Plan for Today:

1. Finish § 1.3
2. Start $\S 1.4$

Learning Goals for the day

1. Be able to apply the Theorem of Existence and Uniqueness of solutions to specific examples
2. In case it does not, be able to tell why.
3. What is a Separable ODE? Be able to identify one when you see it in nature and solve it
4. What is an implicit solution of an ODE?

Reminders:

1. Read the textbook!
2. Office Hours today 2-3 pm
[Copied from Wednesday]
Existence \& Uniqueres of Sols. Thu
S'pose: $f(x, y)$ \& $D_{y} f:=\frac{\theta f(x, y) \text { are }}{\partial y}$ continuous on a rectangle containing
a pt (a, b) in its interior.
Then: There is an interval I containing
a such that IVP

\[\)| $\frac{d y}{d x}=f(x, y)$ |
| :--- |
| $y(a)=b$ |

\]

has exactly one sol on I

Note: I need not be as wide as the rectangle!
[News Material]
Ex: $\left\{\begin{array}{l}y^{\prime}=\frac{4}{3} y^{\frac{1}{3}} \\ y(0)=0\end{array}\right.$
Saw lest time tet IVP does not have unique sol' n,

$$
\frac{d y}{d x}=f(x, y) \quad f(x, y)=\frac{4}{3} y^{\frac{1}{3}}
$$

Hope: to find rectangle containing $(0,0)$ so that f, Dyf cont. there. Not possible:

\& cont for $y \geqslant 0$
$D y f=\frac{4}{9} y^{-\frac{2}{3}}$ not cont.

$$
\text { af }(x, y)=(0,0)
$$

Cant find rectangle that works.

Moral: \& Dy cont. is important!
Ex 2: $\quad x y^{\prime}=3 y$

1. Check that $y= \begin{cases}c_{1} x^{3}, & x \geqslant 0 \\ c_{2} x^{3}, & x \leq 0\end{cases}$

Solves \$ for all x and for any c_{1}, c_{2}.

For $x \geqslant 0: \quad y=c_{1} x^{3}$

$$
\begin{aligned}
& x \geqslant 0: y=c_{1} x \\
& \text { so dy }=3 x^{2} \cdot c_{1} x=3 c_{1} x^{3} \\
& 3 y=3 c_{1} x^{3}
\end{aligned}
$$

so $\quad x y^{\prime}=3 y$ for $x \geqslant 0$
For $x \leqslant 0$: exercise
2. Show there is a unique solon of

$$
\left\{\begin{array}{l}
x y^{\prime}=3 y \\
y(-1)=-1
\end{array}\right.
$$

Wart: $y^{\prime}=f(x, y)$
Looking at x away from 0 , so divide

$$
y^{\prime}=\frac{3 y}{x}
$$

Def $(x, y)=\frac{3}{x}$
$R \int_{-1}$

1
in R f Dy cont. so by them there is exactly one solis in some internal containing -1 .

Note: Uniqueness only holds near -1:

$$
y=\left\{\begin{array}{cc}
x^{3}, & x \leq 0 \\
c x^{3}, & x \geq 0
\end{array}\right.
$$

is a solis to IVP on \mathbb{R} for any c : ∞ many sols on \mathbb{R}, only one near -1 .
3. For what a does IVP

Cent divide by x the $005 x y^{\prime}=3 y$
when $x=0$.
or: $f(x, y)=\frac{3 y}{x}, \operatorname{Dy} f(x, y)=\frac{3}{x}$ not continuous near $x=0$.
Cant lope to use them for IVP.

$$
\begin{aligned}
& x y^{\prime}=\left.3 y\right|_{\substack{\text { plug in } \\
y(0)=a}} \rightarrow \quad 0 \cdot y^{\prime}=3 \cdot a \Rightarrow a=0 .
\end{aligned}
$$

So if $a=10$ cart solve IUP!'
If $a=0$ so many sols bee. found

$$
y=\left\{\begin{array}{lll}
c_{1} & x^{3} & x \geqslant 0 \\
c_{2} & x^{3} & x<0
\end{array}\right.
$$

is a sol'n for each C_{1}, C_{2}
\$1.4 Separable eq's.
Seen. $\frac{d y}{d x}=f(x)$
no y dependence
Today: $\quad \frac{d y}{d x}=f(x) g(y)$
There is y dependence of special form: product of a fat of $x \&$ a fat of y.
Ex: $\quad \frac{d y}{d x}=\left(x^{2}+3 x\right)\left(y^{2}+e^{y}\right)$

$$
\begin{aligned}
& \frac{d y}{d x}=x y \sin (y) \\
& \frac{d y}{d x}=y+y x^{2}=y\left(1+x^{2}\right)
\end{aligned}
$$

Non-exumples: $\quad \frac{d y}{d x}=y+3 \sin (x)$

$$
\frac{d y}{d x}=y x^{3}+\ln y \cos (x)
$$

Those ea's are called separable
Ex of solving:

$$
\frac{d y}{d x}=y(x-1)
$$

Divide by $y: \quad \frac{1}{y} \frac{d y}{d x}=x-1 \quad \begin{gathered}\text { separate } \\ \text { variables. }\end{gathered}$ variables: y on left,
$\left.\begin{array}{l}\text { fonually } \\ \text { "multiply both } \\ \text { sides by } d x \text { " }\end{array}\right\} \frac{d y}{y}=(x-1) d x$
sides by $d x^{\prime \prime}$.
Notation that works, not that $\frac{d y}{d x}$ is a fraction.

$$
\int \frac{d y}{y}=\int x-1 d x=\sqrt{\text { lutegrate }}
$$

$$
\begin{aligned}
& \Rightarrow \ln |y|=\frac{x^{2}}{2}-x+c \\
& \Rightarrow|y|=e^{\frac{x^{2}}{2}-x+c} \\
& \Rightarrow|y|=e^{c o} e^{\frac{x^{2}}{2}-x} \\
& \Rightarrow y= \pm e^{c} e^{\frac{x^{2}}{2}-x} \\
& \Rightarrow y=\tilde{c} e^{\frac{x^{2}}{2}-x}
\end{aligned}
$$

$$
\begin{aligned}
\tilde{C} & \in \mathbb{R} \text {, replaces } \\
& \pm e^{\dot{C}}
\end{aligned}
$$

Method for solving Separable eff:

$$
\frac{d y}{d x}=k(y) h(x)
$$

1. \square
divide by

$$
\int \frac{1}{k(y)} \frac{d y}{d x}=h(x)
$$

2. $\left.\begin{aligned} & \text { integrate } \\ & \text { both sides } \\ & \text { in } x\end{aligned} \right\rvert\, \int \frac{1}{k(y)} \frac{d y}{d x} d x=\int u(x) d x$
3. | $\substack{\text { substitution. } \\ \text { on left, tory } \\ \text { into } y \text { integer. }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | $\int \frac{1}{k(y)} d y=\int u(x) d x$
4. Integrate! $G(y)=H(x)+C$, where *

Rok: doenn't always give $y=$ but it gives an eq'n which y satisfies ant there are no derivatives.

