Plan for today:
Finish § 1.6
Start § 2.1

Learning Goals:

1. Be able to solve reducible 2 nd order equations. Those are among the very few cases of possibly non-linear 2 nd order equations we will see in this class. Keep them in mind because they appear on the finals.
2. Be able to set up and solve a differential equation describing the evolution of a population

Reminders-announcements

1. 1 hour left to submit Quiz 1!
2. Homework hint: One of the homework problems asks you to find the value of a variable numerically. This means that you need to use a computer algebra system to find the value of the variable, do not try to solve for it analytically.

Reducible End order eq's.

$$
\Rightarrow v=2 x+\frac{c_{1}}{x} \quad(x \neq 0)
$$

Find y ! $\quad y^{\prime}=2 x+\frac{c_{1}}{x} \Rightarrow y(x)=x^{2}+c_{1} \ln |x|+c_{2}$
2 constants,
as expected for and order.

Case 2: x is missing from $O D E$.
Ex: $y^{\prime \prime}=2 y y^{\prime}$ (x not appearing) think of g as the independent variable $v=\frac{d y}{d x}$

$$
y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x} v{\underset{\text { rule }}{\text { chain }}}_{\bar{d}}^{d y} \frac{d y}{d x}
$$

$$
=\frac{d v}{d y} v
$$

(4)

$$
\begin{aligned}
& \frac{d v}{d y} v=2 y v \quad(v \neq 0) \\
& \Rightarrow \frac{d v}{d y}=2 y \\
& \Rightarrow v=y^{2}+c_{1} \Rightarrow \frac{d y}{d x}=y^{2}+c_{1}
\end{aligned}
$$

Find y : Exercise, take cases for $C_{1<}>0$ $=0$
Soling at the end.
2.1 Seen: Population growth model assuming constant birth \& death rate.

$$
\begin{gathered}
\frac{d P}{d t}=\begin{array}{c}
(\beta-\delta) P \\
p \\
\text { births/ } \\
\text { death/... }
\end{array} . k P \\
\hline
\end{gathered}
$$

unit tine/
unit of population

$$
P(t)=C e^{k t}=C e^{(\beta-\delta) t}
$$

More generally: birth rate, death rate might depend on P, t

$$
\frac{d P}{d t}=(\underbrace{\beta(t, P)}_{\begin{array}{c}
\text { birth } \\
\text { rate }
\end{array}}-\underbrace{\delta(t, P))}_{\begin{array}{c}
\text { death } \\
\text { rate }
\end{array}} P
$$

Logistic Equation: Based on assumption that birth rate decreases linearly as population increases, death rate const.

$$
\beta=\underbrace{\beta_{0}}_{\text {Positive }}-\underbrace{\beta_{1}}_{r} P
$$

Plug in:

$$
\begin{align*}
\rightarrow \quad \frac{d P}{d t} & =\left(\left(\beta_{0}-\beta_{1} P\right)-\delta\right) P \\
& =\frac{\left(\beta_{0}-\delta\right)}{a} P-\frac{\beta_{1}}{b} P^{2}
\end{align*}
$$

If $a, b>0 *$ called a logistic equation

$$
\frac{d P}{d t}=a P-b P^{2} \Rightarrow \frac{d P}{d t}=k P(\mu-P) \quad \begin{aligned}
& M=\frac{a}{b} \\
& k=b
\end{aligned}
$$

Ranks: al Only dependent variable P present on RHS of logistic equ. Such ODEs are called autonomous
b) DHS $=0$ when $P=0, P=M_{i} P(t) \equiv 0, P(A) \equiv \mu$ are both solutions (equilibrium sols).

Solve! Separable:

$$
\begin{aligned}
& \int_{\substack{P a d i n a l}}^{\Rightarrow} \frac{d P}{P(M-P)}=\int k d t \\
& \text { fractions } \\
& \Rightarrow \frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right) d P=k t+C \\
& \Rightarrow \frac{1}{M} \ln P-\frac{1}{M} \ln (M-P)=k t+C \\
& \Rightarrow \frac{1}{M} \ln \left(\frac{P}{\mu-P}\right)=k t+C
\end{aligned}
$$

Solve for P :

$$
P(t)=\frac{\mu P_{0}}{P_{0}+\left(\mu-P_{0}\right) e^{-\mu k t}} \quad \text { (check) }
$$

$P_{0} \rightarrow$ population at time $t=0$

Solution to aud Example
We were left at $\frac{d y}{d x}=y^{2}+C_{1}$. \leftarrow separable.

$$
\Rightarrow \quad \int \frac{d y}{y^{2}+c_{1}}=\int d x
$$

Integral on LHS depends on the sign of C_{1} !
Case 1: $C_{1}=0$

$$
\begin{aligned}
\int \frac{d y}{y^{2}}=\int d x & \Rightarrow \quad-\frac{1}{y}=x+c_{2} \\
& \Rightarrow y=-\frac{1}{x+c_{2}}
\end{aligned}
$$

Case 2: $\quad C_{1}>0$

$$
\int \frac{d y}{y^{2}+c_{1}}=\int d x
$$

$$
\begin{aligned}
& \Rightarrow \frac{1}{c_{1}} \int \frac{d y}{\left(\frac{y}{\left.\sqrt{c_{1}}\right)^{2}}+1\right.}=\int d x \\
& \Rightarrow \frac{1}{\sqrt{c_{1}}} \arctan \left(\frac{y}{\sqrt{c_{1}}}\right)=x+c_{2} \\
& \Rightarrow y=\sqrt{c_{1}} \tan \left(\sqrt{c_{1}}\left(x+c_{2}\right)\right)
\end{aligned}
$$

Case 3: $C<0$

$$
\begin{gathered}
\int \frac{d y}{y^{2}-\left|c_{1}\right|}=\int d x \\
\int \frac{1}{\sqrt{\left|c_{1}\right|}}\left(-\frac{1}{y+\sqrt{\left|c_{1}\right|}}+\frac{1}{y-\sqrt{\left|a_{1}\right|}}\right) d y=\frac{1}{2} x^{2}+c_{2} \\
\frac{1}{\sqrt{\left|a_{\mid}\right|}} \ln \left(\frac{y-\sqrt{\left|c_{1}\right|}}{y+\sqrt{\left|c_{1}\right|}}\right)=\frac{1}{2} x^{2}+c_{2}
\end{gathered}
$$

