(T ), λ ∈ Lie(T )∨, the dual space of Lie(T ), we can define the action

w(H) = Ad(w)H, [w(λ)](H) = λ(w−1(H)) = λ(Ad(w−1)H),

and this action is faithful on Lie(T ),Lie(T )∨, making our definition of the Weyl group similar to that from
11/30; note that this is not absolutely precise, see [8], Theorem 6.36, or one of my previous drafts, for details.

3. Conjugacy of Maximal Tori

The goal of this section is to prove the following theorem:

Theorem 3.1 (Maximal Torus Theorem). Any two maximal tori in a compact connected Lie group G are
conjugate, and every element of G is contained in a maximal torus.

The proof of this theorem relies on the notion of mapping degree, which relies first on orientations on G
and G/T (recall the latter has a natural smooth structure by requiring G × G/T → G/T , (g, g′T ) 7→ gg′T
is smooth). To begin, we need to know how the canonical volume form dg is transformed by

ψ : G/T × T → G, (gT, t) 7→ gtg−1,

which is well-defined since if g, g′ are in the same coset, say gT , then g′ = gt′ for some t′ ∈ T , and so t maps
to g′tg′−1 = gt′tt′−1g−1 = gtg−1 since T is abelian.

Choose an inner product (·, ·) on Lie(G) which is unitary relative to Ad, which exists from 11/9 since the
representation (Ad,Lie(G)) is finite-dimensional. Relative to (·, ·), we can decompose Lie(G) into

Lie(G) = Lie(G/T )⊕ Lie(T ), Lie(G/T ) := Lie(T )⊥,

where we are justified in identifying Lie(T )⊥ with Lie(G/T ) since the projection π : G → G/T induces a
map between Lie(T )⊥ ⊕ Lie(T ) and TeT (G/T ) (the tangent space to G/T at eT ), which is an isomorphism
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Lie(T )⊥ ' TeT (G/T ) = Lie(G/T ). This decomposition is invariant under Ad |T , since the torus acts trivially
on Lie(T ) and since T acts nontrivially on every nonzero vector of Lie(G/T ) by the fact that T is a maximal
abelian subgroup. The induced action on Lie(G/T ) is

AdG/T : T → Aut(Lie(G/T )).

Now recall from 11/9 that there exist left-invariant volume forms d(gT ), dt, dg on G/T, T,G respectively
with volume 1. Let n = dimG, k = dimT , and π : G → G/T the projection map. We obtain a left-
invariant differential form π∗d(gT ) ∈ Ωn−k(G) from the volume form d(gT ) on G/T , and the alternating

form dte ∈ Altk(Lie(T )) gives rise to the alternating form pr∗2 dte ∈ Altk(Lie(G)), where pr2 : Lie(G) =
Lie(G/T )⊕Lie(T )→ Lie(T ) is projection onto the second summand. But pr∗2 dte determines a left-invariant
differential form dτ ∈ ΩkG such that dτ |T = dt by its group structure, and π∗d(gT ) ∧ dτ is a left-invariant
volume form on G. We may choose our signs such that π∗d(gT ) ∧ dτ = c · dg with c > 0.

We want to show c = 1. We first give a version of Fubini’s theorem which is useful in our context:

Theorem 3.2 (“Fubini”). Let G be a compact Lie group, H a closed subgroup, and d(gH) a left-invariant
normalized volume form on G/H. For any continuous real-valued function f on G,∫

G

f(g) dg =

∫
G/H

(∫
H

f(gh) dh

)
d(gH).

Proof. The right-hand side defines a normalized left-invariant integral on G, so the theorem follows from the
uniqueness of such an integral from 11/9. �

Now consider a bundle chart ϕ : π−1U → U × T of the T -principal bundle π : G → G/T and let f be a
nonzero nonnegative continuous real-valued function on G with support in π−1(U). Then,

0 6=
∫
G

ψ dg =

∫
G/T

(∫
T

f(gt) dt

)
d(gT ) =

∫
U

(∫
T

f(gt) dt

)
d(gT ),

using Fubini’s theorem (Theorem 3.2). We now change coordinates based on the following diagram associated
to the bundle chart ϕ:

G π−1(U) U × T T

G/T U

π

⊇

π

ϕ pr2

⊇

Note that, for fixed g ∈ π−1(U), ϕ(g) = (u, s) with u = π(g) and some s ∈ T , and ϕ(gt) = (u, ts), since ϕ is
a right T -map.

We can arrange that the decomposition Lie(G) = Lie(G/T )⊕ Lie(T ) coincides with that induced by the
bundle chart ϕ, so that pr∗2 dt = (ϕ−1)∗dτ . Then,∫

U

(∫
T

f(gt) dt

)
d(gT ) =

∫
U

(∫
T

fϕ−1(u, t) pr∗2 dt

)
pr∗1 d(gT ) =

∫
U×T

fϕ−1(u, t) pr∗1 d(gT ) ∧ pr∗2 dt

=

∫
U×T

fϕ−1(ϕ−1)∗(π∗d(gT ) ∧ dτ) = c ·
∫
U×T

fϕ−1 · (ϕ−1)∗dg = c

∫
f dg,

so c = 1.
We now have the volume form

dg = π∗d(gT ) ∧ dτ, dτ |T = dt,

on G and the volume form
α = pr∗1 d(gT ) ∧ pr∗2 dt

on G/T × T .

Definition. The determinant det(ψ) : G/T × T → R of ψ is defined by the equation ψ∗dg = det(ψ) · α.

Definition. p ∈ G/T is a regular point of ψ if dψ(p) : Tp(G × G/T ) → Tψ(p)G is bijective. q ∈ G is a

regular value of ψ if dψ(pi) : Tpi(G×G/T )→ TqG is bijective for each pi ∈ ψ−1(q), i.e., if each pi ∈ ψ−1(q)
is a regular point.
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Theorem 3.3 (Theorem on Mapping Degrees). There exists an integer deg(ψ) assigned to the homotopy
class of ψ, called the mapping degree of ψ, such that, for every form α ∈ Ωn(G),∫

G/T×T
ψ∗α = deg(ψ)

∫
G

α.

If q ∈ G is a regular value, then the mapping degree is given by

deg(ψ) =
∑

p∈ψ−1(q)

sgn(det(ψ)(p)),

In particular, if deg(f) 6= 0, f is surjective.

Proof. For clarity, we omit the proof for now. See section A. �

The proof of Theorem 3.1, then, is easily proved by the following:

Lemma 3.4 (Weyl Covering Theorem). Let T be a maximal torus in G. Then the map

ψ : G/T × T → G, (gT, t) 7→ gtg−1,

has mapping degree deg(ψ) = |W |, where |W | is the order of the Weyl group associated to T . In particular,
ψ is surjective.

Proof of Theorem 3.1 assuming Lemma 3.4. Let T, T ′ be maximal tori and t′ a generator of T ′ by Corollary
2.9. By Lemma 3.4, there is a g ∈ G with t′ ∈ gTg−1. Hence T ′ ⊆ gTg−1, and by maximality T ′ = gTg−1.
Since ψ is surjective every element of G is contained in some conjugate of T . �

The statement for Lemma 3.4 is slightly different from Weyl Covering Theorem found in, say, [5], Theorem
3.7.2, which chooses to consider ψ through the factorization

G/T × T G/T ×W T

G
ψ

ψ̃

where G/T ×W T denotes the orbit space of the action of W on G/T ×W T given by

w∗ : G/T × T → G/T × T, (gT, t) 7→ (gw−1T,wtw−1),

for wT ∈ W , which is well-defined as in Section 2. The statement is then that the map ψ̃ has mapping
degree 1, making the restriction of ψ̃ to regular points/values a diffeomorphism.

To prove Lemma 3.4, we proceed in steps. The first step gives a formula for det(ψ) in terms of the
determinant on the Lie algebras.

Proposition 3.5. The determinant of ψ is given by

det(ψ)(gT, t) = det(AdG/T (t−1)− IG/T ),

where IG/T is the identity on Lie(G/T ).

Proof. The forms dg, d(gT ) are left-invariant under the action of G, and the form dt is left-invariant under
the action of T . This allows us to consider the following composition:

G× T G× T G G

(x, y) (gx, ty) (gx)(ty)(gx)−1 Ad(g)(Ad(t−1)(x) · y · x−1)

(g, t)· ψ̃ gt−1g−1·

(g, t)·∈

ψ̃

∈

gt−1g−1·

∈ ∈

where ψ̃ : G× T → T : (g, t) 7→ gtg−1. In particular, (e, e) 7→ e. Thus, the determinant we want to compute
is the determinant of the differential of this map at (e, e), restricted to the subspace Lie(G/T ) ⊕ Lie(T ) ⊆
Lie(G)⊕ Lie(T ) = Lie(G× T ).

Now L Ad(g) = Ad(g) has determinant 1, since Ad(g) is orthogonal and G is connected. Moreover, the
differential of a product is the sum of the differentials, and so the determinant of q is the determinant of the
linear endomorphism

(X,Y ) 7→ AdG/T (t−1)X + Y −X
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of Lie(G/T )⊕ Lie(T ). In matrix form, this is[
AdG/T (t−1)− IG/T

IT

]
,

whose determinant is det(AdG/T (t−1)− IG/T ) as claimed. �

To determine the mapping degree, we must count the number of elements in the preimage of a generator
t ∈ T , which are clearly regular values of ψ, and keep track of orientation.

Lemma 3.6. Let t ∈ T be a generator as in Corollary 2.9. Then,
(a) ψ−1(t) consists of |W | points,
(b) det(ψ) > 0 at each of these points

Proof. (a). Let N = N(T ). Then,

ψ(gT, s) = t ⇐⇒ gsg−1 = t ⇐⇒ s = g−1tg ⇐⇒ g−1tg ∈ T ⇐⇒ g−1Tg ⊆ T ⇐⇒ g ∈ N.

Thus, ψ−1(t) = { (gT, g−1tg) | g ∈ N }. Given g1, g2 ∈ N such that g2 ∈ g1T , there exists s ∈ T such that
g2 = sg1, so

g−12 tg2 = g−11 s−1tsg1 = g−11 ts−1sg1 = g−11 tg1.

Otherwise, g1T 6= g2T , and so (g1T, g
−1
1 tg1) 6= (g2T, g

−1
2 tg2), and hence ψ−1(t) has [N : T ] = |W | elements.

(b). The determinant we want is det(AdG/T (t−1) − IG/T ). Since this determinant is real, if we show

that AdG/T (t−1)− IG/T has no real eigenvalues, then eigenvalues will come in complex conjugate pairs, and
hence, the determinant will be positive.

Suppose AdG/T (t−1) − IG/T has a real eigenvalue. Then AdG/T (t−1) does also, and would be ±1 since

AdG/T (t−1) is orthogonal. In this case, AdG/T (t−2) has 1 as eigenvalue. Since t−2 is also a generator of T ,
it suffices to show AdG/T (t) cannot have 1 as an eigenvalue.

If AdG/T (t)X = X for some X ∈ Lie(G/T ), then X is fixed by the action of t and hence by all of T . But
then the one-parameter subgroup H = { exp(sX) | s ∈ R } is left pointwise fixed under Ad(T ). Thus HT is
abelian and connected, implying H ⊆ T and X ∈ Lie(T ) ∩ Lie(G/T ) = 0. �

We record a Corollary for later:

Corollary 3.7. If t is a generating element of T , then AdG/T (t) has no real eigenvalues. Hence dimG/T
is even.

Finally, we can prove Lemma 3.4:

Proof of Lemma 3.4. Let t be a generator of T as in Corollary 2.9. The mapping degree of ψ is |W | since
there are |W | points in ψ−1(t), and det(ψ) > 0 implies ψ preserves orientation for all elements in ψ−1(t). �

4. Weyl Integration Formula

We finally get the main theorem of this paper. What is amazing is that this formula is a trivial consequence
of the Weyl Covering Theorem (Lemma 3.4) above, despite being unexpected at first glance.

Theorem 4.1 (Weyl Integration Formula). Let T be a maximal torus of G, and f a continuous function on
G. Then,

|W | ·
∫
G

f(g) dg =

∫
T

[
det(IG/T −AdG/T (t−1))

∫
G

f(gtg−1) dg

]
dt.

Proof. Let ft : G/T → R be given by g 7→ f(gtg−1), so in the last integral f(gtg−1) = ft ◦ π(g), where
π : G→ G/T is the canonical projection. Then,∫
T

[
det(IG/T −AdG/T (t−1))

∫
G

f(gtg−1) dg

]
dt

=

∫
T

[
det(IG/T −AdG/T (t−1))

∫
G

ft ◦ π(g) dg

]
dt =

∫
T

[
det(IG/T −AdG/T (t−1))

∫
G/T

ft(gT ) dgT

]
dt,
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by definition of dgT . We then use Fubini’s theorem (Theorem 3.2), Lemma 3.4, and Proposition 3.5 to get

=

∫
G/T

[∫
T

f ◦ ψ(gT, t) · det(ψ)(gT, t) dgT

]
dt =

∫
G/T×T

f ◦ ψ(gT, t) · det(ψ)(gT, t) pr∗2 dt ∧ pr∗1 dgT.

Since dimG/T is even by Corollary 3.7, pr∗1 dgT is an even form, and so we have

=

∫
G/T×T

f ◦ ψ(gT, t) · det(ψ)(gT, t) pr∗1 dgT ∧ pr∗2 dt =

∫
G/T×T

f ◦ ψ(gT, t) · det(ψ)(gT, t)α

=

∫
G/T×T

f ◦ ψ(gT, t) · ψ∗dg =

∫
G/T×T

ψ∗(f · dg) = deg(ψ) ·
∫
G

f(g) dg = |W | ·
∫
G

f(g) dg. �

A. Theorem on Mapping Degrees

We prove here Theorem 3.3, which we omitted the proof for before, in a more general setting. We recall
that if ϕ : N →M is a diffeomorphism, then for α ∈ Ωnc (M) (the space of n-forms with compact support)

(A.1)

∫
M

α =

∫
N

ε · ϕ∗α,

where ε is locally constant with value 1 or −1 according to whether ϕ locally preserves or reverses orientation
(see [3], I, (5.8)). We note that our proof of the Theorem on Mapping Degrees relies on the non-trivial Sard’s
theorem from differential topology (see [2], (6.1)).

Theorem A.1 (Theorem on Mapping Degrees). Let M,N be compact, connected, oriented, n-dimensional
manifolds. There is an integer deg(f) assigned to each homotopy class of (differentiable) maps f : M → N ,
called the mapping degree of f , such that, for every form α ∈ Ωn(N),∫

M

f∗α = deg(f) ·
∫
N

α.

If q ∈ N is a regular value with f−1 { q } consisting of k + ` points p1, . . . , pk+` such that f preserves
orientation at p1, . . . , pk but reverses orientation at pk+1, . . . , pk+`, then deg(f) = k − `. In particular, if
deg(f) 6= 0, f is surjective.

Proof. We first show the left-hand side depends on on the homotopy class of f . If we have a homotopy
f : M × [0, 1]→ N , where f = f0 on M ×{ 0 } and f = f1 on M ×{ 1 }, then since dα ∈ Ωn+1N = 0, Stokes’
theorem (see [3], I, (5.17)) and (A.1) gives

0 =

∫
M×[0,1]

f∗ dα =

∫
M×[0,1]

df∗α =

∫
∂(M×[0,1])

f∗α =

∫
M

f∗1α+

∫
−M

f∗0α =

∫
M

f∗1α−
∫
M

f∗0α.

By Sard’s theorem (see [2], (6.1)), for a smooth map f : M → N , almost every point of N is a regular value.
So let q be a regular value and f−1 { q } = { p1, . . . , pk+` } as in the statement of the theorem. Then f is a
local diffeomorphism around each pi, and the complement of an open neighborhood of f−1 { q } is mapped by
f to a compact set not containing q. Thus we can choose small neighborhoods B around q and B1, . . . , Bk+`
around p1, . . . , pk+` such that

f |Bi : Bi
∼→ B

and f−1(B) =
∐
iBi. The orientation of f is constant on each Bi and hence equal to its value at pi. If

Supp(α) ⊆ B, the theorem would hold for this particular q by (A.1). Now if we could find a diffeomorphism
ϕ : N → N homotopic to the identity on N with Supp(α) ⊆ ϕ(B), the theorem would be proved, since
Supp(ϕ∗α) ⊆ B, and the integrals are homotopy invariant. We will show below that the sets ϕ(B) cover N ,
where ϕ runs through diffeomorphisms N → N homotopic to the identity. Then we can choose a partition of
unity {ψj | j ∈ N } subordinate to this covering, and the theorem follows since it is valid for each summand
of the splitting α =

∑
j ψj · α.

To show that the ϕ(B) cover N we show that, given x ∈ N , there is a ϕ as above with ϕ(q) = x. If x, q are
both contained in a compact ball of a chart domain, it is fairly easy to construct such a diffeomorphism ϕ,
e.g., by integrating an appropriate vector field which vanishes outside the ball. From this case we obtain the
general case by joining q and x with a chain q = x0, x1, . . . , xr = x such that xj , xj+1 are always contained
in a compact ball in some chart domain. �
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