Plan for Today:

1. Finish § 1.1
2. Start § 1.2

What to know from § 1.2:

1. What is a general solution and what is a particular solution
2. Be able to solve differential equations of the form $y^{\prime}=f(x)$
3. Be able to solve problems involving linear motion, possibly vertical, by solving such differential equations.
4. Know the various physical units in FPS and MKS systems and be able to convert between them - in particular it would be good to memorize the value of the gravitational acceleration in FPS and MKS (it has appeared in finals in the past).

Reminders:

1. Read the textbook!
2. Fill out your availability for office hours here: https://whenisgood.net/3kzxd2i. You can do it anonymously if you so prefer.
3. Get a head start on the first bundle of homework assignments, due on Tuesday of week 3.
4. Have a nice weekend and stay safe.

Last time: distil equ.
Mentioned: Model physical phenomena using
dif'l eq's.
Ex: Time rate of change of the A of people infected wi a disease is proportional to the product of \# of people who have it $\&$ \# of people who don't. Assume P_{0} is the total population.
$\int_{N(t)} \rightarrow$ \# people who hare dizen.
$\left\{P_{0}-N(f) \rightarrow \#\right.$ people also dort.
$L N^{\prime}(t) \rightarrow$ time rate of change.

$$
\begin{aligned}
& N^{\prime}(t)=k\left(P_{0}-N(t)\right) N(t) *(*) \text { dill eq. } \\
& \text { (logistic } \\
& \text { dif.equ) }
\end{aligned}
$$

Claim: $N(t)=\frac{P_{0}}{1+e^{-P_{0}(k t+c)}}$ solves
for any C.

- When asked to check if a given function satisfies an ODE we don't hare to solve the ODE!

Take der of $N(t)$, check (*) is satisfied

$$
\begin{aligned}
N^{\prime}(t) & =-P_{0} \frac{1}{\left(1+e^{-P_{0}(k t+c)}\right)^{2}}\left(-P_{0} k\right) e^{-P_{0}(k t+c)} \\
\left(P_{0}-N(t)\right) & =\frac{P_{0}\left(1+e^{-P_{0}(k t+c)}\right)}{1+e^{-P_{0}(k t+c)}} \\
& =\frac{P_{0}}{1+e^{-P_{0}(k t+c)}}
\end{aligned}
$$

$$
\begin{aligned}
& N(t)\left(P_{0}-N(t)\right)=\frac{P_{0}^{2} e^{-P_{0}(k t+c)}}{\left(1+e^{-P_{0}(k t+c)}\right)^{2}} \\
& \Rightarrow N^{\prime}(t)=k N(t)\left(P_{0}-N(t)\right) \\
& N(t) \text { sulu. }
\end{aligned}
$$

k, P_{0}, C depend on information gran by the model.

Tippecanoe covid cases

$$
\left\{\begin{array}{l}
O_{c t} \quad 1 \rightarrow 1,000 \\
O_{c t} 30 \rightarrow 3,000 \\
P_{0}=100,000
\end{array}\right.
$$

Use to determine k, C, P_{0}
$t \rightarrow$ time after Sept 30 th
use thousands as units.

$$
\begin{cases}1=\frac{100}{1+e^{-100(k \cdot 1+c)}} & k \sim 4 \cdot 10^{-4} \\ 3=\frac{100}{1+e^{-100(k \cdot 30+c)}} & c \sim-0.05\end{cases}
$$

Some more terminology.
Order of a dif'l eq' \rightarrow highest order of derivative ulvich appears.
$\varepsilon_{x}:$

$$
\begin{aligned}
& y^{\prime \prime}+y=x^{5} \rightarrow \text { order } 2 \\
& y^{(4)}+3 y^{5}+y^{\prime}=3 \sin (x) \quad \text { order } 4 \\
& \text { derivative power }
\end{aligned}
$$

A sol'n of a dif. eqin on an interval is a continuous function which satisfies dif. syn.
Ex: $\quad y^{\prime}=e^{-y}$

$$
\begin{align*}
& y=\ln (x+c) \\
& y^{\prime}=\frac{1}{x+c}, \quad e^{-y}=e^{-\ln (x+c)}=\frac{1}{x+c}
\end{align*}
$$

(*) is a solution on the interval $x+c>0$ (otherwise $\ln (x+c)$ is not defined)

A family of solutions depending on a parameter C is called a general sol'n. (may or may not be that case that a general solution can produce every solution)
Ex: $y=\ln (x+C)$ is a general sold for

$$
y^{\prime}=e^{-y}
$$

We can fix a C to obtain a particular solution.

Ex: for $c=1, y=\ln (x+1)$ is a part. soln to $y^{\prime}=e^{-y}$

Common way to find c is when an initial condition is given by the problem: the value of a solution at a centain value of the independent variable.
Eye want the solution of $y^{\prime}=e^{-y}$ $w \mid y(0)=0$. [in general such a sol'n may or may not exist]
$y=\ln (x+c)$ is a gen. soln.
Try to find a c that works.

$$
0=\ln (0+c) \rightarrow c=1
$$

$y=\ln (x+1)$ is a particular sol'n v) $y(0)=0$.

Istorder dif'l eq + initial condition

$$
=\frac{\text { initial value problem }}{\left\{\begin{array}{l}
y^{\prime}=f(x, y) \\
y\left(x_{0}\right)=y_{0}
\end{array}\right\} \text { lvP }}
$$

Intro to $\$ 1.2$

In general a lIst order ODE is of form $F\left(x, y, y^{\prime}\right)=0$

Ex: $\quad y+\left(y^{\prime}\right)^{2}=\sin (x)$
can be written as $F\left(x, y, y^{\prime}\right)=0$
for $F(z, w, t)=w+t^{2}-\sin (z)$
Weill look at cases where
$y^{\prime}=f(x, y) \quad$ (cay solve for y^{\prime}, simpler).
In 1.2 even simpler case:

$$
\begin{aligned}
& \text { E.g: } \quad y^{\prime}=\frac{f(x)}{n_{0} \text { dependent }} \\
& y^{\prime}=\sin (x) \\
& y^{\prime}=\frac{1}{\sqrt{1+x^{2}}}
\end{aligned}
$$

Not $y^{\prime}=x y$

$$
y \overline{\overline{o n}} \text { right hound side. }
$$

Cam solve by integrating!
Ex:

$$
y=\int f(x) d x+C \quad \text { general soling }
$$

$$
y^{\prime}=\sin (x) \Rightarrow y=\int \sin (x) d x \Rightarrow y=-\cos (x)+c
$$

