Plan for today:								
Finish § 1.6								
Start § 2.1								
			and the		and the		S. 2. 2. 2	

Learning Goals:

- 1. Be able to solve reducible 2nd order equations. Those are among the very few cases of possibly non-linear 2nd order equations we will see in this class. Keep them in mind because they appear on the finals.
- 2. Be able to set up and solve a differential equation describing the evolution of a population

Reminders-announcements

- 1. 1 hour left to submit Quiz 1!
- Homework hint: One of the homework problems asks you to find the value of a variable numerically. This means that you need to use a computer algebra system to find the value of the variable, do not try to solve for it analytically.

Reducible End order eys. Creneral form: F(y", y', y, x)=0 (* Sometimes simpler form allows us to reduce A 40 1: (in general may or may not be linear) $\frac{d}{dx}(xv) = 4x$ $\Rightarrow xv = \int 4xdx \Rightarrow xv = 2x^{2} + c,$

-> U= 2x+ 5 (*===) $y' = 2x + \frac{C_1}{x} = y(x) = x^2 + C_1 \ln |x| + C_2$ Find y! 2 constants, us expected for 2nd order. 2: X is missing from ODE. Ex: y'' = Zyy' (X not appearing) Huink of y as the independent variable $V = \frac{dy}{dx}$ Case $y''_{=} \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dx} \sqrt{\frac{chain}{rule}} \frac{dv}{dy} \frac{dy}{dx}$ $= \frac{dv}{dy} v$ Cherin Pule $\left(\begin{array}{c} \left(F(g(x_1))\right)'=f(g(y))g(x)\\ z=f(y)\\ y=g(x)\end{array}\right)$ $\frac{dv}{dy} = 2gv \quad (v \neq 0)$ $\frac{dv}{dy} = 2gv$ $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$ dy = 2y $\Rightarrow V = y^2 + C_1 = y^2 + C_1$ Find y: Exercise, take cases for C20 Solin at the end.

2.1 Seen: Population growth model assuming constant birth & death rate. $\frac{dP}{dt} = (\beta - \delta)P = kP$ $\frac{dt}{dt} P = \frac{births}{dt} \frac{death}{dt}$ unit time Unit of population $P(t) = Ce^{kt} = Ce^{(\beta-5)t}$ More generally: birth vak, death rate might depend on P,t $\frac{dP}{dt} = (\beta(t,P) - \delta(t,P))P$ X birth death rate Logistic Equation: Based on assumption that birth rate decreases linearly as population increases, doath rate const. $\beta = \beta_0 - \beta_1 P$ positive coust. Plug in : $\frac{dP}{dt} = \left(\left(\beta_0 - \beta_1 P \right) - 5 \right) P$ -) $= (\beta_{0} - 5)P - \beta_{1}P^{2}$

If
$$a, b \ge 0$$
 (matrix called a logistic equation

$$\frac{dP}{dt} = aP - bP^{2} \Rightarrow \frac{dP}{dt} = kP(M-P) \qquad M = \frac{a}{b}$$
Buts: a) Only dependent variable P present on RHS
of logistic equ. Such ODEs are called autonomous
b) RHS = 0 when $P = 0$, $P = M$; $P(H \equiv 0, PO = M)$
are both solutions (equilibrium sols)
Solve! Separable:
 $\int \frac{dP}{P(N-P)} = \int k dt$
 $\frac{P}{P(N-P)} = \int k dt$
 $\frac{P}{M} \ln P - \frac{1}{M} \ln (M-P) = kt + C$
 $\frac{P}{M} \ln P - \frac{1}{M} \ln (M-P) = kt + C$
Solve for P:
 $P(t) = \frac{MP}{P_0 + (M-P_0)e^{-Mkt}}$ (check)
 $P = P (M-P)e^{-Mkt}$

$$= \int \frac{1}{c_{1}} \int \frac{dy}{(\frac{4}{c_{1}})^{2} + 1} = \int dx$$

$$= \int \frac{1}{c_{1}} \int \frac{dy}{(\frac{4}{c_{1}})^{2} + 1} = \int dx$$

$$= \int \frac{1}{c_{1}} \frac{avctau}{(\frac{3}{b_{1}})^{2}} = x + C_{2}$$

$$= \int \frac{1}{b_{1}} \int \frac{dy}{(\frac{4}{b_{1}})^{2} + (\frac{1}{b_{1}})^{2}} = \int dx$$

$$= \int \frac{1}{b_{1}} \int \frac{1}{b_{1}} \left(-\frac{1}{-\frac{1}{y^{2} + b_{1}}} + \frac{1}{y^{2} - b_{1}} \right) dy = \frac{1}{2}x^{2} + C_{2}$$

$$= \int \frac{1}{b_{1}} \int \frac{1}{b_{1}} \int \frac{1}{b_{1}} \left(-\frac{y - b_{1}}{y^{2} + b_{1}} \right) = \frac{1}{2}x^{2} + C_{2}$$