Plan for today: Finish § 1.2 Start § 1.3 Learning goals (in addition to the ones from last time) 1. Be able to roughly sketch the slope field corresponding to a first order ODE and solutions whose graphs pass through a given point. 2. Be able to use the slope field of an equation to predict its behavior. 3. Be able to use dfield to construct slope fields. Reminders 1. Last chance to fill your availability for office hours. Please do it here: https://whenisgood.net/3kzxd2i, anonymously if you prefer.
Learning goals (in addition to the ones from last time) 1. Be able to roughly sketch the slope field corresponding to a first order ODE and solutions whose graphs pass through a given point. 2. Be able to use the slope field of an equation to predict its behavior. 3. Be able to use dfield to construct slope fields. Reminders 1. Last chance to fill your availability for office hours. Please do it here: https://whenisgood.net/3kzxd2i, anonymously if you prefer.
Learning goals (in addition to the ones from last time) 1. Be able to roughly sketch the slope field corresponding to a first order ODE and solutions whose graphs pass through a given point. 2. Be able to use the slope field of an equation to predict its behavior. 3. Be able to use dfield to construct slope fields. Reminders 1. Last chance to fill your availability for office hours. Please do it here: https://whenisgood.net/3kzxd2i, anonymously if you prefer.
1. Be able to roughly sketch the slope field corresponding to a first order ODE and solutions whose graphs pass through a given point. 2. Be able to use the slope field of an equation to predict its behavior. 3. Be able to use dfield to construct slope fields. Reminders 1. Last chance to fill your availability for office hours. Please do it here: https://whenisgood.net/3kzxd2i, anonymously if you prefer.
graphs pass through a given point. 2. Be able to use the slope field of an equation to predict its behavior. 3. Be able to use dfield to construct slope fields. Reminders 1. Last chance to fill your availability for office hours. Please do it here: https://whenisgood.net/3kzxd2i, anonymously if you prefer.
2. Be able to use the slope field of an equation to predict its behavior. 3. Be able to use dfield to construct slope fields. Reminders 1. Last chance to fill your availability for office hours. Please do it here: https://whenisgood.net/3kzxd2i, anonymously if you prefer.
3. Be able to use dfield to construct slope fields. Reminders 1. Last chance to fill your availability for office hours. Please do it here: https://whenisgood.net/3kzxd2i, anonymously if you prefer.
Reminders 1. Last chance to fill your availability for office hours. Please do it here: https://whenisgood.net/ 3kzxd2i, anonymously if you prefer.
1. Last chance to fill your availability for office hours. Please do it here: https://whenisgood.net/3kzxd2i, anonymously if you prefer.
1. Last chance to fill your availability for office hours. Please do it here: https://whenisgood.net/3kzxd2i, anonymously if you prefer.
3kzxd2i, anonymously if you prefer.
0.00
2. Please enroll yourself to Piazza: https://piazza.com/class/kjzsmv75fxa11a
3. You can download the Java version of dfield here: https://www.cs.unm.edu/~joel/dfield/?
_ga=2.88690011.1963541742.1610756889-1273638757.1609377145
Last time: y'= f(x) j only x dependence on RHS y' isolated on LHS y'= sin(x) y'= ysin(x) x y'= ysin(x) x lntcgrak:
Last time.
n maly x de sendence on RMC
y isolated on LHS
4 - 314 (x)
u'= usin(x) ×
$\alpha' = (\alpha')^2 + 3 \operatorname{siu}(x) \times$
$y'=f(x) \Rightarrow y=f(x)dx+C$
general solu of $y'=f(x)$ $\xi_{x}: y'=\sin(x) \rightarrow y = \int \sin(x)dx = -\cos(x) + C$
2x: y = sm(x) = y - Jsin(x)dx = - cos(x)+C
Remarks:
1. Any 2 sols of y'= f(x) differ by a constant.
It is a sold has different to a
1. Any 2 sol's of y'= f(x) differ by a constant: they correspond to different values of C.
2. By fixing an initial condition we can
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

find a po	articular.	solution.	uhich saft	sfies it.
£x: y'				
T y	$(\pi) = 3$			
gen:	4 = - 00	3(x)+C		
	3 = 4	$(\pi) = -\cos($	(n) + C =	(= 2)
a)	4 = - 003	(x) + 2.	Cuz	0
3. Save do	r higher or	der of for	run y	= f(x):
	y" = c	7 = 7 4 =		
		7) 7 =	C1 x + C2	
		Z	free para	neters.
			r of legn)	
		oude	v of eqn)	
Linear	Modiay			
Object	Modiay o	n Straight	line	
			+>	
	7		×	
d	wose origin or			
	α κις .	. 1 1		
	-) position			4(+)>>
	we are ou			
	= 4+ is			
V velo	city is a	signed que	entity (pos	itive or uegative or o)
0	Q	-0 [a		negative or b)

Given velocity: can recover position. FTC: $x(t) - x(t_0) = \int_0^t \frac{dx}{dt} (\tau) d\tau$ = $\int_0^t v(\tau) d\tau$ = $\int_0^t v(\tau) d\tau$ 8 Position, not distance traveled! Ex: Start act origin. $v(t) = (1-t)(u_0)$, travel for $\int_0^t x(t) - x(0) = \int_0^t (1-\tau) d\tau$ = $\int_0^t x(t) - x(0) = \int_0^t (1-\tau) d\tau$ > $\int_0^t x(t) - x(0) = \int_0^t (1-\tau) d\tau$ = $\int_0^t x(t) - x(0) = \int_0^t (1-\tau) d\tau$ To find distance traveled: need to know when velocity changes signs. Conceilly: destance traveled			Cou	<i>ipa</i> v	و د	ار	Sp.	eed		Į.	νl	≥ C)					
Position, not distance traveled! Ex: Start at origin. $v(t) = (1-t)(w_s)$, travel for $2 \cdot s$. $x(t) - x(0) = \int (1-t) d\tau$ $x(2) = 0$. To find distance traveled; need to know when velocity changes signs.	l	Giv F	ren TC	V(eloc	idy: X(H	-	cau X	n Cta)	rec	over	- qx	705; f	ion dz				
Position, not distance traveled! Ex: Start at origin. $v(t) = (1-t)(w_s)$, travel for $2 \cdot s$. $x(t) - x(0) = \int_0^t (1-t) d\tau$ $x(t) = t - \frac{t^2}{2}$ $x(2) = 0$. To find distance traveled: need to know when velocity changes signs.								_	_	=	to 1	V(t)d	τ				
Start at origin. $v(t) = (1-t)(m_s)$, travel for $2 s$. $x(t) - x(0) = \int (1-t) d\tau$ $= t - \frac{t^2}{2}$ $x(2) = 0.$ To find distance traveled: need to know when velocity changes signs.	Q	?	P	-કાંન	tion	>	uoł	d	iste	પાલ) (trai	rek					
Start at origin. $v(t) = (1-t)(m_s)$, travel for $2 s$. $x(t) - x(0) = \int (1-t) d\tau$ $= t - \frac{t^2}{2}$ $x(2) = 0.$ To find distance traveled: need to know when velocity changes signs.	٤×:					<u>ح</u> ن			>				->					
$= t - \frac{t^2}{2}$ $= \times (t) = t - \frac{t^2}{2}$ $\times (2) = 0.$ To find distance traveled: need to know when velocity changes signs.		Sta	ert S	બ	,	orig	ри.		v C	+)	= (l	t)(,	%),	фr	we	e	for
$= t - \frac{t^2}{2}$ $= x(t) = t - \frac{t^2}{2}$ $x(2) = 0.$ To find distance traveled: need to know when velocity changes signs.			x((+) -	- ×	(0)	=		(1	- 1	7) (اح						
x(2) = 0. To find distance traveled: need to know when velocity changes signs.																		
velocity changes signs.	,	*(-	2)	t) = =	ь О.	2											. 1	
Conciety; destant traveled	V	ele	ocih	4 C	hou	ges	8	ign	١.							w	WILE	20
Conciely: destane traveled des(t) = \int \left \vert \vert \left \vert \vert \left \left \vert		را <i>جو</i> ر	LCiz	ely		90	sta des	ne (t)	= -	recv	elex S	1,	/ (- 7)	19	τ			
= (+ 11-T dt & Exercise!	-									=	2 (+ (1-	τ .	J 7	<u>_</u>	Ex	eve	ise!

and it lands in 2s, in unknown planet If we drop four 200 ft how long does it take? More flour one ways to set flus up v(0) = 0 (let it fall) F-> gravity w/ unknown grantationel accel. q. Position if origin is 20 ft from from y (t) = $0 + 0 (t-0) + \tilde{q} = \frac{(t-0)^2}{2}$ Know y(2)= 20 2. $y(t) = -20 + o(t-0) + \frac{0}{9} \frac{(t-0)}{2}$ 2084 4(2)=0 -origin

 $y(t) = 20 + 6(t-6) - \frac{y(t-0)^2}{2}$ 2041 origin Find g= 10ft/s2 Knowing g, find how long it takes to get to the ground once you start 200 ft from ground.

(Exercise)