SEQUENTIALLY COHEN-MACAUHLAY REES MODULES

NAOKI TANIGUCHI

My talk is based on the research jointly with T. N. An, N. T.
Dung and T. T. Phuong ([TPDA]). The aim of this talk is to
investigate the question of when the Rees modules associated to
arbitrary filtration of modules are sequentially Cohen-Macaulay,
which has a previous research by [CGT]. In [CGT] they gave a characterization of the
sequentially Cohen-Macaulay Rees algebras of \(\mathfrak{m} \)-primary ideal which contains a
good parameter ideal as a reduction. However their situation is quite a bit of restricted,
so we are eager to try the generalization of their results.

Let \(R \) be a Noetherian local ring with maximal ideal \(\mathfrak{m} \), \(M \neq (0) \) a finitely generated
\(R \)-module with \(d = \dim R M < \infty \). Now look at a filtration
\[
D_0 := (0) \subseteq D_1 \subseteq D_2 \subseteq \ldots \subseteq D_\ell = M
\]
of \(R \)-submodules of \(M \), which we call the dimension filtration of \(M \), if \(D_{i-1} \) is the largest
\(R \)-submodule of \(D_i \) with \(\dim R D_{i-1} < \dim R D_i \) for \(1 \leq i \leq \ell \), here \(\dim R (0) = -\infty \) for
convention. Then we say that \(M \) is a sequentially Cohen-Macaulay
\(R \)-module, if the quotient module
\[
C_i = D_i / D_{i-1}
\]
of \(D_i \) is a Cohen-Macaulay \(R \)-module for every \(1 \leq i \leq \ell \).

In particular, the ring \(R \) is called a sequentially Cohen-Macaulay ring, if \(\dim R < \infty \) and
\(R \) is a sequentially Cohen-Macaulay module over itself.

Let \(\mathcal{F} = \{ F_n \}_{n \in \mathbb{Z}} \) be a filtration of ideals of \(R \) such that \(F_1 \neq R \), \(M = \{ M_n \}_{n \in \mathbb{Z}} \) an
\(\mathcal{F} \)-filtration of \(R \)-submodules of \(M \). Then we put
\[
\mathcal{R} = \sum_{n \geq 0} F_n t^n \subseteq R[t], \quad \mathcal{R}' = \sum_{n \in \mathbb{Z}} F_n t^n \subseteq R[t, t^{-1}], \quad \mathcal{G} = \mathcal{R}' / t^{-1} \mathcal{R}'
\]
and call them the Rees algebra, the extended Rees algebra and the associated graded ring
of \(\mathcal{F} \), respectively. Similarly we set
\[
\mathcal{R}(M) = \sum_{n \geq 0} t^n \otimes M_n \subseteq R[t] \otimes_R M, \quad \mathcal{R}'(M) = \sum_{n \in \mathbb{Z}} t^n \otimes M_n \subseteq R[t, t^{-1}] \otimes_R M
\]
and
\[
\mathcal{G}(M) = \mathcal{R}'(M) / t^{-1} \mathcal{R}'(M)
\]
which we call the Rees module, the extended Rees module and the associated graded
module of \(M \), respectively (here \(t \) stands for an indeterminate over \(R \)). We now assume
that \(\mathcal{R} \) is Noetherian and \(\mathcal{R}(M) \) is finitely generated. We set
\[
D_i = \{ M_n \cap D_i \}_{n \in \mathbb{Z}}, \quad C_i = \{ [(M_n \cap D_i) + D_{i-1}] / D_{i-1} \}_{n \in \mathbb{Z}}.
\]
for all \(1 \leq i \leq \ell \). Then \(D_i \) (resp. \(C_i \)) is an \(\mathcal{F} \)-filtration of \(R \)-submodules of \(D_i \) (resp.
\(C_i \)).

The author was partially supported by Grant-in-Aid for JSPS Fellows 26-126 and by JSPS Research
Fellow.
With this notation the main results of my talk are the following.

Theorem 1. The following conditions are equivalent.

1. \(R'(\mathcal{M}) \) is a sequentially Cohen-Macaulay \(R' \)-module.
2. \(G(\mathcal{M}) \) is a sequentially Cohen-Macaulay \(G \)-module and \(\{G(D_i)\}_{0 \leq i \leq \ell} \) is the dimension filtration of \(G(\mathcal{M}) \).

When this is the case, \(M \) is a sequentially Cohen-Macaulay \(R \)-module.

Let \(\mathfrak{M} \) be a unique graded maximal ideal of \(R \). We set
\[
a(N) = \max\{n \in \mathbb{Z} \mid [H_{\mathfrak{M}}^t(N)]_n \neq (0)\}
\]
for a finitely generated graded \(R \)-module \(N \) of dimension \(t \), and call it the \(a \)-invariant of \(N \) (see [GW, DEFINITION (3.1.4)]). Here \(\{[H_{\mathfrak{M}}^t(N)]_n\}_{n \in \mathbb{Z}} \) stands for the homogeneous components of the \(t \)-th graded local cohomology module \(H_{\mathfrak{M}}^t(N) \) of \(N \) with respect to \(\mathfrak{M} \).

Theorem 2. Suppose that \(M \) is a sequentially Cohen-Macaulay \(R \)-module and \(F_1 \not\subseteq p \) for every \(p \in \text{Ass}_R M \). Then the following conditions are equivalent.

1. \(R(\mathcal{M}) \) is a sequentially Cohen-Macaulay \(R \)-module.
2. \(G(\mathcal{M}) \) is a sequentially Cohen-Macaulay \(G \)-module, \(\{G(D_i)\}_{0 \leq i \leq \ell} \) is the dimension filtration of \(G(\mathcal{M}) \) and \(a(G(C_i)) < 0 \) for every \(1 \leq i \leq \ell \).

When this is the case, \(R'(\mathcal{M}) \) is a sequentially Cohen-Macaulay \(R' \)-module.

References

Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan

E-mail address: taniguti@math.meiji.ac.jp

URL: http://www.isc.meiji.ac.jp/~taniguci/