
ORLOV’S EQUIVALENCE AND TENSOR PRODUCTS:
FROM SHEAVES TO MATRIX FACTORIZATIONS AND BACK

TAKUMI MURAYAMA

Abstract. A special case of a theorem due to Orlov states that for a hypersurface X ⊂
Pn−1 of degree n given by the equation W = 0, there exists an equivalence between the
bounded derived category Db(cohX) of coherent sheaves on X and the homotopy category
HMFgr(W ) of graded matrix factorizations. We first give a description of this result, and
present some methods for doing calculations with it. In the last two sections, we consider
some possible product-like structures on these two triangulated categories, and provide
possible directions for further inquiry as to what these product-like structures correspond
to in either category, highlighting possible connections to tensor triangular geometry.
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Introduction

We let k be a field, and let B be a graded local k-algebra with B0 = k. Fixing a non-zero
homogeneous element W ∈ B, we can consider the quotient ring A = B/(W ); we restrict to
the case when A has an isolated singularity at m.

A matrix factorization of W is defined to be a Z/2-graded complex of finite free B-modules
such that d2 = ·W . These form a Z/2-graded category MFgr(W ), and the corresponding
homotopy category forms the triangulated category HMFgr(W ). This notion of a matrix
factorization (in which the rings considered are not necessarily graded) first appeared in
[Eis80, §5], in the context of studying the homological algebra of complete intersections.
The study of matrix factorizations has since been studied in singularity theory, such as in
[BGS87]. An overview of this work can be found in [Yos90]. It is surprising in recent years,
however, that these objects have found relevance in physics as D-branes in Landau-Ginzburg
models; their study is inspired by the Homological Mirror Symmetry Conjecture [Kon95].

The bounded derived category of coherent sheaves on X = Proj(A), denoted Db(cohX),
on the other hand, has been studied more extensively because of its relevance to algebraic
geometry, most notably in the context of Grothendieck duality [Nee10]. In [Orl09], expanding
on work in [Orl04], Orlov proves the existence of the following commutative diagram of
functors of triangulated categories, relating the two categories HMFgr(W ) and Db(cohX):

(1)

Db(gr-A) gr-A MFgr(W )

Db(cohX) Db(qgr A) Dgr
Sg(A) HMFgr(W )

π∗ γi
δi

Cok

p
RΓ•

∼ ∼ ∼
Coki

where the bottom row are equivalences, and whose composition therefore gives the equiv-
alence Ψi : Db(cohX)

∼−→ HMFgr(W ) between the bounded derived category of coherent
sheaves to the homotopy category of matrix factorizations. Note the visual organization
above is due to [Gal].

There are two main motivating questions for this paper:

(1) Is there a way to calculate usual categorical invariants of Db(cohX) in terms of
HMFgr(W )?

(2) What correspondence is there between usual functors on Db(cohX) with functors on
HMFgr(W )?

For our first question, even the Grothendieck group K(Db(cohX)) is difficult to calculate.
It is well-known that K(Db(cohX)) is isomorphic to the Grothendieck group of the abelian
category cohX [SGA5, VIII, §3], but this is still hard to calculate in general. For example,
though, if X is a smooth elliptic curve, then K(Db(cohX)) ∼= K(cohX) ∼= Pic(X)⊕Z, where
Pic denotes the Picard group of X [Har77, p. 149]. Another easy example is when X is affine,
by Serre’s equivalence cohX ∼= A-mod [FAC, §49, Thm. 1], we have that K(Db(cohX)) ∼=
K(cohX) ∼= K(A-mod), which is generated by the elements A/p for p ∈ Spec(A), and is
equal to Z in the case that A is a P.I.D. [AM69, p. 88]. It is hoped that eventually Orlov’s
equivalence (1) will provide a means to calculate Grothendieck groups via manipulating
matrices in HMFgr(W ), thereby reducing the question to a linear algebra question.

For our second question, [Gal] has provided a description of two functors in Db(cohX),
namely, the dualizing functor D and the Serre shift functor −⊗OX(±1) in terms of matrix
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factorizations. Note that the latter case corresponds to finding the action of the subgroup
of the Picard group Pic(X) generated by OX(1), which at least in the case of a complete
intersection of dimension ≥ 3 generates the whole Picard group [Har70, IV, Cor. 3.2]. Note
that since in some cases like in those above, the Picard group gives substantial information
about K(cohX) (see [Man69, §10] for a precise description of how these two groups are
related), we can hope that determining the action of OX(1) would help us understand what
K(cohX) ∼= K(Db(cohX)) looks like.

Our present paper is an attempt to start understanding what kind of tensor product
structure we can put on Db(cohX) and HMFgr(W ), and what they would correspond to
under Orlov’s equivalence Ψi, as an extension of the description of − ⊗ OX(1) in terms of
matrix factorizations in [Gal].

1. Triangulated Categories

We begin with some preliminaries about triangulated categories in general.

Definition 1.1. A triangulated category D is an additive category with
(a) an additive autoequivalence [1] : D → D called a translation functor, and

(b) a class of exact triangles X
u−→ Y

v−→ Z
w−→ X[1] which satisfy certain axioms (see

[Ver96, II, Def. 1.1.1]).

We will only explicitly use the following axiom about exact triangles:

[T2]: A triangle X
u−→ Y

v−→ Z
w−→ X[1] of D is exact if and only if the triangle Y

v−→
Z

w−→ X[1]
−u[1]−→ Y [1] is exact.

The philosophy behind a triangulated category is that compared to an abelian category we
have a different notion of an exact triple: instead of short exact sequences, we instead have
exact triangles, with their own notion of an exact functor, namely, a functor F : D → D′ that
transforms exact triangles to exact triangles and commutes with [1] [Ver96, II, Def. 1.1.3].

An easily accessible example of a triangulated category is the following:

Definition 1.2 ([Ver96, I, Def. 2.5.7]). Let A be an abelian category. Then, the homotopy
category K(A) is defined as the category of cochain complexes Kom(A) with morphisms
modulo chain homotopy. Similarly define the category Kb(A) obtained from the category of
bounded cochain complexes Komb(A).

The idea behind K(A) is that it takes chain complexes and makes them isomorphic if they
are chain homotopy equivalent.

Theorem 1.3 ([Ver96, I, Prop. 1.3.2]). The categories K(A),Kb(A) are triangulated.

Despite the fact that K(A) is obtained from the abelian category Kom(A), K(A) is not
abelian. This motivates the need to define triangulated categories as something separate
from abelian categories. To illustrate this, we provide the following example:

Example 1.4 ([HJ10, Ex. 2.6]). Consider the abelian category Ab of abelian groups. Let
f : Y • → Z• be the following morphism of complexes of abelian groups:

· · · 0 0 Z 0 · · ·

· · · 0 Z Z 0 · · ·

id

id
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where the non-zero entries have degree −1, 0. In Kom(Ab) f is non-zero and has the zero
complex as kernel. However, f ' id with id as homotopy map, and so f = 0 in K(Ab).

We claim that f has no kernel (see [Wei94, Def. 1.2.1] for the universal property defining
the kernel). Suppose f has a kernel, and so there exists a complex X• := (· · · → X−1 →
X0 → X1 → · · · ) and a homomorphism j = j0 : X0 → Z (ji = 0 for all i 6= 0 since Y •

is concentrated at 0). Then, Im j = kZ for some k ∈ Z since it is a subgroup of Z. Now
consider ` : Y • → X• given by multiplication by ` for any ` ∈ Z. f ◦ ` = 0 in K(Ab)
since f = 0 in K(Ab). According to the universal property of the kernel, there must exist
(unique) morphisms u` : Z → X0 such that j ◦ u` ' `. But since these are maps from Y •

to Y • and this complex is concentrated in degree 0, there are no non-zero homotopy maps,
and so j ◦ u` = ` as group homomorphisms. But Im j ◦ u` ⊂ Im j = kZ, so j ◦ u` = ` cannot
hold for arbitrary ` ∈ Z, a contradiction.

Building on our construction for K(A), we can construct the category D(A) as follows.
A subcategory C of D is full if it closed with respect to [1] and if C contains any two objects
of an exact triangle, the third is contained in C as well. Now we recall the construction
[Ver96, 2.1.7, 2.2.10] of the quotient category D/C of triangulated categories, where C is a
full subcategory of D: two objects X, Y of D are isomorphic if and only if they fit into a
triangle X −→ Y −→ Z −→ X[1] where Z is an object of C. D/C is then a triangulated
category by [Ver96, Thm. 2.2.6].

Definition 1.5 ([Ver96, III, 1.1.3]). Let K(A),Kb(A) as above. Then, define Ac(A),
Acb(A) to be their respective full subcategories of acyclic complexes X•, i.e., complexes
such that their cohomology groups H i(X•) = 0 for all i.

Definition 1.6 ([Ver96, III, 1.1.3]). The derived category D(A) is defined as the quotient
category K(A)/Ac(A). Similarly define Db(A) as the quotient Kb(A)/Acb(A).

By definition and the discussion of quotient categories above, we have that

Theorem 1.7. The categories D(A),Db(A) are triangulated.

Note that by quotienting out by Ac(A), what we are doing is taking all quasi-isomorphic
cochain complexes in D(A) and making them isomorphic, in contrast with K(A), where only
those quasi-isomorphisms that are also chain homotopy equivalences become isomorphisms.

2. Detailed Description of Orlov’s Equivalence

We give a description of Orlov’s equivalence when B = kJx1, x2, . . . , xnK with the standard
grading, and fix W ∈ B of degree n. Let A be the graded quotient ring B/(W ). We assume
{W = 0} ⊂ kn has an isolated singularity at the origin. Note that we will try to introduce
unfamiliar concepts on the way, in an attempt to make Orlov’s work accessible to a wider
audience.

2.1. Projective Schemes and Serre’s Theorem. Consider the grading A =
⊕

d≥0Ad,
and let A+ be the ideal

⊕
d>0Ad. We will follow the construction of the projective scheme

ProjA in [Har77, II, §2]. First, let

ProjA :=
set

{
p ⊆ A

∣∣∣∣ p a prime, homogeneous ideal,
p 6⊇ A+

}
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Next, we define a topology on ProjA with closed sets

V (a) := {p ∈ ProjA | p ⊃ a}
for each homogeneous ideal a ⊆ A. Finally, we define the sheaf of rings O. Denote Ap :=
T−1A, where T is the multiplicative system consisting of all homogeneous elements of A not
in p. For any open subset U ⊆ ProjA, let O(U) be the set of functions s : U →

∐
p∈U Ap

which are locally fractions.

Definition 2.1. A projective scheme is the pair (ProjA,O) for A a graded ring.

Note we usually denote a projective scheme just as ProjA.
There is a way to get sheaves on ProjA from graded modules and vice versa (see [Har77,

II, §5]). First, suppose M is a graded A-module. We construct the sheaf associated with M

on ProjA, denoted by M̃ , as follows. For each p ∈ ProjA, let Mp be the group of elements

of degree zero in the localization T−1M . For any open subset U ⊆ ProjA let M̃(U) be the
set of functions s : U →

∐
p∈U Mp that are locally fractions.

To go in the other direction, we need to use the sheaves associated to A(n):

Definition 2.2. Let X := ProjA, A a graded ring. For any n ∈ Z, we define OX(n) := Ã(n),
where (n) denotes the grade shift M(n)i = Mi+n. We call OX(1) the twisting sheaf of Serre.
For any sheaf of OX-modules F , we define F (n) := F ⊗OX OX(n).

We collect a few facts about twisting sheaves here:

Proposition 2.3 ([Har77, II, Prop. 5.12]). Let X := ProjA, A a graded ring. Assume A is

generated by A1 as an A0-algebra. Then, for any graded A-module M , M̃(n) ∼= M̃(n). In
particular, OX(m)⊗OX(n) ∼= OX(n+m).

We can now define the graded A-module associated to F when F is a sheaf of OX-
modules. As a group, let

Γ•(F ) :=
⊕
n∈Z

Γ(X,F (n)) ∼=
⊕
n∈Z

HomOX (OX ,F (n)),

where Γ(X,F ) is the global sections functor, and we use the natural isomorphism Γ(X,F ) ∼=
Hom(OX ,F ). We give it the structure of a graded S-module as follows: if s ∈ Sd, then s
determines a global section s ∈ Γ(X,OX(d)), and so for any t ∈ Γ(X,F (n)) we define the
product s · t ∈ Γ(X,F (n+ d)) by taking the tensor product s⊗ t and using the natural map
F (n)⊗OX(d) ∼= F (n+ d). Denote

qgr A := gr-A/tors-A

as the quotient category of gr-A where objects are as in gr-A and two objects M,N are
isomorphic if and only if they fit into the exact sequence

0 −→ T −→M −→ N −→ T ′ −→ 0

where both T, T ′ ∈ tors-A (see [Pop73, §4.3]). Then, denote π : gr-A→ qgrA as the natural
projection functor. Recalling the definition of cohX as the abelian category of coherent
sheaves of finite type on X, we have the following theorem:

Theorem 2.4 ([FAC, §59, Prop. 7,8, §65, Prop. 6; EGAII, Prop. 3.3.5; AZ94, p. 229]).
Γ• : cohX → gr-A is faithful, full, exact functor. Moreover, π ◦ Γ• is an equivalence, where
π : gr-A→ qgr A is the projection.
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This equivalence can be visualized in the commutative diagram

(2)

gr-A

cohX qgr A

π
Γ•

∼

We would like to describe the right derived functor of Γ•

RΓ• : Db(cohX) −→ Db(gr-A).

where we review quickly the notion of a right derived functor (see [Har77, III, §1]). From
[Har66, II, Thm. 7.18], we know that qcohX has enough injectives, i.e., every object in
qcohX has an injective resolution, and so every quasi-coherent sheaf F has an injective
resolution

0 −→ F −→ I 0 −→ I 1 −→ · · ·
where I i are all injective objects in qcohX, and where this sequence is exact. Note we use
qcohX since cohX does not have enough injectives. Since Hom(OX ,−) is left exact, we
can apply it termwise to the complex 0→ I • to get the (not necessarily exact) complex of
graded modules

R Hom(OX ,F ) :=
(
0 −→ Hom(OX ,I 0) −→ Hom(OX ,I 1) −→ · · ·

)
in qgr A. We can therefore define the right-derived functor R Hom(OX ,−) which gives the
complex R Hom(OX ,F ) for a coherent sheaf F . Likewise, we can define the right-derived
functor RΓ• as the direct sum complex

(3) RΓ•(F ) :=
⊕
n∈Z

R Hom(OX ,F (n))

Note that this construction actually constructs a functor D+(qcohX) → D+(gr-A). We
therefore claim the following:

Theorem 2.5. RΓ• as defined in (3) defines a functor

RΓ• : Db(cohX) −→ Db(gr-A),

such that we have the commutative diagram of functors

(4)

Db(gr-A)

Db(cohX) Db(qgr A)

π∗RΓ•

∼

where ∼ denotes an equivalence and π∗ is the functor induced by π on complexes.

Proof. First, we need to show RΓ• defines a functor Db(qcohX) → Db(gr-A). By the
vanishing theorem of Grothendieck [Har77, III, Thm. 2.7], the complex RΓ•(F ) is bounded,
and so (3) defines a functor Db(qcohX)→ Db(gr-A).

Next, we need to show (3) is a functor Db(cohX)→ Db(gr-A). By [SGA6, II, Prop. 2.2.2],
the inclusion Db(cohX) ↪→ Db(qcohX) is full and faithful, and in fact realizes an equivalence

Db(cohX)
∼→ Db(qcohX)coh where the latter is the full subcategory of all complexes with
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coherent cohomologies. Thus, the definition (3) above actually gives a well-defined functor
Db(cohX)→ Db(gr-A).

Finally, by [Miy91, Thm. 3.2], we can “derive” the commutative diagram (2) to obtain the
commutative diagram of derived categories (4). �

2.2. Semiorthogonal Decompositions and Gorenstein Rings. We first define a new
category Dgr

Sg(A), which we would like to show is equivalent to Db(qgr A).

Let Db(grproj-A) be the full subcategory of Db(gr-A) consisting of objects isomorphic to
bounded complexes of projectives. Recalling our construction of the quotient category in §1,
we make the following definition:

Definition 2.6. The triangulated category of singularities is defined as

Dgr
Sg(A) := Db(gr-A)/Db(grproj-A).

Dgr
Sg(A) is triangulated by construction as in §1.
We now give a short overview of the theory of semiorthogonal decompositions following

[BK90, §1, §4; Orl09, §1.1] used in proving the equivalence Db(qgr A)
∼→ Dgr

Sg.
Let D be a triangulated category, and N ⊂ D a full subcategory. The right orthogonal

to N is the full subcategory N⊥ ⊂ D consisting of all objects M such that Hom(N,M) = 0
for all N ∈ N . The left orthogonal ⊥N is defined similarly. Both N⊥, ⊥N are triangulated.

Definition 2.7. Let ι : N ↪→ D be an embedding of a full triangulated subcategory N in
a triangulated category D. N is right admissible (resp. left admissible) if there is a right
(resp. left) adjoint functor q : D → N . N is admissible if it is both right and left admissible.

We then have the following lemma relating the construction of the quotient category in §1
with orthogonal subcategories:

Lemma 2.8 ([BK90, Prop. 1.5, 1.6]). Let N be a right (resp. left) admissible subcategory
of D. Then, the quotient category N⊥ (resp. ⊥N ) is equivalent to D/N . Conversely, if the
quotient functor q : D → D/N has a right (resp. left) adjoint, then D/N is equivalent to
N⊥ (resp. ⊥N ).

Definition 2.9. A sequence of full triangulated subcategories (N1, . . . ,Nn) in a triangulated
category D is called a weak semiorthogonal decomposition of D if there is a sequence of left
admissible subcategories D1 = N1 ⊂ D2 ⊂ · · · ⊂ Dn = D such that Np is left orthogonal to
Dp−1 in Dp. If this is the case, we will write D = 〈N1, . . . ,Nn〉.

By exhibiting a weak semiorthogonal decomposition for a triangulated category D, what we
are trying to do is decomposing D into the simplest pieces Np possible.

We also have to review some facts about Gorenstein rings. Note that B is regular local
by [AM69, p. 124], and so A is a complete intersection ring and thus Gorenstein by [Mat80,
Thm. 21.3]. Moreover, A is a dualizing complex (see [Har66, V, §2]) over itself, as in the
map R Hom(R Hom(−, A), A) is an isomorphism, by [Har66, V, Ex. 2.2]. Then, we get two
contravariant functors

D := R Homgr-A (−, A) : Db(gr-A ) −→ Db(gr-A◦),

D◦ := R Homgr-A◦(−, A) : Db(gr-A◦) −→ Db(gr-A ),

where −◦ denotes the opposite category. Finally, we have that
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Proposition 2.10 ([Orl09, Lem. 2.12, Prop. 2.16]). The Gorenstein parameter of A =
B/(W ), where W ∈ BJx1, . . . , xnK has degree n is zero. Note here that the Gorenstein
parameter is the integer a such that

D(k) = R Homgr-A(k,A) ∼= k(a)[−n]

Now we can return to our description of Orlov’s equivalence. Denote by Di the subcate-
gories of Db(gr-A) that are the images of the composition of functors

Db(cohX)
RΓ•−−→ Db(gr-A)

tr≥i−−→ Db(gr-A≥i) ↪−→ Db(gr-A)

where tr≥i is the exact functor defined as

tr≥i(M
k)j :=

{
(Mk)j if j ≥ i

0 otherwise

on each term Mk in a complex M•. By Theorem 2.4, all Di are equivalent to Db(qgr A).
Now for any i let S<i(A) be the smallest full triangulated subcategory of Db(gr-A) con-

taining the residue fields k(j) for j > −i. Similarly define S≥i(A).
Furthermore, let P<i(A) be the smallest full triangulated subcategory of Db(gr-A) con-

taining the free modules A(j) for j > −i. Similarly define P≥i(A).
Note we drop the dependence on A when it is clear which category these subcategories

live in.
We then have the following semiorthogonal decompositions due to Orlov:

Lemma 2.11 ([Orl09, Lem. 2.3]). The subcategories S<i and P<i are respectively left and
right admissible in Db(gr-A) for all i ∈ Z. Moreover, there are weak semiorthogonal decom-
positions

Db(gr-A) = 〈S<i,Db(gr-A≥i)〉 Db(tors-A) = 〈S<i,S≥i〉
Db(gr-A) = 〈Db(gr-A≥i),P<i〉 Db(grproj-A) = 〈P≥i,P<i〉

Lemma 2.12 ([Orl09, Lem. 2.4]). The subcategories S≥i and P≥i are respectively right and
left admissible in Db(gr-A) for all i ∈ Z. Moreover, there are weak semiorthogonal decom-
positions

Db(gr-A≥i) = 〈Di,S≥i〉 Db(gr-A≥i) = 〈P≥i, Ti〉
where Di is equivalent to Db(qgr A) and Ti is equivalent to Dgr

Sg(A).

With these two facts, we can prove the following theorem:

Theorem 2.13 ([Orl09, Thm. 2.5]). There is an equivalence Db(qgrA)
∼−→ Dgr

Sg(A) that fits
into the commutative diagram of functors

Db(gr-A)

Db(qgr A) Dgr
Sg(A)

γi

∼

where the functor γi is defined as the composition

Db(gr-A)
tr≥i−−→ Db(gr-A)

D−→ Db(gr-A◦)
tr≥i−1−−−→ Db(gr-A)

D◦
−→ Db(gr-A).
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Proof. Lemmas 2.11 and 2.12 give that Ti is admissible in Db(gr-A) and the right orthogonal
T ⊥i has a weak semiorthogonal decomposition of the form

(5) T ⊥i = 〈S<i,P≥i〉 .

We now describe the right orthogonal to Di. The dualizing functor D takes the subcategory
S≥i(A) to the subcategory S<−i+1(A◦), and so sends the right orthogonal S⊥≥i(A) to the left

orthogonal ⊥S<−i+1(A◦) which coincides with the right orthogonal P⊥<−i+1(A◦) by Lemma

2.11. Thus, the subcategory S⊥≥i coincides with ⊥P<−i+1(A◦). On the other hand, by Lemmas
2.11 and 2.12 we have

⊥P≥i(A◦) = S⊥≥i ∼= 〈S<i,Di〉 ,
which implies that the right orthogonal D⊥i has the decomposition

D⊥i = 〈P≥i,S<i〉 .

Now we have that the decomposition (5) is mutually orthogonal, for A is Gorenstein and
R Homgr-A(k,A) = k[−n]. Hence we can interchange S<i,P≥i to get

T ⊥i = 〈P≥i,S<i〉 .

Thus, T ⊥i , D⊥i are equal, and by Lemma 2.8 we have the equivalence Dgr
Sg(A) ∼= Ti ∼= Di ∼=

Db(qgrA). The explicit description for γi follows from considering the steps above as functors,
and in the proof of Lemma 2.12 in [Orl09]. �

2.3. Graded Matrix Factorizations. We now finally construct the main triangulated
category of interest, namely, that of graded matrix factorizations. Here we largely follow the
expositions in [Tod, §2.2; Orl09, §3.1].

Definition 2.14. A graded matrix factorization of W is the data

(6) P • :=

(
P 0 P 1 P 0(d)

p0 p1
)

where P i are graded free B-modules of finite rank, and pi are homomorphisms of graded
B-modules satisfying

(7) p1 ◦ p0 = ·W, p0(d) ◦ p1 = ·W.

Note that (7) implies P i have the same rank and pi are square matrices.
We give a few elementary examples to illustrate the concept.

Example 2.15 ([Dyc11, Ex. 2.2]). Letting B = CJxK and W = xn, we have the family of
matrix factorizations parametrized by k:

B B
xk

xn−k

Example 2.16 ([HW05, §4.1; Dyc11, Ex. 2.3]). Letting B = C[x, y, z], we would like to find
the matrix factorization for W = x3 + y3 + z3 + λxyz for λ ∈ C. First consider the matrix

ϕ =

ax cy bz
cz bx ay
by az cx
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ϕ then represents a linear map B3 → B3. Since

detϕ = abc(x3 + y3 + z3)− (a3 + b3 + c3)xyz = abcw

⇐⇒ a3 + b3 + c3 + λabc = 0

⇐⇒ (a, b, c) ∈ {W = 0} ⊂ C3

if (a, b, c) ∈ {W = 0} ⊂ (C∗)3, then letting

ψ =
1

abc
adj(ϕ) =

1

abc

bcx2 − a2yz abz2 − c2xy acy2 − b2xz
aby2 − c2xz acx2 − b2yz bcz2 − a2xy
acz2 − b2xy bcy2 − a2xz abx2 − c2yz


where adj denotes the adjugate matrix, we see ψ = W · ϕ−1, and so ϕψ = ψϕ = W · I.

Of course, we would like to find an easier method to calculate an arbitrary matrix fac-
torization for a specific potential W . We therefore consider the category HMFgr(W ) with
objects as in (6):

Definition 2.17. The category of graded matrix factorizations of W , MFgr(W ), is the
category of objects (6), with morphisms given by the commutative diagram

P 0 P 1 P 0(d)

Q0 Q1 Q0(d)

p0

f0

p1

f1 f0(d)

q0 q1

Similarly, define the homotopy category of graded matrix factorizations of W , denoted as
HMFgr(W ), in the same way except with morphisms modulo null-homotopic morphisms.
The above diagram is null-homotopic if there are homomorphisms of graded B-modules

h0 : P 0 → Q1(−d), h1 : P 1 → Q0

satisfying
f 0 = q1(−d) ◦ h0 + h1 ◦ p0, f 1 = q0 ◦ h1 + h0(d) ◦ p1.

We define a translation functor [1]:

P •[1] :=

(
P 1 P 0(d) P 1(d)

−p1 −p0(d)
)

Now for any morphism f : P • → Q•, we can define the mapping cone C•(f):

C•(f) :=

(
P 0 ⊕Q1 P 1 ⊕Q0(d) P 0(d)⊕Q1(d)c0 c1

)
such that

c0 =

(
p0 f 1

0 −q1

)
, c1 =

(
p1 f 0

0 −q0

)
We define a standard triangle in HMFgr(W ) as a triangle of the form

P • Q• C•(f) K•[1]
f (id,0) (0,− id)

for some f : P • → Q•, and define a triangle in HMFgr(W ) to be exact if it is isomorphic to
a standard triangle. We then have the following theorem:



ORLOV’S EQUIVALENCE AND TENSOR PRODUCTS 11

Theorem 2.18 ([Orl09, Prop. 3.4]). HMFgr(W ) with the translation functor [1] and the
class of exact triangles above forms a triangulated category.

The proof follows in the same way as for the usual homotopy category K(A), proved in
[GM03, Thm. IV.1.9].

There is then an equivalence of categories with Dgr
Sg(A) as defined before:

Theorem 2.19 ([Orl09, Prop. 3.5, Thm. 3.10]). There exists a commutative diagram of
functors

gr-A MFgr(W )

Dgr
Sg(A) HMFgr(W )

δi

Cok

p

∼
Coki

such that Coki is an equivalence of categories and p : MF(W )→ HMF(W ) is the projection.
Coki moreover sends a matrix factorization P • to the cokernel of p0, and in addition δi is
defined as the composition

gr-A ↪→ Db(gr-A)
tr≥i−−→ Db(gr-A)

D−→ Db(gr-A◦)
tr≥i−1−−−→ Db(gr-A)

D◦
−→ Db(gr-A)

where gr-A ↪→ Db(gr-A) puts the image of Cok in the zeroeth degree.

We now describe the inverse Cok−1
i of this functor following [Dyc11, §2.3] in the special

case when our complex in Dgr
Sg(A) is zero everywhere except at index 0, where we have a

graded module of the form B/I, I being generated by a regular sequence (f1, . . . , fm), and
W ∈ I. This gives the decomposition W =

∑
fiwi for wi ∈ B.

Consider the Koszul complex associated to the sequence (f1, . . . , fm)

K =
(∧•

V, s0

)
with V is the free module Am with basis e1, . . . , em,

∧• V denotes the exterior algebra over
V , and s0 denotes contraction with (f1, . . . , fm) ∈ HomA(V,B), i.e.,

s0(ei1 ∧ · · · ∧ eip) =

p∑
k=1

(−1)k+1fik(ei1 ∧ · · · ∧ êik ∧ · · · ∧ eip)

The complex K is then an B-free resolution of B/I by [Wei94, Cor. 4.5.5]. Then, multipli-
cation by w on K is zero-homotopic, with the contracting homotopy s1 given by exterior
multiplication by (w1, . . . , wm) ∈ V , i.e.,

s1(ω) =

(
m∑
i=1

wiei

)
∧ ω

as shown in [BGS87, §2.2]. Since s2
0 = s2

1 = 0, the 2-periodic complex(
m⊕
i=0

∧•
V, s0 + s1

)
then defines a matrix factorization of w by [Dyc11, Cor. 2.7].
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Example 2.20 ([Tod, §2.3]). Let m = (x1, . . . , xn) ⊂ B, and let k(j) = (B/m)(j). Then,
the above construction gives us the matrix factorization⊕

k≥0

2k+1∧
m/m2 ⊗B(dk + j)

p0−→
⊕
k≥0

2k∧
m/m2 ⊗B(dk + j)

p1−→
⊕
k≥0

2k+1∧
m/m2 ⊗B(d(k + 1) + j)

where p0, p1 are both defined by s0 + s1.

We note here for future reference that the Koszul complex above has another natural
description in terms of the tensor product of matrix factorizations as will be defined later
in §5.1, following [PV12, §2.2] and [Bec, §2.4]. Namely, denoting {a, b} to be the matrix
factorization of the potential W = ab given as

B
a−→ B

b−→ B(d),

we see that the tensor product of these kind of matrix factorizations {fi, wi} gives the Koszul
complex above, since the Koszul complex itself can be described in terms of a tensor product
of complexes of the form above [Wei94, §4.5]. Using this interpretation it is easier to see that
different choices for wi give isomorphic matrix factorizations [Bec, Rem. 2.4.4].

3. Calculations with Orlov’s Equivalence

3.1. Calculations in General. Now that we know how each functor in the equivalence (1)
works, we can start making computations with it. Note first, however, that at the current
moment the equivalence depends on the choice of an integer i ∈ Z. The following lemma
makes this choice unimportant:

Lemma 3.1 ([Gal, Lem. 1.1]). [1] ◦Ψi ◦ (OX(−1)⊗−) ∼= Ψi−1 for all i ∈ Z

Proof. We first claim we have the following commutative diagram of functors:

Db(gr-A) Dgr
Sg(A) Db(gr-A) MFgr(W )

HMFgr(W )

HMFgr(W )

Db(gr-A) Dgr
Sg(A) Db(gr-A) MFgr(W )

γi

[1] [1]

δi

[1]

Cok

[1]

p

[1]

Coki

Coki−1

γi−1 δi−1 Cok

p

[1] : Db(gr-A) → Db(gr-A) restricts to an equivalence Db(gr-A≥i)
∼→ Db(gr-A≥i−1) sending

P≥i to P≥i−1 and S≥i to S≥i−1, and [1] ◦ tr≥i ∼= tr≥i−1 ◦[1]. Thus,

[1] ◦ γi ∼= γi−1 ◦ [1], [1] ◦ δi ∼= δi−1 ◦ [1],
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and so all of the squares commute, except possibly the trapezoid in the middle. But this
commutes since p is a quotient functor, hence exact.

We now verify how RΓ−1
• and [1] commute. Recall that RΓ−1

• = (̃−) gives the associated
sheaf for a graded module, and has the properties from Proposition 2.3. Thus,

[1] ◦Ψi ◦ (OX(−1)⊗−) ◦ (̃−) ∼= [1] ◦Ψi ◦ (̃−) ◦ [−1]

∼= [1] ◦ Cok−1
i ◦γi ◦ [−1]

∼= Cok−1
i−1 ◦[1] ◦ γi ◦ [−1]

∼= Cok−1
i−1 ◦γi−1 ◦ [1] ◦ [−1]

∼= Cok−1
i−1 ◦γi−1

∼= Ψi−1 ◦ (̃−). �

We therefore choose the equivalence

Ψ := Ψ1 : Db(cohX)→ HMFgr(W ).

Following the lengthy description of Orlov’s Equivalence in §2, we now have a step-by-step
method to compute the matrix factorization for a given coherent sheaf as in [Gal, §1.2]:

(1) Given a coherent sheaf F , find C ∈ gr-A such that C̃ = F . We can do this by
computing RΓ•(F ) using sheaf cohomology as in [FAC], or just guessing.

(2) Calculate γ1(C), which as we recall is given by

Db(gr-A)
tr≥i−−→ Db(gr-A)

D−→ Db(gr-A◦)
tr≥i−1−−−→ Db(gr-A)

D◦
−→ Db(gr-A).

which at worst requires finding two projective resolutions.
(3) Use the process like in §2.3 to compute the inverse image through Cok1, and shift

the resulting matrix factorization as needed.

Note that for this last step we have only developed a very special case; in general, however,
it is not too difficult to calculate the inverse image using a computer program like Macaulay2
(see, for example, [Eis02, pp. 132–135]).

We now compute an example.

Example 3.2 (Ψ(OX), following [Gal, Lem. 1.2]). We know that Ã = OX , and so we first
claim that γ1(A) ∼= A+. Since tr≥1(A) = A+ by definition and since D◦ ◦ D = id, it suffices
to show that D◦(A+) is concentrated in degrees ≥ 0. Using the long exact sequence for
cohomology associated to the short exact sequence

0 −→ A+ −→ A −→ k −→ 0

we see Extigr(A+, A) ∼= Exti+1
gr (k,A) for all i ≥ 1 and have an exact sequence

A ∼= Homgr(A,A)→ Homgr(A+, A)→ Ext1
gr(k,A),

so the claim follows since A has Gorenstein parameter a = 0 by Proposition 2.10.
Now we have γ1(A) ∼= A+ in Dgr

Sg. Denoting A,A+, k to also be the complexes in Dgr
Sg with

A,A+, k in degree 0, we have the exact triangle

A+ −→ A −→ k −→ A+[1].

By axiom [T2] for triangulated categories, this is exact if and only if

k[−1] −→ A+ −→ A −→ k
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is exact; however, since A[1] is an object of grproj A, we see that A+
∼= k[−1] in Dgr

Sg, and so

it suffices to find Cok−1
1 (k[−1]) ∼= Cok−1

1 (k)[−1]. But this we have done already in Example
2.20 for k, and so we simply shift everything by [−1], i.e., we get the matrix factorization⊕

k≥0

2k∧
m/m2 ⊗B(d(k − 1))

−p1(−d)−−−−−→
⊕
k≥0

2k+1∧
m/m2 ⊗B(dk)

−p0−−−−−→
⊕
k≥0

2k∧
m/m2 ⊗B(dk)

3.2. Plane Elliptic Curves. Let n = 3, i.e., B = Jx1, x2, x3K, and let

W = x1

(
x2

1 +
λ

3
x2x3

)
+ x2

(
x2

2 +
λ

3
x1x3

)
+ x3

(
x2

3 +
λ

3
x1x2

)
.

Then, we have the matrix factorization corresponding to k

〈e1, e2, e3〉 ⊗B ⊕ 〈e1 ∧ e2 ∧ e3〉 ⊗B(3)

p0−→ B ⊕ 〈e1 ∧ e2, e1 ∧ e3, e2 ∧ e3〉 ⊗B(3)

p1−→ 〈e1, e2, e3〉 ⊗B(3)⊕ 〈e1 ∧ e2 ∧ e3〉 ⊗B(6)

where p0, p1 are given as above using the contraction map s0 and external multiplication
map s1. Denoting x = x1, y = x2, z = x3, we then have the matrices

p0 =


x y z 0

−y2 − λ
3
xz x2 + λ

3
yz 0 z

−z2 − λ
3
xy 0 x2 + λ

3
yz −y

0 −z2 − λ
3
xy y2 + λ

3
xz x

 ,

p1 =


x2 + λ

3
yz −y −z 0

y2 + λ
3
xz x 0 −z

z2 + λ
3
xy 0 x y

0 z2 + λ
3
xy −y2 − λ

3
xz x2 + λ

3
yz


Performing the requisite [−1] shift, we then have some degree shifts and have the matrices
q0 := −p1(−1) and q1 := −p0 as our matrix factorization corresponding to OX .

4. The Seidel-Thomas Shift Functor

In this section we recall the close relationship between the autoequivalence

[1] : HMFgr(W )→ HMFgr(W )

and the Seidel-Thomas twist (see [ST01]) on Db(cohX), as an example of a situation in
which the action of a functor on Db(cohX) on HMFgr(W ) through the equivalence

Ψi : Db(cohX)
∼→ HMFgr(W )

is well-known.
Recall that cohX has a multiplicative structure given by the tensor product; in particular,

we can construct the Picard group Pic(X), which at least in the case of a projective scheme
which is a complete intersection of dimension ≥ 3 is isomorphic to Z with generator OX(1)
[Har70, IV, Cor. 3.2].
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Recall that we have the following result as stated in [Tod, Prop. 3.2]:

Theorem 4.1 ([BFK12, Prop. 5.8]). The following diagram commutes:

Db(cohX) HMFgr(W )

Db(cohX) HMFgr(W )

Ψi

Fi [1]

Ψi

where Fi := STOX(−i+1) ◦ (− ⊗ OX(1)) and ST is the Seidel-Thomas twist functor [ST01],
defined as

STE •(∗) := Cone
(

hom(E •, ∗)⊗ E •
ev−→ ∗

)
where hom denotes the internal hom functor.

Following [Gal, p. 9], this gives the following isomorphism of functors:

(8)
Ψi ◦ (−⊗OX(1)) ◦Ψ−1

i
∼= ST−1

Ψi(OX(−i+1)) ◦ [1]

Ψi ◦ (−⊗OX(−1)) ◦Ψ−1
i
∼= [−1] ◦ STΨi(OX(−i+1))

We note that the Seidel-Thomas twist on the right side then has two arguments; we therefore
define the following:

Definition 4.2. Define the bifunctor [−,−] : HMFgr(W )× HMFgr(W )→ HMFgr(W ) as

[Q•, P •] := ST−1
Q•P •[1].

Note this is an exact bifunctor by [ST01, Def. 2.5].

This gives rise to a couple of questions:

Question 4.3. What bifunctor does this induce on Db(cohX)? It is clear that in the special
case that Q• = Ψi(OX(−i + 1)) for some i, we get that [−,−] corresponds to (−⊗OX(1))
on the Db(cohX) side by (8), but we do not know much otherwise. We speculate that it
probably corresponds to something involving a tensor product.

Question 4.4. For what Q• does [Q•,−] give an autoequivalence? This amounts to trying to
figure out what it means for an object to be “spherical” in HMFgr(W ) by [ST01, Prop. 2.10].

[Gal] gives a partial answer to the first question by describing the action of −⊗OX(±1)
in HMFgr(W ); note that this would then fully describe the action of the Picard group in
the case when X is a projective scheme which is a complete intersection of dimension ≥ 3
[Har70, IV, Cor. 3.2]. It is hoped that there is a concrete description of this action in terms
of operations on matrices. We give an outline of his description below:

Recall (8), which we adapt to our specific choice of i = 1 in our equivalence Ψi : Db(cohX)
∼→ HMFgr(W ):

Ψ ◦ (−⊗OX(1)) ◦Ψ−1 ∼= ST−1
Ψ(OX) ◦ [1]

Ψ ◦ (−⊗OX(−1)) ◦Ψ−1 ∼= [−1] ◦ STΨ(OX)
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Following [BFK12, Def. 2.28,2.29; Gal, p. 9; ST01, Def. 2.5,2.7], the Seidel-Thomas twist
functor is given by calculating a k-basis

{fi}i∈Z ⊆
∐
j∈Z

HomHMFgr(Ψ(OX)[j], P •)

and then having

STΨ(OX)(P
•) := Cone

(⊕
i∈Z

Ψ(OX)[− deg(fi)] −→ P •

)
where the map is equal to fi on each summand. The inverse is described similarly by
calculating a k-basis

{gi}i∈Z ⊆
∐
j∈Z

HomHMFgr(P •,Ψ(OX)[j])

and then having

STΨ(OX)(P
•) := Cone

(
P • −→

⊕
i∈Z

Ψ(OX)[deg(gi)]

)
where the map is equal to gi on each summand.

By applying this process to find either ST or ST−1, and applying the necessary shifts, in
theory it would be possible to find the action the group generated by OX(1) in HMFgr(W ).

The original paper [BFK12] from which we derived the equivalences (8), however, does
not give a hint as to what tensoring by an arbitrary sheaf on the Db(cohX) side will do on
the matrix factorization side. Moreover, it seems as though their method does not generalize
easily to an arbitrary tensor product in Db(cohX), and so a new method is needed.

5. Tensor Triangulated Geometry and HMFgr(W )

We recall that there is a natural tensor product in HMFgr(W ) inherited from its underlying
structure as Z/2-graded complexes. This construction then has two variants listed below;
again it would be nice to understand how these functors correspond on the coherent sheaf
side through the equivalence Ψi.

Before we define these functors, we start with some preliminaries on tensor triangular
geometry (see [Bal10] for an overview).

Definition 5.1. A tensor triangulated category (K,⊗,1) is a triangulated category K with
a monoidal structure (see [Mac98, VII])

−⊗− : K ×K → K
which unit object 1 ∈ K, such that for all x ∈ K, the functors x ⊗ − and − ⊗ x are exact,
and such that a⊗ b ∼= b⊗ a for all a, b ∈ K.

Liu extends this definition to the graded case:

Definition 5.2 ([YL, §2.1]). An H-graded tensor triangulated category for H a commutative
monoid is formed by a coproduct of tensor triangulated categories Kα for α ∈ H, i.e.,

K :=
∐
α∈H

Kα,
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where objects are vectors (xα)α∈H such that xα = 0 for almost all α, and

HomK((xα), (yα)) :=
⊕
α∈H

HomKα(xα, yα).

The tensor product is defined such that for every pair α, β ∈ H we have the bifunctor

−⊗αβ − : Kα ×Kβ → Kαβ
that satisfies the usual properties for a graded product. Note that (xα) is then the direct
sum of all of its components, i.e., (xα) =

⊕
α xα.

This category naturally has a tensor triangulated structure by defining [1] component-wise,
and the tensor product between the component categories gives a tensor product on the
whole category. Explicitly, we define (xα)⊗ (yα) = (zα) such that

zα :=
⊕
βγ=α

xβ ⊗ yγ.

The main application of these notions is due to Balmer:

Theorem 5.3 ([Bal10, Thm. 63, Rem. 64]). Let X, Y be quasi-separated schemes. If their
derived categories of quasi-coherent sheaves D(qcohX) ' D(qcohY ) are equivalent as tensor
triangulated categories then the schemes X ∼= Y are isomorphic.

The main tool in [Bal05] is the definition of a prime ideal of a tensor triangulated category:

Definition 5.4 ([Bal05, Def. 1.2]). A thick tensor-ideal A of K is a full triangulated sub-
category that is thick, i.e., for every object that decomposes into a direct sum, A contains
all the direct summands, and is a tensor-ideal, i.e., an ideal under ⊗ in the commutative
algebra sense.

Definition 5.5 ([Bal05, Def. 2.1]). A proper thick tensor-ideal P is prime if a⊗b ∈P =⇒
a ∈P or b ∈P.

Using this definition, it is possible to define a spectrum Spec(K) on a triangulated category
K, quite analogously to the case with a prime ideal of a commutative ring.

In [YL], Liu applies this notion of a prime spectrum defined on a tensor triangulated
category, to the graded case defined above. His main result is the following:

Theorem 5.6 ([YL, Thm. 3.3.3.2]). If B is a Noetherian ring of finite Krull dimension then
there is an isomorphism of locally ringed spaces

ϕ : Spec(B)→ Spec(HMF(0))

Note that in this case HMF denotes the homotopy category of ungraded matrix factorizations,
in contrast to what we have been working with throughout.

5.1. The (Graded) Tensor Product in HMFgr(W ). We would like to consider the pos-
sibility of a similar theorem to [YL, Thm. 3.3.3.2] for the graded triangulated category

HMFgr(W ) :=
∐
n∈N

HMFgr(nW )

where N are the nonnegative integers. First, we must define what is meant by a tensor
product in HMFgr(W ).
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We follow [PV12, §2.2; YL, §3.1.1]. Let P •, Q• be in HMFgr(W ),HMFgr(W ′) respectively.
Recall the notion of the tensor product double complex from [Wei94, §2.7], which is defined
as the double complex

P 0 ⊗Q0(d) P 1 ⊗Q0(d) P 0(d)⊗Q0(d)

P 0 ⊗Q1 P 1 ⊗Q1 P 0(d)⊗Q1

P 0 ⊗Q0 P 1 ⊗Q0 P 0(d)⊗Q0

p0⊗id p1⊗id

p0⊗id

id⊗q1

p1⊗id

− id⊗q1 id⊗q1

p0⊗id

id⊗q0

p1⊗id

− id⊗q0 id⊗q0

We can then define the tensor product chain complex as the total chain complex Tot⊕

obtained from this double complex (see [Wei94, §1.2]).

Definition 5.7 (cf. [GK, 1.6.8]). Given two matrix factorizations P •, Q• in the triangulated
categories HMFgr(W ) and HMFgr(W ′) respectively, the tensor product P • ⊗ Q• is defined
as the matrix factorization in HMFgr(W +W ′) defined by the tensor product chain complex
above, explicitly given as

P • ⊗Q• :=

P
0 ⊗Q0⊕

P 1 ⊗Q1

P 1 ⊗Q0(d)⊕
P 0(d)⊗Q1

P 0(d)⊗Q0(d)⊕
P 1(d)⊗Q1(d)

p0⊗id(d) − id⊗q1

id(d)⊗q0 p1⊗id

  p1⊗id id⊗q1

− id(d)⊗q0 p0⊗id(d)




where we will sometimes drop the degree shifts (d) for clarity.

It is clear that this tensor product ⊗ defines a tensor structure on HMFgr(W ) with H = N
as our commutative monoid. This gives us our first question:

Question 5.8. What bifunctor does

−⊗− : HMFgr(mW )× HMFgr(nW )→ HMFgr((m+ n)W )

induce on
∐

n∈Z Db(cohXn), where the Xn := {nW = 0}?

Note that the action of the tensor product is qualitatively different in zero and prime
characteristic, for the tensor product provides a multiplicative structure on

HMFgr(W ) :=
∐

n∈Z/(p)

HMFgr(nW )

for prime characteristic p.
First we show a couple of facts concerning properties of HMFgr(W ) intrinsically, so that

instead of using the abstract construction of a prime spectra in [Bal05], we can instead use
the familiar construction from commutative algebra.

Lemma 5.9. −⊗− is commutative, i.e., P • ⊗Q• = Q• ⊗ P • (up to isomorphism).

Proof. This follows by considering the canonical isomorphisms P i⊗Qj ∼= Qj⊗P i for graded
modules and taking direct sums to get an isomorphism P • ⊗Q• ∼= Q• ⊗ P •. �
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Proposition 5.10 ([YL, §3.1.2]). The identity element in HMFgr(W ) with respect to ⊗ is
given by the matrix factorization

U•1 :=
(
B

0−→ 0
0−→ B

)
Proof. Let P • be another matrix factorization in HMFgr(nW ) for some n ∈ Z. Then, the
tensor product P • ⊗ U• is given by

P 0 ⊗B⊕
P 1 ⊗ 0

P 1 ⊗B⊕
P 0(d)⊗ 0

P 0(d)⊗B⊕
P 1(d)⊗ 0

p0⊗id(d) − id⊗0

id(d)⊗0 p1⊗id

  p1⊗id id⊗0

− id(d)⊗0 p0⊗id(d)



and using the canonical isomorphisms M ⊗B ∼= P 0, N ⊗ 0 ∼= 0 this is isomorphic to P •. �

Recalling the notion of the direct sum of matrix factorizations

P • ⊕Q• :=

P 0 ⊕Q0 P 1 ⊕Q1 P 0(d)⊕Q0(d)

p0
q0

 p1
q1




and defining nP • :=
⊕

n P
•, we have the following corollary:

Corollary 5.11. The isomorphism classes of objects in HMFgr(W ) form a Z-module with
Z-action defined by − · i := −⊗ U•i , where U•i is defined by

U•i :=
(
Bi 0−→ 0

0−→ Bi
)

Proof. The argument is as in Proposition 5.10, where we use the canonical isomorphism
M ⊗Bi ∼= ⊕iM ⊗B ∼= ⊕iM [Mat80, p. 327]. �

This, however, is a very special case of the following:

Theorem 5.12. The isomorphism classes of objects in HMFgr(W ) with multiplication de-
fined by ⊗ and addition defined by ⊕ form a graded commutative ring with identity.

Proof. Proposition 5.10 shows there is an identity, Corollary 5.11 shows ⊕ gives an abelian
group structure, and ⊗ gives a monoidal structure by the fact that it gives a monoidal
structure on B-mod. Distributivity follows similarly by the distributivity of ⊕,⊗ on the
level of B-modules [Mat80, p. 327]. �

What is notable about this theorem, then, is that there is now a distinct difference between
our approach and that of [Bal05]: since HMFgr(W ) forms a graded ring, then we think that
instead of the affine spectrum for triangulated categories defined in [Bal05], it would be more
natural for us to use the projective version Proj(HMFgr(W )).

5.2. The “Internal” Tensor Product in HMFgr(W ). In contrast to the graded case
above, it is also possible to define a tensor product − ⊗ − : HMFgr(W ) ⊗ HMFgr(W ) →
HMFgr(W ). This is in order to prove something like the following conjecture:

Conjecture 5.13. The image of the Picard group through Ψ forms a group in HMFgr under
the group operation ⊗ defined above.



20 TAKUMI MURAYAMA

and to find the answer to the following question:

Question 5.14. What are the “⊗-invertible objects” in HMFgr(W )? Namely, what are
the objects P • ∈ HMFgr(W ) for which there exists Q• ∈ HMFgr(W ) with P • ⊗ Q• ∼= 1

(cf. [Bal10, Def. 35])? Note that this is equivalent to asking for which objects P • do we have
an autoequivalence P • ⊗− : HMFgr(W )→ HMFgr(W ).

Conjecture 5.13 as-is, however, makes no sense because

−⊗− : HMFgr(W )⊗ HMFgr(W )→ HMFgr(2W )

We intend to pursue Conjecture 5.13 in the following, by redefining the tensor product so it
lands in HMFgr(W ). Because 2W = 0 if char k = 2, we add the assumption that char k 6= 2
to make the tensor product well-defined in HMFgr(W ).

Recalling that B = kJx1, x2, . . . , xnK, we can redefine the tensor product as the bifunctor
−⊗− : HMFgr(W )⊗ HMFgr(W )→ HMFgr(W ) where

P • ⊗Q• :=

P 0 ⊗Q0⊕
P 1 ⊗Q1

P 1 ⊗Q0⊕
P 0 ⊗Q1

P 0 ⊗Q0⊕
P 1 ⊗Q1

1

2

p0⊗id − id⊗q1

id⊗q0 p1⊗id

  p1⊗id id⊗q1

− id⊗q0 p0⊗id




Lemma 5.15. The tensor product ⊗ is well-defined (up to isomorphism), and moreover, the
choice of where to put the factor 1/2 is canonical in that different choices

α

(
p0 ⊗ id − id⊗q1

id⊗q0 p1 ⊗ id

)
, β

(
p1 ⊗ id id⊗q1

− id⊗q0 p0 ⊗ id

)
for our differentials where 2αβ = 1 give isomorphic matrix factorizations.

Proof. The well-definition of ⊗ is clear since chain homotopies h become chain homotopies
on a tensor product by h⊗ id (see [Wu, Lem. 3.9]).

The choice of factor 1/2 is canonical as seen in the following morphism:

P 0 ⊗Q0⊕
P 1 ⊗Q1

P 1 ⊗Q0⊕
P 0 ⊗Q1

P 0 ⊗Q0⊕
P 1 ⊗Q1

P 0 ⊗Q0⊕
P 1 ⊗Q1

P 1 ⊗Q0⊕
P 0 ⊗Q1

P 0 ⊗Q0⊕
P 1 ⊗Q1

P 0 ⊗Q0⊕
P 1 ⊗Q1

P 1 ⊗Q0⊕
P 0 ⊗Q1

P 0 ⊗Q0⊕
P 1 ⊗Q1

1

2

p0⊗id − id⊗q1

id⊗q0 p1⊗id



id

 p1⊗id id⊗q1

− id⊗q0 p0⊗id



·2α id

α

p0⊗id − id⊗q1

id⊗q0 p1⊗id



id

β

 p1⊗id id⊗q1

− id⊗q0 p0⊗id



·β id

1

2

p0⊗id − id⊗q1

id⊗q0 p1⊗id

  p1⊗id id⊗q1

− id⊗q0 p0⊗id



which is an isomorphism. �

The following claim, however, is harder to prove:
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Claim 5.16. Ψ(OX) is the identity under the tensor product ⊗ defined above on the image
of the Picard group through Ψ.

By Theorem 2.19, it suffices to show that Cok(Ψ(OX)⊗Q•) ∼= CokQ• = coker q0, i.e.,

coker

(
p0 ⊗ id(d) − id⊗q1

id(d)⊗ q0 p1 ⊗ id

)
∼= coker q0.

We don’t know if this would work in the general case, although we’re pretty sure it does,
and so we consider the following toy example:

Example 5.17. Consider the case Ψ(OX) ⊗ Ψ(OX) where B = CJxK and W = x. Recall
from §3.2 that we have the following matrix factorization for Ψ(OX):

B B
−1(−1)

−x

The corresponding matrix factorization Ψ(OX)⊗Ψ(OX) is given by

B2 B2

1

2

(
−1 x

−1 −x

)
(
−x −x

1 −1

)
Note the cokernel of −1(−1) is isomorphic to k[−1], as also computed in §3.2 and so it
suffices to show that

coker

(
−1 x
−1 −x

)
∼= k[−1]

By row reduction, we see that

coker

(
−1 x
−1 −x

)
∼= coker

(
1 0
0 x

)
∼= k.

This actually suggests that the correct tensor product structure on HMFgr(W ) is probably
given by −⊗−[−1].

5.3. Possible Connections to the Grothendieck Group. We now return to our first
motivating question from the introduction, in the case of the Grothendieck Group K(T ) for
a triangulated category T . First we define what we mean by the Grothendieck group:

Definition 5.18 ([SGA5, VIII, §2]). Let T be a triangulated category. The Grothendieck
group K(T ) of T is the quotient of the free abelian group on the isomorphism classes [A] of
objects of T by the subgroup generated by expressions [A]− [B]+[C] for every distinguished
triangle A→ B → C → A[1] in T .

Note this closely mirrors the definition for the abelian case (cf, [SGA5, VIII, §1], see [AM69,
p. 88] for an elementary introduction to the theory).

When we have a tensor product ⊗ on our category T , then, we get the Grothendieck ring
by defining [A]⊗ [B] := [A⊗B]. Note that since we then have a ring and the corresponding
scheme Spec(K(T )), this prompts a comparison with Balmer’s construction [Bal05]:

Question 5.19. If T is a tensor triangulated category, and K(T ) its Grothendieck ring, then
how are Balmer’s Spec(T ) and the usual Spec(K(T )) related? E.g., is there a morphism of
locally ringed spaces between them?
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In the case of §5.1, this gives rise to the analogous question:

Question 5.20. If K(HMFgr(W )) is the Grothendieck ring of the graded tensor trian-
gulated category HMFgr(W ), and provided that we can make sense of Proj(HMFgr(W ))
as a modification of Balmer’s construction, then how are Proj(HMFgr(W )) and the usual
Proj(K(HMFgr(W ))) related? Is there a morphism of locally ringed spaces between them?

Note that we are assuming here that K(HMFgr(W )) would have a graded structure induced
by the grading on HMFgr(W ).

There are two (very) special cases in which the answer to Question 5.19 might be easy:

Example 5.21. Let X = P1 be the projective line over a field k. X is then a Fano variety and
so has ample anticanonical sheaf; this implies the triangulated category of perfect complexes
Dperf(X) is equivalent to Db(cohX) [Bal02, §1]. By Balmer’s reconstruction theorem [Bal05,
Thm. 6.3], we have Spec(Dperf(X)) ' X, and so Spec(Db(cohX)) ' X.

We also have the following computation of the Grothendieck ring [Man69, Ex. 3.11]:

K(P1) ∼= Z[x]/((1− x)2)

The question then reduces to a comparison between P1 and Spec(Z[x]/((1− x)2)).

Example 5.22. Slightly more generally, let X be a smooth curve with ample anticanon-
ical or canonical sheaf. Again, the triangulated category of perfect complexes Dperf(X) is
equivalent to Db(cohX) [Bal02, §1]. Again by Balmer’s reconstruction theorem, we have
Spec(Db(cohX)) ' X.

Recall from [Har77, p. 149] that the Grothendieck group K(Db(cohX)) ∼= K(cohX) ∼=
Pic(X) ⊕ Z for X a smooth curve. After giving Pic(X) ⊕ Z the ring structure induced by
⊗, the question then reduces to asking how X and Spec(Pic(X)⊕ Z) are related.

Note that in these particular situations, Orlov’s equivalence fails since we no longer have a
hypersurface of requisite degree (the Gorenstein parameter is nonzero), and moreover Dgr

Sg(A)
is trivial and so HMF(W ) would also be trivial. Thus, this line of reasoning would not be
useful for Question 5.20.

Concluding Remarks

A common thread throughout much of the current research related to matrix factorizations
and Orlov’s equivalence is related to how we could possibly take advantage of the dictionary
between coherent sheaves and matrix factorizations to prove theorems on one side or the
other. While discussing this equivalence with other people, I have come to realize that
there has not been much activity on the matrix factorization side, most probably because
it is much harder to prove theorems with matrix factorizations than with coherent sheaves,
which are much better understood because of the abundance of work done by Grothendieck,
Serre, Hartshorne, Artin, and others.

It is my personal opinion, however, that there must be something hidden in the connection
between matrix factorizations and tensor triangular geometry. The possibility outlined in
§5.1 concerning a re-formulation of Balmer’s work from [Bal05] in the case of graded tensor
triangular categories and the projective scheme associated with it, might suggest something
similar to Balmer’s reconstruction theorem [Bal10, Thm. 63, Rem. 64]. And there probably
is something that can be garnered from the affine case as well, as outlined in §5.2.
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