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Abstract

We compare the behavior of fiber bundles with structure group 𝐺 for 𝐺 the general linear
group GL, the projective general linear group PGL, and the general affine group GA. We
prove a criterion for when a GA-bundle is in fact a GL-bundle, i.e., a vector bundle, over the
Riemann sphere ℙ1. We also discuss the behavior of fiber bundles under different topologies;
specifically, we compare the analytic versus Zariski topologies over the Riemann sphere ℙ1,
and compare the étale and Zariski topologies on schemes in general.
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Introduction

Let 𝑋 be a projective algebraic variety defined over the complex numbers ℂ, i.e., 𝑋 is
defined as the zero set of homogeneous polynomials {𝑓u� ∶ ℂu�+1 → ℂ}1≤u�≤u� in the complex
projective space ℙu�

ℂ of dimension 𝑛. 𝑋 can then be given what is called the Zariski topology,
generated by the open basis of sets defined by the complement in 𝑋 of zero sets of some
other homogeneous polynomials {𝑔u�}. An important feature of algebraic geometry over ℂ is
the following: if 𝑋 is smooth, i.e., for all points 𝑥 = (𝑥0 ∶ ⋯ ∶ 𝑥u�) ∈ 𝑋, the Jacobian matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

⋯ 𝜕𝑓1
𝜕𝑥u�

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

⋯ 𝜕𝑓2
𝜕𝑥u�

⋮ ⋮ ⋱ ⋮
𝜕𝑓u�
𝜕𝑥1

𝜕𝑓u�
𝜕𝑥2

⋯ 𝜕𝑓u�
𝜕𝑥u�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

has rank 𝑛 − 𝑑, where 𝑑 is the dimension of 𝑋, then 𝑋 also has the structure of a complex
analytic manifold, i.e., a complex manifold that is locally biholomorphic to ℂu�, with a
topology given by the subspace topology from ℙu�

ℂ with the standard topology. Call this
topology the analytic topology. The geometry of projective algebraic varieties over ℂ, then,
has the benefit of having topological, analytic, and algebraic methods at its disposal; in
particular, projective algebraic varieties of dimension 1 are widely studied as Riemann
surfaces.

The richness of the structure on a complex projective variety, however, also means that
there are non-trivial choices to be made. Recall, for example, the notion of a vector bundle:

Definition. Let 𝑋 be a projective algebraic variety over ℂ. A vector bundle is a space
𝐸 together with a morphism 𝑝∶ 𝐸 → 𝑋 such that for any 𝑥 ∈ 𝑋 there is an open set 𝑈
containing 𝑥 and an isomorphism 𝑔∶ 𝑈 × ℂu� → 𝑝−1(𝑈) such that 𝑝 ∘ 𝑔(𝑢, 𝑒) = 𝑢 for any
𝑢 ∈ 𝑈, 𝑒 ∈ ℂu�, and such that if 𝑈′ is another open set containing 𝑥 with isomorphism
𝑔′ ∶ 𝑈′ × ℂu� → 𝑝−1(𝑈′), then the two vector space structures on 𝑝−1(𝑥) are the same.

Note that this definition works in two different settings:
(1) Consider 𝑋 with the analytic topology, with 𝐸 another complex analytic manifold,

and morphisms given by holomorphic functions. This gives holomorphic vector
bundles over 𝑋.

(2) Consider 𝑋 with the Zariski topology, with 𝐸 another algebraic variety over ℂ, and
morphisms given by regular functions, i.e., functions locally given by polynomials.
This gives algebraic vector bundles over 𝑋.
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2

At first glance, these notions give very different objects: indeed, while every algebraic vector
bundle is clearly holomorphic, there is no reason to believe that the converse is the case.
Indeed, the fact that on a projective variety, holomorphic and algebraic vector bundles are the
same is a deep result due to Serre [GAGA, Prop. 18]. Moreover, this result is fairly special,
in that replacing the vector spaces ℂu� with some other space 𝐹 gives fiber bundles that are
no longer always algebraic: sometimes a holomorphic fiber bundle is no longer an algebraic
bundle.

Our goal is to investigate the difference between the behavior of fiber bundles in the two
topologies above, and also the difference between the behavior when we change the fibers of
our bundle. We use Grothendieck’s theorem classifying algebraic vector bundles over ℙ1

[Gro57] as a point of departure.
After proving his result, we extend our methods to some kinds of fiber bundles over ℙ1,

specifically those listed in Example 1.11. In particular, we look at what happens if in the
definition above for a vector bundle, we assume that 𝑝−1(𝑥) only has the same affine structure
when looking at two different neighborhoods 𝑈, 𝑈′ on which we have morphisms 𝑔, 𝑔′. In
this situation, we prove a new criterion for when the “affine” bundle thus obtained is in fact
a vector bundle.

Finally, we discuss fiber bundles in the general context of schemes. For schemes, we can
introduce what is called the étale topology, which in some ways provides an analogue for
analytic bundles over complex varieties. Finally, we give some comparisons between the
behavior of fiber bundles in the Zariski and étale topologies.



Part 1

Algebraic and holomorphic fiber bundles over
the Riemann sphere



CHAPTER 1

Fiber bundles with structure group

We begin the first half of this thesis by talking about complex algebraic varieties and
complex analytic manifolds, and defining what are fiber bundles on them. Fiber bundles
are a generalization of vector bundles. Recall that for a vector bundle, each fiber has the
structure of a vector space. For a fiber bundle, though, we just require that each fiber is
isomorphic to some fixed space 𝐹.

Unlike in French, we do not have the luxury of using the word “variété” to refer to both
algebraic varieties and complex analytic manifolds; regardless, in the following we use the
word “variety” without qualification to emphasize the fact that the definitions are the same
in both contexts, by replacing the notion of a morphism in the right way, i.e., with regular
maps in the algebraic case, and holomorphic maps in the analytic case. In the algebraic
context, we do not have to work over the field ℂ; we will state when something depends on
the choice of field 𝑘.

1. Groups and group actions on varieties

Oftentimes when we have a variety, we would like to analyze the way a group can act
on it. The main examples we have in mind are the classical groups, e.g., the general linear
group acting on a vector space, and subgroups thereof. In general, we have the following
definition:

Definition 1.1. Let 𝐺 be a variety. 𝐺 is an algebraic or Lie group, depending on the
context, if the underlying set of 𝐺 forms a group, such that multiplication 𝐺 × 𝐺 → 𝐺,
(𝑔, 𝑔′) ↦ 𝑔𝑔′ and inversion 𝐺 → 𝐺, 𝑔 ↦ 𝑔−1 are morphisms.

Definition 1.2. Let 𝐺 be an algebraic or Lie group, and 𝑋 a variety. 𝐺 acts (on the
left) of 𝑋 if there is a morphism 𝑚u� ∶ 𝐺 × 𝑋 → 𝑋 such that 𝑚u�(1, 𝑥) = 𝑥 and 𝑚u�(𝑔′𝑔, 𝑥) =
𝑚u�(𝑔′, 𝐹(𝑔, 𝑥)) for all 𝑥 ∈ 𝑋, 𝑔, 𝑔′ ∈ 𝐺. We write 𝑚u�(𝑔, 𝑥) = 𝑔 ⋅ 𝑥. If 𝑚u� is understood, we
call 𝑋 a 𝐺-variety. A morphism of 𝐺-varieties is a morphism 𝜋∶ 𝑋 → 𝑌 between 𝐺-varieties
such that 𝜋 is 𝐺-invariant, that is, 𝜋(𝑔 ⋅ 𝑥) = 𝑔 ⋅ 𝜋(𝑥) for all 𝑥 ∈ 𝑋.

Example 1.3. Let 𝐺 = GLu�(𝑘), the general linear group of degree 𝑟 over 𝑘. This is
given by 𝑟 × 𝑟 matrices 𝐴 = (𝑎u�u�) with entries in 𝑘 such that det 𝐴 ≠ 0. GLu� acts on affine
𝑟-space 𝔸u� with a chosen basis {𝑒u�} by the map

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑣1
𝑣2
⋮
𝑣u�

⎞⎟⎟⎟⎟⎟⎟
⎠

↦ 𝐴
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑣1
𝑣2
⋮
𝑣u�

⎞⎟⎟⎟⎟⎟⎟
⎠

.
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CHAPTER 1. FIBER BUNDLES WITH STRUCTURE GROUP 5

It is an algebraic/Lie group by taking the open subset of 𝔸u�2 defined by those (𝑎u�u�) ∈ 𝔸u�2

such that det(𝑎u�u�) ≠ 0.

We note, however, that the automorphisms defined by matrices in 𝔸u� are not all of the
automorphisms of 𝔸u�; for example, a translation 𝑣 ↦ 𝑣 + 𝑤 for fixed 𝑤 ∈ 𝔸u� gives an
automorphism of 𝔸u�, but is not given by a matrix in GLu� since 0 ∈ 𝔸u� is not fixed by this
automorphism. By embedding 𝔸u� in ℙu�, even, there are already more automorphisms of
𝔸u�. To describe these, we first describe the analogue of GLu� for projective 𝑟-space:

Example 1.4. Let 𝐺 = PGLu�(𝑘) = GLu�+1(𝑘)/𝑘×, the projective general linear group
of degree 𝑟 over 𝑘. This is given by (𝑟 + 1) × (𝑟 + 1) matrices 𝐴 in GLu�+1 modulo scalar
multiplication by 𝑘×. PGLu� acts on projective 𝑟-space ℙu� by the map

⎡
⎢⎢⎢
⎣

𝑣0
𝑣1
⋮
𝑣u�

⎤
⎥⎥⎥
⎦

↦ 𝐴
⎡
⎢⎢⎢
⎣

𝑣0
𝑣1
⋮
𝑣u�

⎤
⎥⎥⎥
⎦

.

It is an algebraic/Lie group by taking the open subset of ℙu�2 defined by those [𝑎u�u�] ∈ ℙu�2

such that det[𝑎u�u�] ≠ 0.

Unlike for GLu� acting on 𝔸u�, however, we know that PGLu� is in fact the entire group of
automorphisms of ℙu�:

Proposition 1.5. Every automorphism of PGLu� is linear, i.e., is induced by an automor-
phism 𝐴 ∈ GLu�+1 of 𝔸u�+1.

Proof ([Har95, p. 229]). Let 𝐻 and 𝐿 ⊂ ℙu� be a hyperplane and a line in ℙu�, respec-
tively, meeting at one point. By Bézout’s theorem [Har95, Thm. 18.3], since an automorphism
𝜑 of ℙu� must preserve intersection numbers, we have that 𝐻 maps to a hyperplane and 𝐿
to a line, such that they still meet at one point. This implies that hyperplanes must map to
hyperplanes under the automorphism 𝜑. If on an affine chart 𝜑 is given by

(𝑧1, … , 𝑧u�) ↦ (𝑤1, … , 𝑤u�), 𝑤u� = 𝑓u�(𝑧1, … , 𝑧u�)
𝑔u�(𝑧1, … , 𝑧u�)

the requirement that 𝜑 maps hyperplanes to hyperplanes implies that a linear relation between
the 𝑤u� implies one between the 𝑧u�, hence the degrees of the 𝑓u�, 𝑔u� are all at most 1, with all 𝑔u�
scalar multiples of each other. �

Note that Bézout’s theorem only works if our base field is algebraically closed; we will
give a different proof later that works for non-algebraically closed fields 𝑘 as well as finitely
generated UFD’s over 𝑘.

This example PGLu� gives us a slightly larger group of automorphisms of 𝔸u�:

Example 1.6. Let 𝐺 = GAu�(𝑘) ⊂ PGLu�(𝑘) be the subgroup that that fixes the hyperplane
{𝑥0 = 0} in ℙu�. This is the general affine group of degree 𝑟 over 𝑘, and is given by (𝑟+1)×(𝑟+1)
matrices (𝑎u�u�) in GLu�+1 modulo scalar multiplication by 𝑘× such that that 𝑎01 = 𝑎02 = ⋯ =
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𝑎0u� = 0. Note then that 𝑎00 ≠ 0, hence normalizing by 𝑎−1
00 gives that every element of GAu�

has a representative of the form

⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0
∗
⋮ 𝐴
∗

⎞⎟⎟⎟⎟⎟⎟
⎠

where 𝐴 ∈ GLu�(𝑘). GAu� is an algebraic/Lie group since the requirement 𝑎01 = 𝑎02 = ⋯ =
𝑎0u� = 0 defines a closed subset of GLu�+1 or PGLu� that is also a subgroup. Note that by taking
the hyperplane {𝑥0 = 0} out of the ℙu� that GAu� acts on, we get an automorphism of 𝔸u�.

This way of representing elements in GAu� gives rise to the following diagram relating
our three examples above:

GLu�+1(𝑘)

GLu�(𝑘) GAu�(𝑘) PGLu�(𝑘)

←↠

↩→ ↩→
↩

→ (1.7)

Note this relationship is on the level of algebraic/Lie groups; there is no reason why we
should expect morphisms to lift from PGLu� to GLu�, for example. This is the main topic of
Chapter 2.

2. Definition of fiber bundles

We can now define our main object of study, that is, fiber bundles with structure group.
These generalize vector bundles, and provide a good framework in which to talk about vector
bundles and related constructions with different fibers. For example, vector bundles have
fibers that are isomorphic to some vector space 𝑉 , but we can always stipulate that the fibers
are isomorphic to some other variety or scheme 𝐹. In the examples we are interested in,
moreover, there is some group 𝐺 acting on these fibers 𝐹, just like how GL acts on the fibers
of a vector bundle. Let 𝐺 be an algebraic or Lie group. For more discussion, see [Gro58a].

Definition 1.8. A fiber system with structure group 𝐺 and fiber 𝐹 is a 𝐺-variety 𝐸
together with a morphism 𝜋∶ 𝐸 → 𝑋 such that 𝜋−1(𝑥) ≅ 𝐹 for some fixed 𝐺-variety 𝐹,
and 𝐺 ⋅ 𝜋−1(𝑥) ⊂ 𝜋−1(𝑥) for all 𝑥 ∈ 𝑋. A morphism of two fiber systems 𝜋∶ 𝐸 → 𝑋 and
𝜋′ ∶ 𝐸′ → 𝑋 is a morphism of 𝐺-varieties 𝑓 ∶ 𝐸 → 𝐸′, such that it makes the diagram

𝐸 𝐸′

𝑋

← →u�

←→

u� ←→

u�′

commute. If 𝑓 ∶ 𝑋′ → 𝑋 is a morphism, we define the pullback fiber system 𝑓 ∗𝐸 as the
𝐺-variety 𝐸′ = 𝑋′ ×u� 𝐸 together with the morphism 𝜋′ ∶ 𝐸′ → 𝑋′ in the bottom fiber square
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below, and the 𝐺-action is given by the top square:

𝐺 × 𝐸′ 𝐺 × 𝐸

𝐸′ 𝐸

𝑋′ 𝑋

←→

←→u�u�′ ←→ u�u�

← →

←→u�′ ←→ u�

← →u�

In the special case 𝑋′ ⊂ 𝑋, we call 𝑓 |u�′ ≔ 𝑓 ∗𝐸 the restriction of the fiber system to 𝑋′.

It is hard to automatically see which fiber systems are isomorphic, that is, when there are
two morphisms 𝑓 , 𝑓 −1 whose composition in both directions is the identity, so we have the
following criterion:

Lemma 1.9. Let 𝜋∶ 𝐸 → 𝑋 and 𝜋′ ∶ 𝐸′ → 𝑋 be two fiber systems and let 𝑓 ∶ 𝐸 → 𝐸′

be a morphism between them. 𝑓 is an isomorphism if and only if for all 𝑥 ∈ 𝑋, there is a
neighborhood 𝑈u� containing 𝑥 such that 𝑓 induces an isomorphism 𝐸|u�u�

∼→ 𝐸′|u�u�
.

Proof. This follows since morphisms of 𝐺-varieties are defined locally. �

We would moreover like our fiber systems to have a “local triviality condition”:

Definition 1.10. The trivial fiber system is that defined by the projection 𝑋 × 𝐹 → 𝑋. A
fiber bundle with structure group 𝐺 and fiber 𝐹 or simply a 𝐺-bundle with fiber 𝐹 is a fiber
system over 𝑋 together with an open cover {𝑈u�} of 𝑋 and isomorphisms 𝜑u� ∶ 𝜋−1(𝑈u�)

∼→
𝑈u� × 𝐹,

𝜋−1(𝑈u�) 𝑈u� × 𝐹

𝑈u�

← →u�u�
∼←→u� ←→pr1

commutes, and such that the maps

𝜑u� ∘ 𝜑−1
u� ∶ (𝑈u� ∩ 𝑈u�) × 𝐹 → (𝑈u� ∩ 𝑈u�) × 𝐹

are given by (𝑥, 𝜉) ↦ (𝑥, 𝑡u�u�(𝑥)𝜉) for some morphisms 𝑡u�u� ∶ 𝑈u� ∩ 𝑈u� → 𝐺, which satisfy the
cocycle condition 𝑡u�u� = 𝑡u�u�𝑡u�u�. Morphisms of fiber bundles are morphisms as fiber systems.

Examples 1.11. In this thesis, we focus on the following examples:
(1) Let 𝐺 = GLu� acting on 𝐹 = 𝔸u� (1.3). 𝐹 is then a vector space by choosing the

origin to be the stabilizer of the 𝐺-action, and the GLu�-bundles with fiber 𝔸u� are
called vector bundles on 𝑋.

(2) Let 𝐺 = PGLu� acting on 𝐹 = ℙu� (1.4). The PGLu�-bundles with fiber ℙu� are called
projective bundles on 𝑋.

(3) Let 𝐺 = GAu� acting on 𝐹 = 𝔸u� (1.6). The GAu�-bundles with fiber 𝔸u� are called
affine bundles on 𝑋. Note they are a special case of projective bundles, and that
vector bundles are a special case of affine bundles.
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These fiber bundles are related in the same way as the groups GL, PGL, GA are as
illustrated in (1.7). The main goal of the first half of this thesis is to describe the relationship
between these different fiber bundles over the base space 𝑋 = ℙ1.

Remark 1.12. Note that for vector bundles, the transition data 𝑡u�u� can be viewed as 𝑟 × 𝑟
matrices with entries that are analytic functions on 𝑈u� ∩ 𝑈u� in the analytic case, or regular
functions in 𝒪(𝑈u� ∩ 𝑈u�) in the algebraic case. We also remark here about how different
choices of 𝑡u�u� can give isomorphic vector bundles. Suppose 𝐸 is given by matrices 𝑡u�u� and 𝐸′

by 𝑡′
u�u�. Then, suppose 𝑡′

u�u� can be written 𝑡′
u�u� = 𝑓u�𝑡u�u� for some 𝑓u� a matrix of analytic (resp. regular)

functions on 𝑈u�. The morphism 𝐸 → 𝐸′ then defined by gluing together the morphisms
𝜑′−1

u� ∘ 𝑓u� ∘ 𝜑u� is an isomorphism, hence 𝐸 ≅ 𝐸′ as vector bundles.

A key question we ask is whether or not all projective bundles arise from projectivizing
vector bundles, i.e., by taking the quotient by 𝑘× in each fiber. If this were the case, then we
could always lift our transition matrices in PGL to GL and work with transition matrices only.
This is the basis for why our methods in Chapter 2 work, where we can compute everything
in terms of matrices.

Remark 1.13. For a general fiber bundle (without a structure group), we can define a
fiber bundle as a fiber space 𝐸 → 𝑋 that is locally isomorphic to a trivial bundle, i.e., such that
for all 𝑥 ∈ 𝑋 there is a neighborhood 𝑈u� such that 𝐸|u�u�

is isomorphic to the trivial system on
𝐸. In this case, the isomorphisms 𝑋 ×𝐹 → 𝑋 ×𝐹 as fiber systems can be identified with maps
𝑓 ∶ 𝑋 → Aut(𝐹) [Gro58a, Prop. 1.4.1]. We would like a similar statement for fiber systems
with a structure group that are locally isomorphic to a trivial bundle in the above sense, so
that we can identify isomorphisms with maps 𝑋 → 𝐺. This is an issue, however, since while
we do get a map 𝑓 ∶ 𝑋 → Autu�(𝐹), the fact that 𝐺 may not act freely and transitively on 𝐹
means that we cannot assume that this map becomes a morphism 𝑋 → 𝐺, for there might
not be an element 𝑔 ∈ 𝐺 such that 𝑓 (𝑥) = 𝑔 ⋅ −, or even if there is one, it may not be unique.
For example, suppose 𝑈1, 𝑈2 ⊊ 𝑋 form an open cover of 𝑋 such that 𝑈1 ∩ 𝑈2 ≠ ∅. We can
have the group 𝐺 = ℤ/2 ⊕ ℤ/2 act on 𝔸1 by (𝑖, 𝑗) ⋅ 𝑣 ↦ 𝑖 ⋅ 𝑣, where 𝑖, 𝑗 ∈ {+1, −1}. Then
gluing together 𝑈u� × 𝔸1 via the map (𝑥, 𝑣) ↦ (𝑥, 𝑐𝑣) for 𝑐 ∈ 𝑘× − {±1} gives a fiber system
with structure group 𝐺, but this is not a fiber bundle for the transition function is not in 𝐺.
Moreover, even if 𝑐 = 1, (1, ±1) ⋅ 𝑣 = 𝑣, so there is ambiguity as to which element in 𝐺
to choose to define our fiber bundle. This is why it is often more convenient to work with
principal bundles, which are fiber bundles with fibers isomorphic to 𝐺, since in this case we
are guaranteed that 𝐺 acts freely and transitively on fibers. This is the viewpoint we will
take in Chapter 4.

3. A comparison between the analytic and Zariski topologies

We will see later that for 𝑋 = ℙ1, the choice of analytic versus Zariski topology on 𝑋
does not matter when it comes to what fiber bundles we can have, at least for our examples in
Example 1.11. On other base spaces 𝑋, though, it can make a difference. This is illustrated
by the following example:

Example 1.14. Let 𝑋 = 𝔸2 − {𝑠𝑡 = 0}, the affine plane minus the two lines {𝑠 = 0} and
{𝑡 = 0}, and define the fiber system 𝐸 by having fibers {𝑥2 + 𝑠𝑦2 = 𝑡𝑧2} ⊂ ℙ2 projecting onto
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(𝑠, 𝑡) ∈ 𝑋. This is a fiber system with structure group PGL1 since for fixed 𝑠, 𝑡, {𝑥2+𝑠𝑦2 = 𝑡𝑧2}
is a smooth conic, hence is isomorphic to ℙ1.

Now note 𝑋 = ℂ× × ℂ×. Giving 𝑋 the analytic topology, denote ℂ± to be ℂ minus the
± part of the ℝ axis, and let

𝑈1 = ℂ+ × ℂ+, 𝑈2 = ℂ+ × ℂ−, 𝑈3 = ℂ− × ℂ+, 𝑈4 = ℂ− × ℂ−.

On each of these open sets, we have the trivialization given by

𝑈u� × ℙ1 → 𝐸|u�u�

(𝑠, 𝑡) × (𝑢 ∶ 𝑣) ↦ (𝑢2 − 𝑣2 ∶ 2𝑢𝑣
𝑠1/2 ∶ 𝑢2 + 𝑣2

𝑡1/2 )

where 𝑠1/2, 𝑡1/2 are the positive or negative square roots depending on the 𝑈u�. The transition
data is then given by

𝑡13 = 𝑡24 = [1
−1] , 𝑡12 = 𝑡34 = [ 1

−1 ] , 𝑡14 = 𝑡23 = [ 1
1 ] (1.15)

and so 𝐸 → 𝑋 defines a holomorphic projective bundle.
On the other hand, in the Zariski topology, this cannot be locally trivial since the fiber at

the generic point is the scheme {𝑥2 +𝑠𝑦2 = 𝑡𝑧2} → Spec ℂ(𝑠, 𝑡), which has no rational points.
For suppose it had a point (𝑥0, 𝑦0, 𝑧0) where 𝑥0, 𝑦0, 𝑧0 ∈ ℂ(𝑠, 𝑡). Clearing denominators we
can assume 𝑥0, 𝑦0, 𝑧0 ∈ ℂ[𝑠, 𝑡]. Let 𝑠u�1𝑡u�1, 𝑠u�2𝑡u�2, 𝑠u�3𝑡u�3 be the terms with lowest total degree
in 𝑥0, 𝑦0, 𝑧0 respectively. Then, the term with lowest total degree in 𝑥2 + 𝑠𝑦2 − 𝑡𝑧2 is one of
𝑠2u�1𝑡2u�1, 𝑠2u�2+1𝑡2u�2, 𝑠2u�3𝑡2u�3+1, but these clearly do not cancel.

Note, however, that the matrices in (1.15) do define a projective bundle in the Zariski
topology, which shows that there can exist fiber systems that are isomorphic by holomorphic
maps, but not algebraic maps.

We cannot hope to construct a similar example with plane conics as fibers with a base
space ℂ because of the following:

Theorem 1.16 (Tsen [Tse33]). Let 𝐾 = 𝑘(𝑠), 𝑘 algebraically closed. Then any homoge-
neous polynomial 𝑓 (𝑡1, … , 𝑡u�) in 𝐾 of degree 𝑑 < 𝑛 has a non-trivial zero.

Proof. Let 𝑓 (𝑡1, … , 𝑡u�) = ∑ 𝑎u�1⋯u�u�𝑡u�1
1 ⋯ 𝑡u�u�u� is a homogeneous polynomial of degree

𝑑 < 𝑛 with coefficients in 𝐾 . Clearing denominators, we can assume that the coefficients are
in 𝑘[𝑠]. Now let 𝛿 = sup deg(𝑎u�1⋯u�u�). We would like to find a solution with each 𝑡u� having
degree at most 𝑁 in 𝑠. The equation 𝑓 = 0 defines a homogeneous system of equations in
the 𝑛 × (𝑁 + 1) coefficients of the polynomials 𝑡u�(𝑠) by replacing each 𝑡u� with 𝑡u�(𝑠). Since 𝑓
has degree at most 𝛿 + 𝑁𝑑 in 𝑠, we then have 𝛿 + 𝑁𝑑 + 1 equations in 𝑛 × (𝑁 + 1) variables.
Since 𝑘 is algebraically closed, we then have a nontrivial solution if 𝑛(𝑁 + 1) > 𝑁𝑑 + 𝛿 + 1,
which occurs for large enough 𝑁 since 𝑑 < 𝑛. �

So if we had a family 𝐸 of non-degenerate conics over a Zariski-open subset of 𝔸1, our
argument above no longer works as the generic fiber is has a point by Tsen’s theorem, hence
is rational.
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Remark 1.17. At first glance, the matrices in (1.15) look like they might not commute
if lifted up to GL2. We will return to this example in Remark 2.17; we remark for now
that surprisingly, the bundle defined by these matrices does lift to a vector bundle, even if
algebraically, the fibration of conics that we defined does not.



CHAPTER 2

Fiber bundles on the Riemann sphere

Analyzing the examples of fiber bundles on the Riemann sphere ℙ1 we are interested in
is convenient because, as we shall see, we can do so using matrices and linear algebra.

1. The case of vector bundles

In this section, we classify vector bundles on ℙ1. Recall that ℙ1 is defined as fol-
lows: let 𝑈0 = Spec 𝑘[𝑠] and 𝑈1 = Spec 𝑘[𝑡], 𝑈01 = Spec 𝑘[𝑠, 𝑠−1] = 𝑈0 − {0} and
𝑈10 = Spec 𝑘[𝑡, 𝑡−1] = 𝑈1 − {0}. ℙ1 is then obtained by gluing together 𝑈0, 𝑈1 along the
isomorphism identifying 𝑈01 and 𝑈10 by the isomorphism induced by 𝑘[𝑠, 𝑠−1] ∼→ 𝑘[𝑡, 𝑡−1]
defined by 𝑠 ↦ 𝑡−1. Note that each 𝑈u� is a copy of 𝔸1. Similarly, we can get ℙ1 as a complex
analytic manifold by doing the same. Note that the proofs in this section do not depend on
our field 𝑘.

Our goal is to prove the following result due to Grothendieck:

Theorem 2.1 ([Gro57, Thm. 2.1]). Let 𝐸 be a rank 𝑟 vector bundle over ℙ1. Then 𝐸 is
isomorphic to a direct sum of line bundles

𝐸 ≅ 𝒪(𝜅1) ⊕ ⋯ ⊕ 𝒪(𝜅u�), 𝜅1 ≥ ⋯ ≥ 𝜅u�, 𝜅u� ∈ ℤ, 𝑖 = 1, … , 𝑟,
and the 𝜅u� are uniquely determined by the isomorphism class of 𝐸.

where we note that each 𝒪(𝜅u�) is defined by the transition matrix (𝑠−u�u�), and that the direct
sum above corresponds to taking direct sums of transition matrices.

Our strategy is as follows: we show that any vector bundle is trivial over 𝑈0 and 𝑈1.
Then, the question reduces to how two trivial bundles on 𝑈0, 𝑈1 above can glue together
on their intersection. The gluing operation corresponds to one transition matrix by Remark
1.12. Finally, we can obtain a diagonal transition matrix realizing our vector bundle as a
direct sum of line bundles via an elementary linear algebra argument from [HM82].

We pause here for a moment to discuss the history of this result. Our approach here shows
that Grothendieck’s result boils down to an algebraic statement about transition matrices.
However, this result on matrices was apparently known to Dedekind and Weber; see [Sch05]
for a discussion. In addition, Grothendieck’s theorem above in the analytic setting is also the
consequence of a theorem due to G.D. Birkhoff on matrices of analytic functions [Bir13] as
pointed out by Seshadri [Ses57].

To show that any vector bundle over 𝑈0 or 𝑈1 is trivial, it suffices to show

Proposition 2.2. Every vector bundle on 𝔸1 is trivial.

In the algebraic setting, this result is actually a rather easy consequence of the following
linear algebraic result:

11
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Theorem 2.3 (Smith normal form [Jac85, Thm. 3.8]). Let 𝐷 be a PID, and 𝐴 an 𝑟 × 𝑟
matrix in 𝐷. Then, there exist 𝑃, 𝑄 ∈ GLu�(𝐷) such that

𝑃𝐴𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑑1
𝑑2 0

⋱
𝑑u�

0 0
⋱

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where 𝑑u� ≠ 0 and 𝑑u� ∣ 𝑑u� if 𝑖 ≤ 𝑗.

We can now prove our proposition.

Proof of Proposition 2.2. Suppose a vector bundle 𝜋∶ 𝐸 → 𝔸1 is trivial on 𝐷(𝑓1)
and 𝐷(𝑓2). We claim that it is isomorphic to the trivial bundle on 𝐷(𝑓1) ∪ 𝐷(𝑓2). There
is a transition matrix 𝑡12 ∈ GLu�(𝒪(𝐷(𝑓1𝑓2))) = GLu�(𝑘[𝑠, 𝑓 −1

1 , 𝑓 −1
2 ]) that defines the gluing

of these trivial bundles by definition. Multiplying 𝑡12 by (𝑓1𝑓2)u�, we have that (𝑓1𝑓2)u�𝑡12 is
a matrix in 𝑘[𝑠], hence has a Smith normal form; the matrices 𝑃, 𝑄 above correspond to
automorphisms of the trivial bundles on 𝐷(𝑓1), 𝐷(𝑓2) respectively by Remark 1.12. Note
that since 𝑡12 is invertible in GLu�(𝒪(𝐷(𝑓1𝑓2))), its Smith normal form is of the form

(𝑓1𝑓2)u� ⋅ 𝑃𝑡12𝑄 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑓 u�1
1 𝑓 u�1

2
𝑓 u�2
1 𝑓 u�2

2
⋱

𝑓 u�u�
1 𝑓 u�u�

2

⎞⎟⎟⎟⎟⎟⎟
⎠

for 0 ≤ 𝑚1 ≤ ⋯ ≤ 𝑚u� and 0 ≤ 𝑛1 ≤ ⋯ ≤ 𝑛u�. Then,

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑓 u�−u�1
1

𝑓 u�−u�2
1

⋱
𝑓 u�−u�u�
1

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑃𝑡12𝑄
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑓 u�−u�1
2

𝑓 u�−u�2
2

⋱
𝑓 u�−u�u�
2

⎞⎟⎟⎟⎟⎟⎟
⎠

= Idu�,

and so 𝜋 is trivial on 𝐷(𝑓1) ∪ 𝐷(𝑓2). Thus, any vector bundle is trivial on 𝔸1, by choosing a
finite open cover of 𝔸1 on which the bundle is trivial repeating the process above. �

We can now prove Grothendieck’s theorem 2.1. In the algebraic case, this follows by a
straightforward linear algebraic argument as in [HM82].

On ℙ1, any vector bundle 𝜋∶ 𝐸 → ℙ1, by Proposition 2.2, is trivial on 𝑈0, 𝑈1, hence 𝐸
is the result of gluing together 𝑈0 × 𝔸u� and 𝑈1 × 𝔸u� along an isomorphism 𝑈0 − {0} × 𝔸u� ∼→
𝑈1 − {0} × 𝔸u� which is given by (𝑠, 𝑣) ↦ (𝑠−1, 𝐴(𝑠, 𝑠−1)𝑣), where 𝐴(𝑠, 𝑠−1) is a 𝑟 × 𝑟 matrix
with entries that are regular functions.

Let 𝜋∶ 𝑃 → ℙ1 be a rank 𝑟 vector bundle. The matrix 𝐴(𝑠, 𝑠−1) mentioned above is
invertible for all 𝑠 ≠ 0, 𝑠−1 ≠ 0 since it is invertible on 𝑈0 ∩ 𝑈1, hence

det 𝐴(𝑠, 𝑠−1) = 𝑐 ⋅ 𝑠u�, 𝑛 ∈ ℤ, 𝑐 ∈ 𝑘×. (2.4)
By Remark 1.12, we note that depending on our choice of isomorphisms 𝜑u� ∶ 𝜋−1(𝑈u�)

∼→
𝑈u� × 𝔸u�, we can have different matrices 𝐴(𝑠, 𝑠−1) that give isomorphic vector bundles. But
isomorphisms of 𝑈0 × 𝔸u� are of the form (𝑠, 𝑣) ↦ (𝑠, 𝑈(𝑠)𝑣) for 𝑈(𝑠) ∈ GL(𝑟, 𝑘[𝑠]), so
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det 𝑈(𝑠) ∈ 𝑘×; similarly, isomorphisms of 𝑈1 × 𝔸u� correspond to 𝑉(𝑠−1) ∈ GL(𝑟, 𝑘[𝑠−1]),
so det 𝑉(𝑠−1) ∈ 𝑘×. This gives us the following:

Proposition 2.5. Isomorphism classes of rank 𝑟 vector bundles over ℙ1 are in one-to-one
correspondence to the set

{GL(𝑟, 𝑘[𝑠, 𝑠−1])/𝐴(𝑠, 𝑠−1) ∼ 𝐴′(𝑠, 𝑠−1) ⟺ 𝐴′(𝑠, 𝑠−1) = 𝑉(𝑠−1)𝐴(𝑠, 𝑠−1)𝑈(𝑠)}

where 𝑈(𝑠) ∈ GL(𝑟, 𝑘[𝑠]), 𝑉(𝑠−1) ∈ GL(𝑟, 𝑘[𝑠−1]).

In particular, this means that we can assume that in (2.4), the constant 𝑐 = 1.
We now find a canonical form for matrices in this set GL(𝑟, 𝑘[𝑠, 𝑠−1])/∼ to find all

isomorphism classes of rank 𝑟 vector bundles over ℙ1.

Proposition 2.6. Let 𝐴(𝑠, 𝑠−1) ∈ GL(𝑟, 𝑘[𝑠, 𝑠−1]) with det 𝐴(𝑠, 𝑠−1) = 𝑠u� for 𝑛 ∈ ℤ.
Then, there exist 𝑈(𝑠) ∈ GL(𝑟, 𝑘[𝑠]), 𝑉(𝑠−1) ∈ GL(𝑟, 𝑘[𝑠−1]) such that

𝑉(𝑠−1)𝐴(𝑠, 𝑠−1)𝑈(𝑠) =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑠u�1 0
𝑠u�2

⋱
0 𝑠u�u�

⎞⎟⎟⎟⎟⎟⎟
⎠

(2.7)

with 𝑑1 ≥ 𝑑2 ≥ ⋯ ≥ 𝑑u�, 𝑑u� ∈ ℤ. The 𝑑u� are uniquely determined by 𝐴(𝑠, 𝑠−1).

Proof. We first prove uniqueness. Write 𝐷(𝑑1, … , 𝑑u�) for the matrix on the right side of
(2.7). If there are two matrices 𝐷(𝑑1, … , 𝑑u�) and 𝐷(𝑑′

1, … , 𝑑′
u�) equivalent to 𝐴(𝑠, 𝑠−1), then

there are 𝑈(𝑠) ∈ GL(𝑟, 𝑘[𝑠]), 𝑉(𝑠−1) ∈ GL(𝑟, 𝑘[𝑠−1]) such that
𝐶 = 𝑉(𝑠−1)𝐷(𝑑1, … , 𝑑u�) = 𝐷(𝑑′

1, … , 𝑑′
u�)𝑈(𝑠). (2.8)

We now recall the Cauchy-Binet formula [Gan59, I, §2.5]. If 𝐴 is an 𝑚 × 𝑛 matrix and 𝐵 is
an 𝑛 × 𝑞 matrix, denoting

𝐴 (𝑖1 𝑖2 ⋯ 𝑖u�
𝑗1 𝑗2 ⋯ 𝑗u�

)

to be the minor of 𝐴 obtained by taking the determinant of 𝐴 after removing all rows with
index in {1, … , 𝑟}−{𝑖1, … , 𝑖u�} and removing all columns with index in {1, … , 𝑟}−{𝑗1, … , 𝑗u�},
then

(𝐴𝐵) (𝑖1 𝑖2 ⋯ 𝑖u�
𝑗1 𝑗2 ⋯ 𝑗u�

) = ∑
ℓ1<ℓ2<⋯<ℓu�

𝐴 (𝑖1 𝑖2 ⋯ 𝑖u�
ℓ1 ℓ2 ⋯ ℓu�

) 𝐵 (ℓ1 ℓ2 ⋯ ℓu�
𝑗1 𝑗2 ⋯ 𝑗u�

) .

We want to apply this to (2.8). We first note

𝐷(𝑑1, … , 𝑑u�) (ℓ1 ℓ2 ⋯ ℓu�
𝑗1 𝑗2 ⋯ 𝑗u�

) ≠ 0 ⟺ ℓu� = 𝑗u�∀𝑖.

Thus, we have

𝐶 (1 2 ⋯ 𝑘
𝑖1 𝑖2 ⋯ 𝑖u�

) = 𝑉(𝑠−1) (1 2 ⋯ 𝑘
𝑖1 𝑖2 ⋯ 𝑖u�

) 𝑠u�u�1+u�u�2+⋯+u�u�u�

= 𝑠u�′
1+u�′

2+⋯+u�′
u�𝑈(𝑠) (1 2 ⋯ 𝑘

𝑖1 𝑖2 ⋯ 𝑖u�
)
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for all 𝑘 and sequences 𝑖1 < 𝑖2 < ⋯ < 𝑖u�. Since det 𝑈(𝑠) ≠ 0, for all 𝑘, there exists at least
one sequence 𝑖1 < 𝑖2 < ⋯ < 𝑖u� such that

𝑈(𝑠) (1 2 ⋯ 𝑘
𝑖1 𝑖2 ⋯ 𝑖u�

) ≠ 0.

Thus, 𝑑′
1 + 𝑑′

2 + ⋯ 𝑑′
u� ≤ 𝑑u�1 + 𝑑u�2 + ⋯ + 𝑑u�u� ≤ 𝑑1 + 𝑑2 + ⋯ 𝑑u� for all 𝑘. Multiplying on the

right by 𝑈(𝑠)−1 and on the left by 𝑉(𝑠−1)−1 in (2.8) and applying the same argument, we get
𝑑1 + 𝑑2 + ⋯ 𝑑u� ≤ 𝑑′

1 + 𝑑′
2 + ⋯ 𝑑′

u� for all 𝑘. Thus, 𝑑u� = 𝑑′
u� for all 𝑖 = 1, … , 𝑟.

We now prove existence. We proceed by induction. For 𝑟 = 1, the proposition clearly
holds. Now for arbitrary 𝑟, we assume it works for (𝑟 − 1) × (𝑟 − 1) matrices. First
multiply 𝐴(𝑠, 𝑠−1) by 𝑠u� for some 𝑛 ∈ ℤ≥0 so that we obtain a polynomial matrix 𝐵(𝑠).
Now by multiplying 𝐵(𝑠) by suitable 𝑈(𝑠) on the right, i.e., by performing elementary
column operations, we can find a 𝐵 = (𝑏′

u�u�) with 𝑏′
11 ≠ 0 and 𝑏′

1u� = 0 for all 𝑖 = 2, … , 𝑟
(then, 𝑏′

11 = gcd{𝑏1u�}). Then, 𝑏′
11 = 𝑠u�1 for some 𝑘1 since det 𝐵(𝑠) is some power of 𝑠.

Denoting 𝐵2(𝑠) to be the lower-right (𝑟 − 1) × (𝑟 − 1) submatrix of 𝐵, by induction there
exist 𝑈2(𝑠), 𝑉2(𝑠−1) such that 𝑉2(𝑠−1)𝐵2(𝑠)𝑈2(𝑠) is of the form on the right hand side of
(2.7). Then, we have

𝐶(𝑠) = (1 0
0 𝑉2(𝑠−1)) 𝐵 (1 0

0 𝑈2(𝑠)) =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑠u�1 0 ⋯ 0
𝑐2 𝑠u�2 0
⋮ ⋱
𝑐u� 0 𝑠u�u�

⎞⎟⎟⎟⎟⎟⎟
⎠

(2.9)

for some 𝑘1, … , 𝑘u� ∈ ℤ≥0 and 𝑐2, … , 𝑐u� ∈ 𝑘[𝑠, 𝑠−1]. By multiplying 𝐶(𝑠) by suitable 𝑉(𝑠−1)
on the left, i.e., by performing elementary row operations, we can assume that 𝑐u� ∈ 𝑘[𝑠] for
all 𝑖.

Now consider all matrices equivalent to 𝐵(𝑠) of the form (2.9). There is one representative
with 𝑘1 maximal, for 𝑘2, … , 𝑘u� ≥ 0 implies 𝑘1 ≤ deg(det 𝐵(𝑠)). We claim that 𝑘1 ≥ 𝑘u� for all
𝑖 = 2, … , 𝑟. So suppose 𝑘1 < 𝑘u�. Subtracting a suitable 𝑘[𝑠−1]-multiple of the first row, (2.9)
then has 𝑐u� = 𝑠u�1+1𝑐′(𝑠) for some 𝑐′(𝑠) ∈ 𝑘[𝑠]. Interchanging the first and 𝑖-th rows, we get
a polynomial matrix 𝐵′(𝑠) such that the greatest common divisor of the first row is 𝑠u�′

1 with
𝑘′

1 ≥ 𝑘1 + 1. But applying to 𝐵′(𝑠) the same process as above for 𝐵(𝑠), we get a 𝐶′(𝑠) of the
form (2.9) with 𝑘′

1 > 𝑘1, contradicting maximality of 𝑘1.
We can therefore assume in (2.9) that 𝑘1 ≥ 𝑘u� and 𝑐u� ∈ 𝑘[𝑠] for 𝑖 = 2, … , 𝑟. Now

subtracting suitable 𝑘[𝑠]-multiples of the 𝑖th column for 𝑖 = 2, … , 𝑟 from the first column
(i.e., multiplying by suitable 𝑈(𝑠) on the right) we get a matrix (2.9) with deg 𝑐u� ≤ 𝑘u� for all
𝑖. Then, deg 𝑐u� < 𝑘1, and so subtracting suitable 𝑘[𝑠−1]-multiples of the first row from the
𝑖th row (i.e., multiplying by suitable 𝑉(𝑠−1) on the left), we get 𝑐2 = 𝑐3 = ⋯ = 𝑐u� = 0 in
(2.9). This shows that there are 𝑘1, … , 𝑘u� ∈ ℤ≥0, 𝑘1 ≥ 𝑘2 ≥ ⋯ ≥ 𝑘u� and 𝑈(𝑠) ∈ GL(𝑟, 𝑘[𝑠]),
𝑉(𝑠−1) ∈ GL(𝑟, 𝑘[𝑠−1]) such that

𝑉(𝑠−1)𝑠u�𝐴(𝑠, 𝑠−1)𝑈(𝑠) = 𝑉(𝑠−1)𝐵(𝑠)𝑈(𝑠) = 𝐷(𝑘1, … , 𝑘u�).

Multiplying by 𝑠−u� gives

𝑉(𝑠−1)𝐴(𝑠, 𝑠−1)𝑈(𝑠) = 𝐷(𝑑1, … , 𝑑u�), 𝑑u� = 𝑘u� − 𝑛. �
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Finally, let 𝒪(𝑑), 𝑑 ∈ ℤ be the line bundle over ℙ1 defined by the gluing matrix
𝐴(𝑠, 𝑠−1) = (𝑠−u�). Then, the bundle defined by the gluing matrix 𝐴(𝑠, 𝑠−1) = 𝐷(𝑑1, … , 𝑑u�)
is equal to the direct sum 𝒪(−𝑑1), … , 𝒪(−𝑑u�), for the direct sum of two vector bundles
defined by gluing matrices 𝑡u�u� and 𝑡′

u�u� on the same cover is defined as the vector bundle defined
by gluing matrices 𝑡u�u� ⊕ 𝑡′

u�u�. This gives us Theorem 2.1.
We pause here to give some references as to what happens in the holomorphic case. In

terms of steps, the proof is the same. The fact that vector bundles over the complex plane ℂ1

are trivial follows from the fact that vector bundles on non-compact Riemann surfaces are
holomorphically trivial [For91, §30], or the fact that ℂu� is a Stein manifold [Gri74, VIII].
Then, the question again becomes how trivial bundles on each copy of ℂ1 glue together. The
critical step is the following lemma due to Birkhoff:

Lemma 2.10 ([Bir13; Ses57, Lem. 3.31]). Let (𝑙u�u�(𝑧)) be a matrix of functions on ℂ1

holomorphic for |𝑧| ≥ 𝑅 for some 𝑅, such that det(𝑙u�u�(𝑧)) ≠ 0 for |𝑧| ≥ 𝑅. Then, there exists a
matrix of entire functions (𝜖u�u�(𝑧)) with det(𝜖u�u�(𝑧)) ≠ 0 such that

(𝑙u�u�(𝑧))(𝜖u�u�(𝑧)) = (𝑎u�u�(𝑧))(𝛿u�u�𝑧u�u�)

where the 𝑘u� are integers, (𝑎u�u�(𝑧)) is a matrix of functions holomorphic in a neighborhood of
∞ and (𝛿u�u�𝑧u�u�) is a diagonal matrix with diagonal entries 𝑧u�u�.

The proof then proceeds as follows: if 𝑈0 is the affine chart containing ∞, and the
matrix (𝑙u�u�(𝑧)) corresponds to our transition matrix for the vector bundle 𝐸, then for some
small neighborhood 𝑉 ⊂ 𝑈0 ∩ 𝑈1 containing ∞ there are matrices (𝜖u�u�(𝑧)) and (𝑎u�u�(𝑧)) that
correspond to automorphisms of 𝐸 restricted to 𝑈1 and 𝑉 , respectively. The diagonal matrix
𝛿u�u�𝑧u�u� is exactly that which we obtained algebraically above. The main difficulty of the proof
of Lemma 2.10 is that unlike in the algebraic case, the isolated singularities of the entries in
the matrix 𝑙u�u�(𝑧) can be essential singularities; this is the main difficulty in Birkhoff’s proof
of this lemma. After reducing to the case of poles by using a Fredholm integral equation,
the rest of his proof follows analgously to our own proof of Proposition 2.6.

2. The case of projective and affine bundles

We now want to extend some our results for §1 to the case of projective and affine bundles.
We also want to know when an affine bundle is in fact a vector bundle; we prove such a
criterion below.

2.1. Projective bundles. We first want to have an analogue of Proposition 2.2 for pro-
jective bundles. At first glance, this seems rather easy since we could just try lifting our
transition matrix on some open set 𝑈 from PGLu� to GLu�+1. The issue is that while the
matrices themselves in PGLu�(𝑘) lift to GLu�+1(𝑘) as illustrated in (1.7), this does not ensure
that our maps from 𝑈 to PGLu�+1(𝑘) and GLu�+1(𝑘) necessarily lift as we mentioned before.

So note that after shrinking 𝑈 if necessary, 𝑈 = Spec 𝑅 for some localization 𝑅 of the
polynomial ring 𝑘[𝑠]. Then, the map 𝑈 → PGLu�+1 corresponds to an automorphism of the
bundle 𝑈×ℙu�

u�; this is therefore an automorphism of ℙu�
u� over Spec 𝑅, that is, an automorphism

of 𝑟-dimensional projective space over the ring 𝑅. We first show the following:
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Proposition 2.11. If 𝑅 is a finitely-generated 𝑘-algebra that is also a UFD, then all
automorphisms of ℙu�

u� are induced by a matrix in GLu�+1(𝑅).

Proof. First consider ℙu�
u�; this is Proposition 1.5 but we provide another proof as promised

that works over any 𝑘. Let 𝑓 be an automorphism. This induces an isomorphism on Picard
groups, hence 𝑓 ∗𝒪(1) ≅ 𝒪(−1) or 𝒪(1). But a section of 𝒪(1) gives a section of 𝑓 ∗𝒪(1),
hence 𝑓 ∗𝒪(1) ≅ 𝒪(1). Now this gives an isomorphism of vector spaces Γ(ℙu�

u�, 𝒪(1)) ≅
Γ(ℙu�

u�, 𝑓 ∗𝒪(1)), which corresponds to an invertible matrix in GLu�+1(𝑘).
The case when 𝑅 is a UFD that is finitely-generated as a 𝑘-algebra follows similarly by

[Har77, II, Exc. 6.1], since then Pic ℙu�
u� ≅ Pic Spec 𝑅 × Pic ℙu�

u�, and also since Pic Spec 𝑅 = 1
by [Har77, II, Prop. 6.2]. We therefore have an isomorphism of free modules Γ(ℙu�

u�, 𝒪(1)) ≅
Γ(ℙu�

u�, 𝑓 ∗𝒪(1)), which is also given by an invertible matrix in GLu�+1(𝑅). �

Remark 2.12. It is important that 𝑅 here is a UFD, since if we replace Spec 𝑅 with any
connected scheme 𝑆 (e.g., if 𝑅 were just a domain and not necessarily a UFD), then the
group of automorphisms of ℙu�

u� is isomorphic to the group of invertible sheaves ℒ on 𝑆
plus (𝑟 + 1) × (𝑟 + 1) matrices (𝑎u�u�) of sections of ℒ such that det(𝑎u�u�) as a section of ℒu�+1

never vanishes; cf. [GIT, Ch. 0, §5; EGAII, §4.2]. This recovers our result since 𝑆 = Spec 𝑅
for 𝑅 a UFD which is finitely-generated as a 𝑘-algebra has only one (isomorphism class of)
invertible sheaves, namely, the structure sheaf, and so the matrix of sections given above is
exactly a matrix in PGLu�(𝑅).

We now want to prove the analogue of Proposition 2.2. We first prove an easy commuta-
tive algebraic result:

Lemma 2.13. If 𝑅 is a noetherian UFD, then the localization 𝑆−1𝑅 is also a UFD if
0 ∉ 𝑆.

Proof. 𝑆−1𝑅 is a noetherian domain, and so by [Mat70, Thm. 47], 𝑆−1𝑅 is a UFD if and
only if every height one prime is principal. But if 𝑃 is a height one prime in 𝑆−1𝑅, then there
is a prime ideal 𝑄 ⊂ 𝑅 such that 𝑃 = 𝑆−1𝑄. But localization does not affect height, hence 𝑄
has height one, hence is principal since 𝑅 is a UFD, so let 𝑄 = (𝑎). Then 𝑃 = 𝑆−1(𝑎) = (u�

1),
so 𝑃 is principal, and 𝑆−1𝑅 is a UFD. �

We can then prove

Proposition 2.14. Every projective bundle on 𝔸1 is trivial.

Proof. Suppose our projective bundle is trivial on 𝐷(𝑓1) and 𝐷(𝑓2); we first show it is triv-
ial on 𝐷(𝑓1)∪𝐷(𝑓2). By Proposition 2.11, we have a transition matrix in PGLu�(𝑘[𝑠, 𝑓 −1

1 , 𝑓 −1
2 ]),

since the localization of a UFD is a UFD by Lemma 2.13. Since there is only one transition
matrix, we can lift this matrix to GLu�+1 to define a vector bundle on 𝐷(𝑓1) ∪ 𝐷(𝑓2). By
Proposition 2.2, this is the trivial vector bundle, and the automorphisms of the vector bundle
restricted to 𝐷(𝑓1) and 𝐷(𝑓2) descend to automorphisms of the projective bundle restricted
to 𝐷(𝑓1) and 𝐷(𝑓2). �

A similar argument also works for the proof of Proposition 2.6, i.e., our transition matrix
in PGL(𝑘[𝑠, 𝑠−1]) can be lifted to one in GL(𝑘[𝑠, 𝑠−1]), and then we proceed as before. We
moreover have the following:
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Corollary 2.15. Every projective bundle of rank 𝑟 on ℙ1 is of the form 𝑃(𝐸), i.e., is
obtained by projectivizing each fiber in some vector bundle 𝐸.

Proof. Let 𝐴(𝑠, 𝑠−1) ∈ PGLu�(𝑘[𝑠, 𝑠−1]) be our transition matrix; we can simply lift it to
GLu�+1(𝑘[𝑠, 𝑠−1]) to define a vector bundle 𝐸 such that 𝑃(𝐸) is our original projective bundle.
The reason this works for ℙ1 is that there is only one transition matrix we have to worry
about; for other spaces, we need to make sure that the representatives for each transition
matrix still satisfy the cocycle condition. �

Remark 2.16. One thing we would like to note is that even though it seems like we can
always normalize to use a representative matrix of determinant one, this is not always the
case. For example,

(𝑠 0
0 1)

defines a vector bundle and hence a projective bundle, but is not equivalent in PGL1 to a
matrix of determinant one.

Remark 2.17. The matrices from (1.15) seem to provide a good example of a set of
matrices in PGL1 that do not lift to GL2 while still verifying the cocycle condition. However,
defining

𝑡13 = −𝑡24 = (1
−1) , 𝑡12 = 𝑡34 = ( 1

−1 ) , 𝑡14 = 𝑡23 = ( 1
1 )

in fact verifies the cocycle condition. This is actually somewhat surprising, given that
the matrices 𝑡12, 𝑡13, 𝑡23 define a projective representation of the Klein 4-group, and this
representation does not lift to a linear representation [Kar87, Ex. 2.3.2]. The reason that we
can still consistently lift these matrices, then, stems from the fact that unlike for the projective
representation of the Klein 4-group, we do not have to consider all possible products of
these matrices, only the ones that arise as a cocycle condition. Thus, the class of projective
bundles that do not lift to vector bundles is related, but not the same, as trying to find groups
𝐺 with a nontrivial Schur multiplier 𝐻2(𝐺, ℂ×).

2.2. Affine bundles. For affine bundles, proving analogous statements is just a bit more
involved, since while they are special cases of projective bundles, all isomorphisms of affine
bundles must be isomorphisms of projective bundles that also fix the hyperplane {𝑧0 = 0}.
Recall that an affine bundle is obtained as a projective bundle whose transition maps always
fix a hyperplane {𝑧0 = 0}. So, to prove our analogue of Proposition 2.2, we lift our transition
matrix in GAu�+1 to one in GLu�+1 by first embedding it in PGLu�+1 and then lifting to GLu�+1
as in (1.7); note that again, this is only possible because we are working over ℙ1, on which
all projective bundles lift to vector bundles as proven in the previous section. The fact that
this lifted matrix must fix {𝑧0 = 0}, though, gives that the matrix is of the form

⎛⎜⎜⎜⎜⎜⎜
⎝

∗ 0 ⋯ 0
∗
⋮ 𝐴
∗

⎞⎟⎟⎟⎟⎟⎟
⎠

(2.18)

where 𝐴 ∈ GLu�.
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Proposition 2.19. Every affine bundle on 𝔸1 is trivial.

Proof. As in Proposition 2.2, assume our affine bundle is trivial on 𝐷(𝑓1), 𝐷(𝑓2). The
same argument from before lets us reduce to the case where the matrix (2.18) has the form

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑓 u�
1 𝑓 u�

2 0 ⋯ 0
𝑣1 1 0
⋮ ⋱
𝑣u� 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

where 𝑣u� ∈ 𝑘[𝑠], for some 𝑚, 𝑛 ∈ ℤ. Then

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑓 −u�
1 0 ⋯ 0

−𝑣1𝑓 −u�
1 𝑓 −u�

2 1 0
⋮ ⋱

−𝑣u�𝑓 −u�
1 𝑓 −u�

2 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑓 u�
1 𝑓 u�

2 0 ⋯ 0
𝑣1 1 0
⋮ ⋱
𝑣u� 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑓 −u�
2 0 ⋯ 0
0 1 0
⋮ ⋱
0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

= Id,

and then we proceed by gluing step by step as before �

Now we would like to prove an analogue of Theorem 2.1 for affine bundles. Of course, we
do not have a notion of direct sum of affine bundles, but we can still ask when our transition
can be diagonalized, i.e., when an affine bundle is actually a vector bundle. This produces
the following result:

Theorem 2.20. Suppose we have an affine bundle, which we view as a projective bundle
𝐵 that has transition matrix holding the hyperplane {𝑧0 = 0} fixed. Let �̃� be its lift. Let 𝐿
be the line bundle associated to the coordinate 𝑧0. Then, 𝐵 is a vector bundle if and only if
�̃� ≅ 𝐿 ⊕ �̃�/𝐿.

Proof. �̃� has transition matrix of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑠u� 0 0 ⋯ 0
𝑣1 𝑎11 𝑎12 ⋯ 𝑎1u�
𝑣2 𝑎21 𝑎22 ⋯ 𝑎2u�
⋮ ⋮ ⋮ ⋱ ⋮
𝑣u� 𝑎u�1 𝑎u�2 ⋯ 𝑎u�u�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.21)

with determinant a unit in 𝑘[𝑠, 𝑠−1], by Corollary 2.15 and the discussion at the beginning of
§3. Then, by applying the method of Proposition 2.6, �̃� is isomorphic to the vector bundle
with matrix of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑠u� 0 0 ⋯ 0
𝑣1 𝑠u�1

𝑣2 𝑠u�2

⋮ ⋱
𝑣u� 𝑠u�u�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

By attempting to use the inductive step in the proof of Proposition 2.6, we can moreover
assume that each 𝑣u� = ∑u�u�−1

u�=1−u� 𝑏u�u�𝑠u�, since that inductive step keeps the hyperplane {𝑧0 = 0}
fixed. Finally, we see that by Theorem 2.1 and the definition of a quotient bundle, 𝐿 ≅ 𝒪(−𝑛)
and �̃� ≅ 𝒪(−𝑑1) ⊕ ⋯ ⊕ 𝒪(−𝑑u�).
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Now 𝐵 is a vector bundle if and only if 𝑣1 = 𝑣2 = ⋯ = 𝑣u� = 0 in (2.21). But by the
definition of quotient bundle and direct sum, this is equivalent to �̃� ≅ 𝐿 ⊕ �̃�/𝐿. �

We hope that something like this criterion holds for other base spaces 𝑋, and that there
is a cohomological interpretation of this statement.



Part 2

Principal bundles over schemes



CHAPTER 3

Preliminaries

In this second half of this thesis, we move to the setting of schemes, and principal bundles
over them. We will see later that this is a generalization of the previous setting of varieties
and fiber bundles.

For completeness, we gather here some general definitions and facts concerning group
schemes and group actions on schemes. In the following, by a scheme 𝑋/𝑆 we mean a scheme
𝑋 with a morphism 𝑋 → 𝑆 of schemes. If 𝑆 = Spec 𝑅 is affine, we say 𝑋/𝑅. 1u� refers to the
identity morphism 𝑋 → 𝑋, and if 𝑓 ∶ 𝑋1 → 𝑋2, 𝑔∶ 𝑌1 → 𝑌2 are 𝑆-morphisms of schemes,
then 𝑓 × 𝑔 ∶ 𝑋1 ×

u�
𝑌1 → 𝑋2 ×

u�
𝑌2 is their product, and if 𝑋1 = 𝑌1 = 𝑍 , (𝑓 , 𝑔) ∶ 𝑍 → 𝑋2 ×

u�
𝑌2 is

their pullback. If 𝑍, 𝑋2, 𝑌2, 𝑆 are affine, then (𝑓 ∘, 𝑔∘) refers to the corresponding pushout of
algebra homomorphisms. Varieties will refer to reduced, separated schemes of finite type
over a field 𝑘.

1. Group schemes and algebraic groups

In this section we define group schemes and algebraic groups. For more discussion, see
[GIT, Ch. 0; Bor91, Ch. I].

Definition 3.1. A group scheme 𝐺/𝑆 is a morphism 𝜋∶ 𝐺 → 𝑆 with 𝑆-morphisms
𝜇∶ 𝐺 ×

u�
𝐺 → 𝐺 (the group law), 𝛽∶ 𝐺 → 𝐺 (the inverse morphism), 𝑒 ∶ 𝑆 → 𝐺 (the identity

morphism) such that the following diagrams commute:

𝐺 ×
u�

𝐺 ×
u�

𝐺 𝐺 ×
u�

𝐺 𝐺 𝐺 ×
u�

𝐺 𝐺 𝐺 ×
u�

𝐺

𝐺 ×
u�

𝐺 𝐺 𝐺 ×
u�

𝐺 𝐺 𝐺 ×
u�

𝐺 𝐺
(Associativity) (Inverse) (Identity)

← →u�×1u�

←→1u�×u� ←→ u�

← →(u�,1u�)

←

→(1u�,u�)

←

→
u�∘u� ←→ u�

← →(u�∘u�,1u�)

←

→(1u�,u�∘u�)

←

→
1u� ←→ u�

← →u� ← →u� ← →u�

Let 𝐻/𝑆 be another group scheme with morphisms 𝜇′, 𝛽′, 𝑒′. A morphism of group schemes
over 𝑆 is an 𝑆-morphism of schemes 𝑓 ∶ 𝐻 → 𝐺 such that the diagrams below commute:

𝐻 ×
u�

𝐻 𝐺 ×
u�

𝐺 𝐻 𝐺 𝐻 𝐺

𝐻 𝐺 𝐻 𝐺 𝑆

←→u� ×u�

←→u�′ ←→ u�

←
→u�′

←→u�

←

→ u�

← →u�

← →u� ←→u�

←

→

u�′ ←

→

u�
(3.2)

An algebraic group 𝐺 over a field 𝑘 is a group scheme 𝐺/𝑘 which is a reduced, separated
scheme of finite type over 𝑘, i.e., a group scheme that is also a variety over 𝑘.

21
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Affine group schemes, that is, group schemes 𝐺/𝑅 that are affine over some ring 𝑅 are
what we are most interested in, especially 𝑅 = 𝑘 is a field and 𝐺/𝑅 is in fact a variety, i.e.,
when it is even an algebraic group. For affine group schemes over a (commutative) ring 𝑅,
the diagrams above correspond to the diagrams

𝐴 ⊗
u�

𝐴 ⊗
u�

𝐴 𝐴 ⊗
u�

𝐴 𝐴 𝐴 ⊗
u�

𝐴 𝐴 𝐴 ⊗
u�

𝐴

𝐴 ⊗
u�

𝐴 𝐴 𝐴 ⊗
u�

𝐴 𝐴 𝐴 ⊗
u�

𝐴 𝐴
(Associativity′) (Inverse′) (Identity′)

→ ←u�∘⊗1u�

→←1u�⊗u�∘ →← u�∘

→ ←(u�∘,1u�)

→

←(1u�,u�∘)

→

←
u�∘∘u�∘ →← u�∘

→ ←(u�∘∘u�∘,1u�)

→

←(1u�,u�∘∘u�∘)

→

←

1u� →← u�∘

→ ←u�∘ → ←u�∘ → ←u�∘

in the category of 𝑅-algebras, where morphisms are 𝑅-algebra homomorphisms.

Remark 3.3. 𝑅-algebras 𝐴 with morphisms 𝜇∘, 𝜋∘, 𝑒∘ as above are called Hopf algebras,
and these form a category opposite to that of affine group schemes over 𝑅 with morphisms
those that satisfy diagrams dual to (3.2). The study of affine group schemes is a complicated
one, in that there are multiple points of view being used simultaneously: an algebraic group
can be thought of as a variety with group actions or dually as a Hopf algebra. The last point
of view, that of looking at the functors these schemes represents, is for example the main
viewpoint of [DG70]. See [Mil12, Preface] for a discussion.

The idea is that group schemes are the scheme-theoretic version of algebraic groups, and
so at least for varieties, we can think of the axioms above as defining operations on 𝑅-valued
points to give us the same intuition as for Lie groups.

We redefine our primary examples from Chapter 1, §1 in this setting.

Example 3.4. Our first example is GLu�(𝑅), the general linear group of degree 𝑟 over a
ring 𝑅. If 𝑅 is understood, we abbreviate this as GLu�. This is

𝜋∶ Spec 𝑅[𝑎11, 𝑎12, … , 𝑎u�u�, 𝑡]
det(𝑎u�u�)𝑡 − 1 → Spec 𝑅,

with the morphism induced by the inclusion 𝜋∘ ∶ 𝑅 → 𝑅[𝑎11, 𝑎12, … , 𝑎u�u�, 𝑡]/(det(𝑎u�u�)𝑡 − 1).
GLu� is then the open subset of 𝔸u�2

u� where det(𝑎u�u�) ∈ 𝑅×. In this case, defining

𝑒∘(𝑎u�u�) = 𝛿u�u�, 𝜇∘(𝑎u�u�) = ∑
ℎ

𝑎u�u� ⊗ 𝑎ℎu�, 𝛽∘(𝑎u�u�) = (−1)u�+u� det(𝑎u�u�)−1 det(𝑎u�u�)u�≠u�,u�≠u� (3.5)

and extending linearly turns GLu� into a group scheme. We can think of the 𝑅-valued
points in GLu�(𝑅) as the set of 𝑟 × 𝑟 invertible matrices over 𝑅, in which case the 𝑅-algebra
homomorphisms given above correspond to the usual operations on GLu� as a group.

Example 3.6. Similarly, we can define PGLu�(𝑅), the projective general linear group
of degree 𝑟 over 𝑅. It is formed by taking the open subset of ℙu�2+2u� where det(𝑎u�u�) ≠ 0,
where we note the determinant is a homogeneous polynomial in the 𝑎u�u�. Note then that
this is an affine scheme Spec 𝑅[𝑎u�u�](det), where 𝑅[𝑎u�u�](det) is the zeroeth degree of the ring
𝑅[𝑎u�u�][1/ det], and the group morphisms defined similarly to (3.5).
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Definition 3.7. Let 𝑖 ∶ 𝐻 → 𝐺 be a morphism of group schemes over 𝑆. 𝐻 is a closed
subgroup scheme of 𝐺 if 𝑖 is a closed immersion. 𝐻 is moreover a closed algebraic subgroup
of 𝐺 if both 𝐻, 𝐺 are algebraic groups. By definition, a closed algebraic subset 𝐻 of 𝐺 is a
closed algebraic subgroup if and only if it is a subgroup of 𝐺.

Example 3.8. The closed algebraic subgroups of GLu�(𝑘) are called linear algebraic
groups. Many classical groups are examples of these. For example, SLu� is the subgroup of
GLu� defined by the ideal det(𝑇u�u�) = 1.

Example 3.9. The last example of a closed algebraic subgroup we give is GAu�(𝑅), the
general affine group of degree 𝑟. It is formed by taking the closed subgroup of PGLu�(𝑅)
such that 𝑇12 = 𝑇13 = ⋯ = 𝑇1u� = 0.

The simplest examples of groups, that is, finite groups, also have a scheme-theoretic
analogue:

Example 3.10 (Constant group scheme). Let 𝐺 be a finite group; it can be turned into a
group scheme over a ring 𝑅 that has only 0, 1 as idempotents by taking the disjoint union 𝐺u� =
∐|u�| Spec 𝑅 of |𝐺| copies of Spec 𝑅. 𝐺u� then is equal to Spec 𝑅 × ⋯ × 𝑅 = Spec 𝑅[𝑒u�]u�∈u�.
The morphism

𝜇∘ ∶ 𝑅 → 𝑅[𝑒u�]u�∈u� ⊗u� 𝑅[𝑒u�]u�∈u� 𝑒u� ↦ ∑
u�=u�u�

(𝑒u� ⊗ 𝑒u�)

gives a group law. Inverse is defined by 𝛽∘ ∶ 𝑒u� ↦ 𝑒u�−1 and identity by

𝑒 ∶ 𝑅[𝑒u�]u�∈u� → 𝑅 𝑒u� ↦ 𝛿u�1,

i.e., 𝑒u� ↦ 1 if 𝑔 = 1 ∈ 𝐺, 0 otherwise. See [Tat97, 2.10] for details.

2. Group actions on schemes

We can now talk about group actions on schemes, keeping in mind that we want to
generalize our notion of fiber bundles from before.

Definition 3.11. A group scheme 𝐺/𝑆 acts (on the left) of a scheme 𝑋/𝑆 if an 𝑆-morphism
𝑚u� ∶ 𝐺 ×

u�
𝑋 → 𝑋 is given, such that

(a) The diagram below commutes, where 𝜇 is the group law for 𝐺:

𝐺 ×
u�

𝐺 ×
u�

𝑋 𝐺 ×
u�

𝑋

𝐺 ×
u�

𝑋 𝑋

←→1u�×u�u�

←→u�×1u�

←→ u�u�

← →u�u�

(b) The composition below is the identity 1u� , where 𝑒 is the identity morphism for 𝐺:

𝑋 𝑆 ×
u�

𝑋 𝐺 ×
u�

𝑋 𝑋←→∼ ←→u�×1u� ←→u�u�
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Similarly, we can define the notion of 𝐺/𝑆 that acts on the right of 𝑋/𝑆. If the action is
understood, we call 𝑋 a 𝐺-scheme.

Let 𝑌/𝑆 be another 𝐺-scheme with action 𝑚u� ∶ 𝐺 ×
u�

𝑌 → 𝑌 , and let 𝑓 ∶ 𝑋 → 𝑌 be a
morphism over 𝑆. 𝑓 is then a morphism of 𝐺-schemes or a 𝐺-equivariant morphism if the
diagram below commutes:

𝐺 ×
u�

𝑋 𝐺 ×
u�

𝑌

𝑋 𝑌

←→(1u�,u� )

←→u�u� ←→ u�u�

← →u�

We return to our favorite examples:

Example 3.12 (GLu�(𝑅) acting on 𝔸u�
u�). We want to define an action GLu�(𝑅) ×

u�
𝔸u�

u� → 𝔸u�
u�.

Let 𝔸u�
u� = 𝑅[𝑥1, … , 𝑥u�]; we can define this action as the morphism on schemes corresponding

to the 𝑅-algebra homomorphism

𝑅[𝑥1, … , 𝑥u�] →
𝑅[𝑎u�u�][𝑡]

det(𝑎u�u�)𝑡 − 1 ⊗
u�

𝑅[𝑥1, … , 𝑥u�]

𝑥u� ↦ ∑
u�

𝑎u�u� ⊗ 𝑥u�

Example 3.13 (PGLu�(𝑅) acting on ℙu�
u�). We want to define an action 𝜎∶ PGLu�(𝑅) ×

u�
ℙu�

u� →
ℙu�

u�. This is a bit trickier, but recall from [Har77, II, Thm. 7.1] that the morphism 𝜎 can be
given by finding an invertible sheaf on PGLu�(𝑅) ×

u�
ℙu�

u� that is generated by global sections
𝑠0, … , 𝑠u�, and then by the rule 𝜎∗(𝑥u�) = 𝑠u�. By [EGAII, §4.2], 𝑝∗

1[𝒪ℙu�2+2u�(1)] ⊗ 𝑝∗
2[𝒪ℙu�(1)]

is such an invertible sheaf, and we can define 𝜎 via

𝜎∗(𝒪ℙu�(1)) ≅ 𝑝∗
1[𝒪ℙu�2+2u�(1)] ⊗ 𝑝∗

2[𝒪ℙu�(1)]

𝜎∗(𝑥u�) =
u�

∑
u�=0

𝑝∗
1(𝑎u�u�) ⊗ 𝑝∗

2(𝑥u�).

The idea of group actions on schemes suggests that we might be able to take their
quotients by such an action. It is easy to write down a definition:

Definition 3.14. The quotient scheme of 𝑋 by 𝐺 is a scheme 𝑌 and a morphism 𝑝∶ 𝑋 → 𝑌
of schemes such that

(1) 𝑝 is invariant under 𝐺, i.e., 𝑝 ∘ 𝑚u�(𝑔, −) = 𝑝 for all 𝑔 ∈ 𝐺, and
(2) (𝑌, 𝑝) have the following universal property: for every scheme 𝑍/𝑆, and every

𝐺-invariant morphism 𝑓 ∶ 𝑋 → 𝑍 , there is a unique morphism ℎ∶ 𝑌 → 𝑍 that makes
the diagram

𝑋

𝑌 𝑍

←→u�

←

→
u�

←→ℎ

commute.



CHAPTER 3. PRELIMINARIES 25

However, there is no reason to expect that such an object exists; indeed, this is the main
topic of [GIT]. On the other hand, if 𝐺u� is a constant group scheme associated to a finite
group 𝐺 as in Example 3.10, we have the following nice criterion due to Chevalley:

Theorem 3.15 ([SGA1, Exp. V, Prop. 1.8]). Let 𝑋 be a scheme on which a constant
group scheme 𝐺 acts on the right. The quotient of 𝑋 by 𝐺 exists if and only 𝑋 is the union of
affine open sets that are invariant under the action of 𝐺, or in other words, every orbit of 𝐺
in 𝑋 is contained in an affine open set.

On a 𝐺-invariant affine open subset of 𝑋, since 𝐺 acts on the right of 𝑋, we see that 𝐺
acts on the left of the coordinate ring 𝐴. Thus, the statement above really boils down to

Proposition 3.16 ([Bou64, Ch. V, §1, no 9, Prop. 22; §2, no 2, Thm. 2]). Let 𝐴 be a ring
on which a finite group 𝐺 acts on the left, 𝐵 = 𝐴u� the subring of invariants of 𝐴, 𝑋 = Spec 𝐴
and 𝑌 = Spec 𝐵, 𝑝∶ 𝑋 → 𝑌 the morphism associated to the inclusion, invariant under 𝐺.
Then,

(1) 𝐴 is integral over 𝐵, i.e., 𝑝 is an integral morphism;
(2) 𝑝 is surjective, its fibers are the orbits of 𝐺, and the topology on 𝑌 is the quotient

topology induced by 𝑋;
(3) Letting 𝑥 ∈ 𝑋, 𝑦 = 𝑝(𝑥), 𝐺u� the stabilizer of 𝑥, then 𝑘(𝑥) is a normal (“quasi-

Galois”) extension of 𝑘(𝑦) and the morphism 𝐺 → Gal(𝑘(𝑥)/𝑘(𝑦)) is surjective;
(4) (𝑌, 𝑝) is the quotient scheme of 𝑋 by 𝐺.

The idea is then to take these affine schemes and glue them together using the uniqueness
of the pair (𝑌, 𝑝); see [SGA1, Exp. V] for details.

Of course there are examples where a finite group acts on a scheme, but there does not
exist a quotient scheme. The canonical example where this occurs is the following:

Example 3.17 ([Hir62]). Let 𝑉0 = ℙu�
ℂ be complex projective three-space, and 𝛾1

and 𝛾2 two conics that intersect normally in exactly two points 𝑃1 and 𝑃2. For 𝑖 = 1, 2,
construct 𝑉 u� by first blowing up 𝛾u�, and then 𝛾3−u� in the result. Let 𝑉u� be the open set in 𝑉 u�
lying over (𝑉0 − 𝑃3−u�); by gluing together 𝑉 u� along along 𝑉u�, we get a scheme 𝑈. Letting
𝜎0 ∶ 𝑉0 → 𝑉0 be the projective transformation interchanging 𝑃1 and 𝑃2, 𝛾1 and 𝛾2, 𝜎0
induces an automorphism 𝜎∶ 𝑈 → 𝑈 of order 2. Hironaka in [Hir62] showed that this
scheme under the action 𝐺 = {1, 𝜎} has no quotient in the sense above, but it does have the
structure of what is called an algebraic space [Knu71, p. 15–16].



CHAPTER 4

Principal bundles in étale topology

Our proof of Theorem 2.1 relied on the fact that holomorphic vectors bundles on the
variety ℙ1 are isomorphic to algebraic ones. But this is not always the case for fiber bundles
with different structure groups, as we saw in Example 1.14. But having to talk about
holomorphic bundles separately from algebraic ones is inconvenient given that there is
then no unified way to talk about holomorphic bundles and algebraic bundles on algebraic
varieties defined over ℂ, and also we would like to have an analogue of holomorphic bundles
for fields that are not ℂ. The solution to this is to use what is called the étale topology;
even though this is not strictly a topology, it provides a framework in which to talk about
holomorphic bundles algebraically. We discuss first what is the étale topology, and use it
to describe that for structure group 𝐺 being GLu� or GAu�, fiber systems are locally trivial
in étale topology if and only if they are in locally trivial in Zariski topology, but not for
𝐺 = PGLu�.

1. Differential forms; unramified and étale morphisms

The idea of an étale morphism is that we want an analogue of a local isomorphism of
complex analytic manifolds, which in particular induces an bijection of tangent spaces, and
so it becomes important to talk about tangent bundles. In the algebraic world, though, it
is more convenient to talk about its dual, the sheaf of differentials. So we first review the
algebraic theory of differentials here, following [Har77, II.8].

Let 𝐴 be a ring, 𝐵 an 𝐴-algebra, and 𝑀 an 𝐵-module. An 𝐴-derivation 𝐷 of 𝐵 into 𝑀 is
an additive map 𝐵 → 𝑀 such that 𝑑(𝑏𝑏′) = 𝑏𝑑(𝑏′) + 𝑏𝑑(𝑏′), and 𝑑(𝑎) = 0 for all 𝑎 ∈ 𝐴.

Definition 4.1. The module of relative differential forms of 𝐵 over 𝐴 to be a 𝐵-module
Ωu�/u�, together with an 𝐴-derivation 𝑑u�/u� ∶ 𝐵 → Ωu�/u�, which satisfies the following universal
property: for any 𝐵-module 𝑀, and for any 𝐴-derivation 𝑑′ ∶ 𝐵 → 𝑀, there exists a unique
𝐵-module homomorphism 𝑓 ∶ Ωu�/u� → 𝑀 such that 𝑑′ = 𝑓 ∘ 𝑑u�/u�.

To construct such a module, consider the “diagonal” morphism 𝐵 ⊗u� 𝐵 → 𝐵 defined by
𝑏 ⊗ 𝑏′ ↦ 𝑏𝑏′, and let 𝐼 be the kernel of this morphism. Consider 𝐵 ⊗u� 𝐵 as a 𝐵-module by
multiplication on the left. Then 𝐼/𝐼2 has the structure of a 𝐵 ⊗u� 𝐵-module; denote Ωu�/u�
to be the 𝐵-module obtained by restriction of scalars. Define the map 𝑑u�/u� ∶ 𝐵 → 𝐼/𝐼2 by
𝑑u�/u�(𝑏) = 1 ⊗ 𝑏 − 𝑏 ⊗ 1 (modulo 𝐼2).

We have the following facts about Ωu�/u�:

Proposition 4.2 ([Mat70, p. 186]). If 𝐴′ and 𝐵 are 𝐴-algebras, and 𝐵′ = 𝐵 ⊗u� 𝐴′, then
Ωu�′/u�′ ≅ Ωu�/u� ⊗u� 𝐵′.

26
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Proposition 4.3 ([Mat70, Thm. 57]). Let 𝐴
u�
→ 𝐵

u�
→ 𝐶 be rings and homomorphisms.

Then there is a natural exact sequence of 𝐶-modules

Ωu�/u� ⊗u� 𝐶 u�→ Ωu�/u�
u�→ Ωu�/u� → 0.

We can then globalize this definition to define sheaves over our space. Let 𝑋 be a scheme
over 𝑌 , and Δu�/u� = Δ the diagonal morphism 𝑋 → 𝑋 ×u� 𝑋. This is an immersion (i.e., the
composition of a closed then open immersion), and so Δ(𝑋) is a closed subscheme of 𝑉 an
open subscheme of 𝑋 ×u� 𝑋.

Definition 4.4. Let 𝒥u� be the ideal sheaf corresponding to the closed subscheme
Δ(𝑋) ⊂ 𝑉 . Δ∗(𝒥u�/𝒥2

u�) is then a quasi-coherent sheaf on 𝑋, which we denote Ωu�/u� ; this
is the sheaf of relative differential forms of 𝑋 over 𝑌 .

If 𝑌 = Spec 𝐴 and 𝑋 = Spec 𝐵, then Ωu�/u� ≅ Ω̃u�/u�, and in the general case, these glue
together to give Ωu�/u� . This means that each of the commutative algebraic results above have
sheaf-theoretic analogues which we use below.

In the following, we assume that all our schemes are locally noetherian. The definitions
here are from [SGA1, I].

Definition 4.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism locally of finite type, and let 𝑥 ∈ 𝑋,
𝑦 = 𝑓 (𝑥). 𝑓 is unramified if (Ωu�/u�)u� = 0 for all 𝑥 ∈ 𝑋.

𝑓 is étale if it is flat, i.e., 𝒪u�,u� (u�) → 𝒪u�,u� is flat for all 𝑥 ∈ 𝑋, and unramified.
A finite family of étale morphisms {𝑓u� ∶ 𝑈u� → 𝑌} where 𝑈u� are affine is an étale cover if

the image of the 𝑓u� cover 𝑌 .

Unramified and étale morphisms work nicely under composition and base change:

Proposition 4.6. The composition of unramified (resp. étale) morphisms 𝑋
u�
→ 𝑌

u�
→ 𝑍

is unramified (resp. étale); the base change of an unramified (resp. étale) morphism is
unramified (resp. étale).

Proof. This follows by Propositions 4.2 and 4.3 for unramified maps; for flatness, this is
[Mat70, 3.B and 3.C]. �

We also note that we have an alternate description of unramified morphisms:

Theorem 4.7 ([EGAIV4, Thm. 17.4.1]). Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism locally of finite
type. Then, 𝑓 is unramified if and only if it is quasi-finite and the ring 𝒪u�,u�/𝔪u�𝒪u�,u� is a field
for all 𝑥 ∈ 𝑋, 𝑦 = 𝑓 (𝑥), and is a finite separable extension of the residue field 𝑘(𝑦).

Definition 4.8. We call the degree of the field extension 𝑘(𝑦) → 𝒪u�,u�/𝔪u�𝒪u�,u� the
degree of our unramified morphism. It is locally constant, hence constant on a connected
component of 𝑌 .

Now an étale cover is galois if it is of the form 𝑋 → 𝑋/𝔤 for a finite group 𝔤 of automor-
phisms of 𝑋. This happens if and only if 𝔤 acts freely on 𝑋 [Ser58a, no 1.4]. Note that by
Theorem 4.7, we can think of this as the scheme-theoretic version of a galois extension of
fields. Now let {𝑓u� ∶ 𝑈u� → 𝑌} be an étale cover; we claim there is an associated galois cover:
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Proposition 4.9 ([Ser58a, no 1.4]). Let 𝑌 be connected, and 𝑓 ∶ 𝑋 → 𝑌 a surjective étale
morphism, i.e., an étale cover of 𝑌 , of degree 𝑛. Then, there exists a scheme 𝜋∶ 𝑍 → 𝑌 such
that 𝑓 is an galois cover, and factors through 𝑓 .

Proof Sketch. Let 𝑓 ∶ 𝑋 → 𝑌 be étale; then 𝑓 ×u� ∶ 𝑋×u� → 𝑌×u� is a surjective étale cover
of degree 𝑛u� by Proposition 4.6. There is then a cartesian diagram

𝑋×u�
u� 𝑋×u�

𝑌 𝑌×u�

←→Δ̃

←→ ̃u�

←→ u� ×u�

← →Δ

̃𝑓 is then a degree 𝑛u� étale cover of 𝑌 , and 𝑆u� acts on 𝑋×u�
u� . Let 𝑍 be the inverse image through

Δ̃ of the open subset of 𝑋×u� consisting of 𝑛-tuples (𝑦1, … , 𝑦u�) where each 𝑦u� is distinct.
𝑍 → 𝑌 is then an étale cover of degree 𝑛!, and 𝑆u� acts freely on 𝑍; see [Ser58a, no 1.4] for
details. The factorization comes from [Ser58a, no 1.3(f)]. �

2. Principal and fiber bundles in étale topology and a comparison

Étale morphisms allow us to talk about a new “topology,” namely, instead of thinking of
open sets in 𝑋, we allow “open covers” which are actually just étale covers. This generalizes
the notion of an open covering, and gives us a new class of fiber bundles which are not
necessarily algebraic, i.e., locally trivial in Zariski topology.

Recalling our definitions from Chapter 1, we have the following analogue of fiber bundles
in this new topology:

Definition 4.10. A fiber system 𝐸 → 𝑋 is locally trivial in étale topology if there exists
an étale cover {𝑓u� ∶ 𝑈′

u� → 𝑈u�} of 𝑋 such that 𝑓 ∗
u� 𝐸|u�u�

are isomorphic to the trivial bundle.

We recall Example 1.14, which gives an example of a PGL-bundle that is locally trivial
in Zariski topology but not in the étale topology.

Example 4.11 (See Example 1.14). Let

𝐴 = ℂ[𝑠, 𝑠−1, 𝑡, 𝑡−1], 𝐵 = ℂ[𝑠1/2, 𝑠−1/2, 𝑡1/2, 𝑡−1/2].

Then 𝐴 ↪ 𝐵 as rings. This is a flat ring homomorphism, for 𝐵 is the free module over 𝐴
generated by 1, 𝑠1/2, 𝑡1/2, 𝑠1/2𝑡1/2. We have ker 𝐵 ⊗u� 𝐵 = 𝐼 = 0, hence Ωu�/u� = 0. Thus, the
map Spec 𝐵 → Spec 𝐴 on spectra is an étale cover of Spec 𝐴, and the map defined in (1.14)
is then a local trivialization of the bundle in this étale cover. Hence Example 1.14 is locally
trivial in étale topology.

In contrast, however, vector bundles that are locally trivial in étale topology are actually
locally trivial in étale topology. To prove this, we change our point of view slightly to
principal bundles.

Definition 4.12. Let 𝑃 → 𝑋 be a fiber system with structure group 𝐺 as we had before. 𝑃
is a principal 𝐺-bundle locally trivial in Zariski (resp. étale topology) if there is an open cover
𝑈u� of 𝑋 (resp. an étale cover {𝑓u� ∶ 𝑈u� → 𝑋} of 𝑋) such that 𝑃|u�u�

≅ 𝑈u� × 𝐺 (resp. 𝑓 ∗
u� 𝑃 ≅ 𝑈u� × 𝐺).
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Note this is a special case of a fiber system such that our fibers 𝐹 are isomorphic to 𝐺
itself. If 𝐹 is a fixed 𝐺-scheme, then principal 𝐺-bundles and fiber bundles with structure
group 𝐺 and fiber 𝐹 are in one-to-one correspondence, since we can just take our transition
functions and use them to patch together a principal 𝐺-bundle by having them act on 𝐺. We
remind the reader of our discussion in Remark 1.13: these objects are nicer to deal with
because there are canonical ways to choose morphisms 𝑋 → 𝐺 that represent automorphisms
of the trivial bundle.

Moreover, we have the nice characterization for when the following criterion for principal
bundles makes them even better because there is a principal bundles are locally trivial:

Proposition 4.13. Let 𝐺 be connected. A principal 𝐺-bundle 𝜋∶ 𝑃 → 𝑋 is locally
trivial if and only if there exists a Zariski local (resp. étale local) section at each 𝑥 ∈ 𝑋. Note
an étale local section is an étale morphism 𝑓 ∶ 𝑈 → 𝑋 with 𝑥 in its image and a morphism
𝜎∶ 𝑈 → 𝑈 × 𝑃 such that 𝑓 ∘ 𝜎′ = 𝜋.

Proof. If 𝑈 is an open set (resp. 𝑓 ∶ 𝑈 → 𝑋 is an étale morphism) on which 𝜋 is trivial,
then clearly we are done. In the other direction, if 𝜎 is a Zariski local section on 𝑈 (resp. 𝜎
is an étale local section) then Ψ(𝑥, 𝑔) = 𝜎(𝑥) ⋅ 𝑔 defines an isomorphism 𝑈 × 𝐺 → 𝑃
(resp. 𝑈 × 𝐺 → 𝑓 ∗𝑈𝑃), where the inverse is as defined in [Ser58a, Prop. 2]. Note in
particular that this morphism is bijective by the fact that 𝐺 acts effectively on itself since it’s
connected. �

Remark 4.14. We note that this is a feature specific to principal bundles that does not
apply to fiber bundles. For example, every vector bundle has the section defined by choosing
the origin in each fiber.

Proposition 4.15 ([Ser58a, Prop. 1]). The isomorphism classes of principal 𝐺-bundles
over 𝑋 that are trivial after base change through a Galois cover 𝑋′ → 𝑋 with associated group
𝔤 of automorphisms is in bijection with the (non-abelian) group cohomology 𝐻1(𝔤, Γ(𝑋′, 𝐺)),
where Γ(𝑋′, 𝐺) is the group of morphisms 𝑋′ → 𝐺, on which 𝔤 acts by (𝜎𝑓 )(𝑥′) = 𝑓 (𝑥′ ⋅ 𝜎).

Proof. We have the commutative diagram

𝑋′ × 𝐺 𝑃

𝑋′ 𝑋

←→ u�′

←→

←→

← →

𝑃 is identified with 𝑃′ = 𝑋′ × 𝑃 quotiented out by 𝔤 by the above. The action of 𝔤 must be
compatible with the projection 𝜋′, and so we have

(𝑥′, 𝑔) ⋅ 𝜎 = (𝑥′ ⋅ 𝜎, 𝜑u�(𝑥′) ⋅ 𝑔), 𝜎 ∈ 𝔤

for some 𝜑u� ∶ 𝑋′ → 𝐺, and so 𝜑u� is a 1-cochain of 𝔤 → Γ(𝑋′, 𝐺). The associativity of the
action of 𝔤

(𝑥′, 𝑔) ⋅ 𝜎𝜏 = ((𝑥′, 𝑔) ⋅ 𝜎) ⋅ 𝜏, 𝜎, 𝜏 ∈ 𝔤
implies the identity

𝜑u�u�(𝑥′) = 𝜑u�(𝑥′ ⋅ 𝜎) ⋅ 𝜑u�(𝑥′),
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which is exactly the cocycle condition. Conversely, such a cocycle gives a well defined
operation of 𝔤 on 𝑋 × 𝐺, hence defines 𝑃. Finally, this implies that two cocycles correspond
to the same bundle if and only if they are cohomological. �

We can now prove

Theorem 4.16 ([Ser58a, Thm. 2], [Ser58b, no 15]). A principal bundle 𝑃 → 𝑋 with
group GLu� is locally trivial in étale topology if and only if it is locally trivial in Zariski
topology.

Proof. By restriction, we can assume that 𝑃 is étale-trivial on 𝑋, and so let 𝜋∶ 𝑈 → 𝑋
be a galois cover with group 𝔤, such that 𝜋∗𝑃 is trivial. Let 𝐴u� be the semilocal ring for
𝜋−1(𝑥) in 𝑈. The group Γu�(𝑈, GLu�) of germs of morphisms 𝜋−1 → GLu� can be identified
with GLu�(𝐴u�). By the Proposition above, 𝑃 defines an element 𝑝u� ∈ 𝐻1(𝔤, GLu�(𝐴u�)); it
suffices to show that this is trivial, i.e., 𝐻1(𝔤, GLu�(𝐴u�)) = 0.

Now for 𝑥 ∈ 𝑋, let 𝑦1 ∈ 𝜋−1(𝑥). Choose ℎ an 𝑛 × 𝑛 matrix in 𝐴u� that is the identity on
𝑦1 but zero on other points of 𝜋−1(𝑥). If 𝜑u� ∈ 𝐻1(𝔤, GLu�(𝐴u�)), then put

𝑎 = ∑
u�∈𝔤

𝜏(ℎ) ⋅ 𝜑u�.

𝑎 is then invertible on every point in 𝜋−1(𝑥). Moreover,
𝜎(𝑎)𝜑u� = ∑

u�∈𝔤
𝜎𝜏(ℎ) ⋅ 𝜎(𝜑u�)𝜑u� = ∑

u�∈𝔤
𝜎𝜏(ℎ) ⋅ 𝜑u�u� = 𝑎,

and so 𝜑u� is a coboundary element as desired. �

The proof above constructs a section 𝑋 → 𝑃 of our principal bundle, by proving that
the section 𝑈 → 𝜋∗𝑃 defined by 𝑎 is in fact invariant under the action of 𝔤, hence descends
to a morphism 𝑋 → 𝑃 by the property of quotient schemes. We can do the same thing
with an affine bundle; indeed, the same construction above gives a section by using 𝜑u� ∈
𝐻1(𝔤, GAu�(𝐴u�)) instead.

Remark 4.17. Groups that satisfy the property in Theorem 4.16 are called special. For
a full classification of groups of this type, see [Gro58b]. Note that specialness is preserved
under group extensions [Ser58a, Lem. 6; Gro58a, Prop. 5.3.1], giving another way to prove
that GAu� is special.

We recall that the analogue for Theorem 4.16 does not hold for projective bundles. Tsen’s
theorem 1.16 from before can be used to prove that for projective bundles over curves, though,
an analogue does hold. For projective spaces, this is also true, but the proof gets much more
involved. This is the subject of étale cohomology and Brauer groups.
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