	1
Plan for Today:	
1. Finish § 1.3	
2. Start § 1.4	
Learning Goals for the day	
1. Be able to apply the Theorem of Existence and Uniqueness of solutions to specific	
examples	
2. In case it does not, be able to tell why.	
3. What is a Separable ODE? Be able to identify one when you see it in nature and solve	1t
4. What is an implicit solution of an ODE?	
Reminders:	
1. Read the textbook!	
2. Office Hours today 2-3 pm	
To 1 (has 111 has 1 .7	
[Copied from Wednesday]	
Existence & Uniquenes of Sols. Thus	
Spose: f(x,y) & Dy f:= Of (x,y) are continuous on a rectangle containing	
1 (x,g) are	
continuous on a rectangle containing	
시간 그 내 보았다. 이 50 - 10 10 10 10 10 10 10 10 10 10 10 10 10	
Then: There is an interval I containing	
a such that IVP	
2 Second A Waster Co. 1	
$S \frac{dy}{dx} = P(x,y)$	
) ex	
y(a) = b	
hoes exactly one solin on I	
exactly one solu on 1	
hæs exactly one solin on I	

Moral: 4, byf cont. is important! Ex ?: xy'= 3y 1. Check that $SC, \times^3 \times 20$ Solves & for all \times and for any C_1, C_2 .

For $\times 20$: $y = C_1 \times^3$ So $\times y' = 3 \times^2 \cdot C_1 \times = 3 \cdot C_1 \times^3$ So $\times y' = 3y$ for $\times 20$ For $\times 50$: exercise 2. Show there is a unique solin of

\[
\(\text{y'} = 3y \\

\(\text{y'} = -1) = -1
\)

Won-1:
\(\text{y'} = \text{f(x,y)} \)

Looking at \(\text{x centry from 0, so divide.} \)
\(\text{y'} = \frac{3y}{\text{x}} \)

1		f(x,y)=	34 ×	
		Pyf (x.	$(1) = \frac{3}{x}$	-
Inter a second				
R	-1			
9			11	1.0
in R	f, Dyf contactly one ining -1.	solu in	tum	intenal
contai	ining -1.			
Note: U	viqueness only	, wolds	Neon	-1:
	y 2 (x3)	x 7 0		
00 u	$y = \begin{cases} x^3 \\ x^3 \end{cases}$ Solin to Lauy seds on	\mathbb{R} , o	uly ow	or any C:
3. For	wheet a	does	IVP	
	$\begin{cases} xy' = 3y \\ y(0) = \alpha \end{cases}$ if divide by	have	a ceu	ique
Cem	it divide by	x the	ODE	xy' = 3y

													6.29			
		wh	en	X:	=6											
		or:	e	(~.	.)=	3	9		D	.e (Yu) =	3	اما	<u></u>	
		-		CAA),	}	(1)]	19		×	_	70	
		Con	d'uc	rou	S	neo	w	χ), 						
		Cou	<i>i</i> +	لره	pe	te	u	je .	flew	ł	or	IV	۲.			
			xy	<u> </u> =	34	1										
			Û		J		Plu	ıα	iy							
							y(0)=	U								
							J									
		->	0	y'	=	3.0	٠ -	=)		α=	0					
	Sc	, it	a	-1 (
		10.		7	The second				Solu							
		1	α	- 0		QC	u	au	15.	کای	b	ec.	4	our	9	
									ر	U	ر ا	5	در ۲	c 3	X	20
										()	c, .	c 3	× c	
								ic		_	0,		0			
										>	OKI	1	for	C	ech	C1,C2
3	.4		Se	pa	ab	le	eei	2 .								
	See			٦		0.0										
	See	u.		7	5	41;	×)									
				0 /			T N	0	9	lepe	ende	eno	e			
	Toda			dy	2		(x)									
	1500	M.		dx			(33)							
								ጉ								
							4	lier	ne i	5	4	dep	eu	den	æ	
								of	soe	cial	e fo	or u	•	pro.	سديل	
			4		1			of	0	y Cot	OL	X	O C	x fo	.t 0°	4.
	SX	•	-	2 =	(XZH	3x)(y2 +	+ e ³)					
			0	K.				(J							

