Plan for today	y:					
1. Finish § 1	1.4					
2. Start § 1.	5		and the second			
		Carlos Carlos	a constant a state of the	A CONTRACTOR	MARCH AND	

Learning Goals:

From § 1.4, in addition to the ones from Lesson 6

1. Be able to solve problems involving population growth, radiocarbon dating and heating/cooling From § 1.5:

- 1. Be able to recognize a linear 1st order ODE when you see it, understand how it differs from types of ODEs we have studied so far.
- 2. Given a linear 1st order ODE, be able to compute an integrating factor for it
- 3. Be able to find the general solution of a linear 1st order ODE using an integrating factor
- 4. Be able to identify the largest interval on which an IVP for a linear 1st order ODE has a unique solution (questions of this type appear often in the finals)

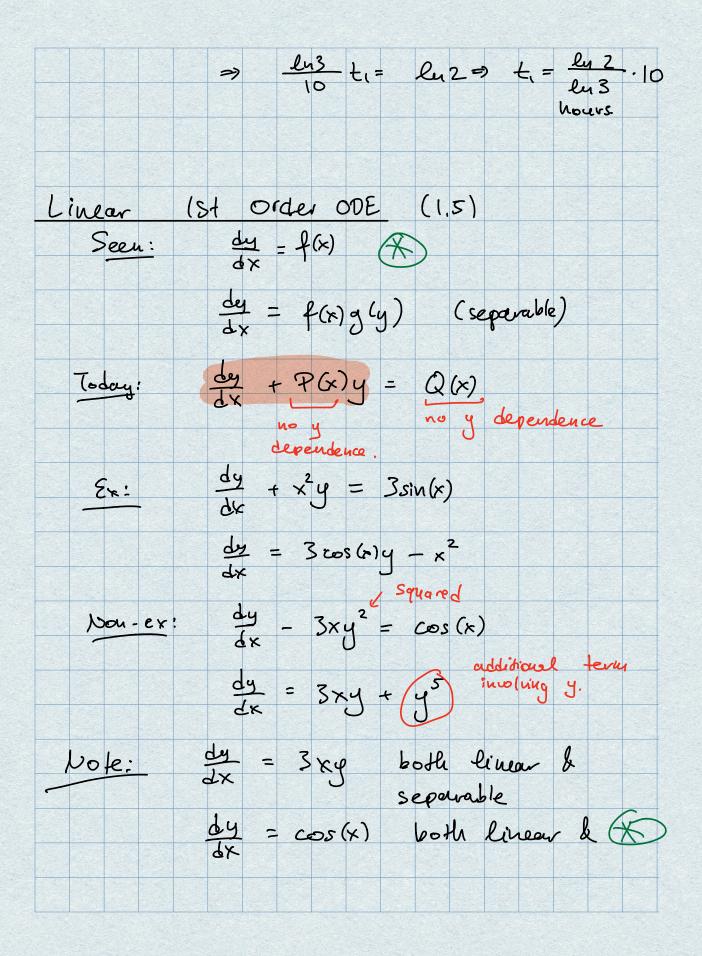
Reminders:

1. Read the textbook!

2. Fill out survey (link will be emailed shortly after class).

Population Gnouth (application of separable eqis) Simple model: Population where rate of births is const. in time, rate of deaths is coust. in time. PGt) evolve? In time At: How does $\Delta P = \beta \cdot P \cdot \Delta t - \delta \cdot P \cdot$ birky deaths $= (\beta \cdot \delta) P \Delta t$ $\delta P = P'(t) = (\beta \cdot \delta) P(t) t$ 5.P. 04 separable y'= +4

 $\frac{dP}{dt} = (\beta - 5)P \Rightarrow \int \frac{dP}{P} = \int (\beta - 5)dt$ =) $l_{y}P = (\beta-\delta)t + C$ =) $P = e^{C}e^{(\beta-\delta)t}$ $\Rightarrow P(H) = P_0 e^{(\beta - \delta)t}$ Population at time t= 0Note: $\begin{array}{c} \text{lim } P(f) = \begin{cases} \infty & \beta > \delta \\ f \rightarrow \infty & P_{\bullet} & \beta = \delta \\ 0 & \beta < \delta \end{cases}$ Ex: Culture of bacteria st. their number increased 3-fold in 10 hours. How long did it take for # of buckeria to double (assuming growth model above) Have: $P(t) = P_0 e^{kt} (k = \beta - S)$ Ly t in hours. $P(10) = 3P_0 \quad (increased 3-fold)$ $P_0 = k \cdot 10 = 3P_0 \quad (increased 3-fold)$ $P_0 = k \cdot 10 = lu \quad 3 \Rightarrow k = \frac{lu \quad 3}{10}$ $Looking for: t_1: P(t_1) = 2P_0$ $P_0 = kt_1 = 2P_0 \Rightarrow e^{\frac{lu \quad 3}{10}t_1} = 2$



Here to solve:
det
$$p(x) = e^{\int P(x) dx}$$

Observation:
 $\left(p(x)y(x) \right)' = p'(x)y(x) + p(x)y'(x)$
 $= P(x)e^{\int P(x)dx} + e^{\int P(x)dx}$
 $= P(x) \left(\frac{P(x)y + y'}{y} \right) (x)$
So given
 $\frac{dy}{dx} + P(x)y = Q(x)$:
Multiply two ugh by $p(x) = e^{\int P(x)dx}$. By
 $\left(\frac{dx}{dx} + P(x)y \right) = p(x)Q(x)$
 $\left(p(x)y(x) \right)' = p(x)Q(x)$
 $\left(p(x)y(x) \right)' = p(x)Q(x)$
 $\left(p(x)y(x) \right)' = p(x)Q(x)$
 $p(x)g(x) = \int p(x)Q(x) dx + C$
 $= \left(\frac{d(x)}{dx} + \frac{1}{dx} \left(\int p(x)Q(x)dx + C \right) \right)$
Gieneral solution $\frac{dy}{dx} + P(x)y = Q(x)$
 $p(x) = e^{\int P(x)dx}$ is called an integrating
 $\frac{factor}{dx}$

(More generally an integrating factor is a fat you multiply both sides of sen eqn by and it turns them into derivative) $\underbrace{\mathcal{E}_{XL}}_{O_X} \xrightarrow{\uparrow} 2 \times y = x$ P(x) Q(x) the coefficient Indegrating factor: $p(r) = e^{x^2}$ $p(r) = e^{x^2}$ So: $\Rightarrow \frac{d}{dx} \left(e^{x^2} y \right) = x e^{x^2}$ =) $e^{x^2}y = \int x e^{x^2}dx + C$ $-x e^{x}y = \frac{1}{2}e^{x} + c$ ⇒ y = ½ + Ce^{-x} ∈ General soly $\xi \times 2$: $\chi \frac{dy}{dx} = \chi^{3}y + \cos(\kappa)$ Integrating feector! y' + P(x) y = Q(x) to bring into standard form:

