

Ex: Drop coin from a tall building

$$
\text { Accel: } \quad \frac{d v}{d t}=9-k v=32-0.16 v
$$

See from afield: asymptotically all sol's tend to $200 \mathrm{ff} / \mathrm{s}$ as $t \rightarrow \infty$ The constant $v=200$ is a solin, called an equilibrium sol.

Existence k Uniqueness of Sol's
Look at IUP (initial value problems).
Do we have sol's? How many.?
i)

$$
y^{y^{\prime}=\frac{1}{x} y=\ln |x|+c} \text { is a general sol. }
$$

ii) $\left\{\begin{array}{l}y^{\prime}=\frac{4}{3} y^{\frac{1}{3}} \\ y(0)=0\end{array}\right.$

Note: $\left.\begin{array}{l}y=t^{4 / 3} \\ y=0\end{array}\right\} \quad \begin{aligned} & \text { both solve IVP } \\ & \text { for } t \geqslant 0\end{aligned}$
$y=0 \quad$ for $t \geqslant 0$
More than 1 sol's for IUP!
Existence \& Uiviquenes of Sols. Thu
S'pose: $f(x, y) \& D_{y} f=\frac{\partial f}{\partial y}(x, y)$ are continuous on a rectangle containing a pt (a, b) in its interior.
Then: There is an interval I containing a such that IVP

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=f(x, y) \\
y(a)=b
\end{array}\right.
$$

has exactly one sol in on I

$$
b \underset{a}{a}
$$

Note: I need not be as wide as the rectangle!

What herppened in examples:

$$
\begin{gathered}
y^{\prime}=\frac{1}{x} f(x, y)=\frac{1}{x} \\
(0,5) \quad y(0)=5
\end{gathered}
$$

In any rectenfe like R which contains $(0,5)$ $f(x, y)$ not continuous.
${ }^{7}$ (1) So: theorem does not apply.

$$
f(x, y)=\frac{1}{x}
$$

