Plan for today:
Finish 2.2
Start 2.3

Learning goals for the day:

1. Be able to construct a bifurcation diagram for a differential equation depending on a parameter
2. Be able to set up as solve a differential equation for the motion of a body under the influence of air resistance.

Reminders-Announcements

1. Ungraded Quiz 1.5 on Monday.
2. Quiz 2 on Thursday
3. Future quizzes are open book, see syllabus update
4. Read the textbook!

Last time: critical pts of an autonomous ear.

$$
\frac{d x}{d t}=f(x)
$$

c critical: $f(c)=0$
Logistic Model w/ harvesting
fish in a lake following a logistic model, harvest h every year.

Crit pts? When is $x(100-x)-h=0$?

$$
\Rightarrow \quad x=\frac{-x^{2}+100 x-h=0}{100 \pm \sqrt{10,000-4 h}} 22=\Delta
$$

\# of critical pts depends on h.

If $h=2500$ then $10,000-4 h=0$ and we have only 1 crit. pt.

If $h<2500$ then $\Delta>0$ and $\rightarrow 2$ crit pts

If $h>2500$ then $\Delta<0$ and we have no crit pts.

$h=2500 \rightarrow$ bifurcation pt: qualitative behavior of eq'n changes between $h<2500$ \& $h>2500$

Bifurcation Diagram: sets of pts (u, c) so that c is a crit. pt.
(7) $c^{2}-100 c+h=0$

2.3. Acceleration \& velocity models. In general: air resistance

$$
F_{T}=k_{i} v^{p} \quad 1 \leq p \leq 2
$$

F_{R} always in direction opposite to the motion
$k \rightarrow$ depends on viscosing/density of air \& shape of body.
Ex: Arrow shot straight upwards, initial velocity $v_{0}=160 \mathrm{ft} / \mathrm{s}$.
deceleration due to air resistance: $\frac{v^{2}}{800} \frac{\mathrm{ft}}{\mathrm{s}^{2}}$
a) how high does it go?

maybe $\frac{d^{2} y}{d t^{2}}=\ldots$; easier to work wi velocity directly.

$$
\frac{d v}{d t}=\underbrace{-\frac{v^{2}}{800}}_{\substack{\downarrow \\ \text { acceleration air vesistance }}}-\underbrace{32}_{\substack{\text { graceleration }}}
$$

autonomous, separable!
Exerccie: solve! (soln at the end)
find: $v(t)=160 \tan \left(-\frac{t}{s}+c\right) \quad 160=160 \tan (c)$
Know: $\quad v(0)=160 \rightarrow c=\frac{\pi}{4}$ $\tan (c)=1$

How do we find when it will be at its highest point?
want $v(t)=0 \Leftrightarrow 160 \tan \left(-\frac{t}{5}+\frac{\pi}{4}\right)=0$ $\Rightarrow t=\frac{5 \pi}{4}$

$$
\begin{aligned}
& \qquad \begin{aligned}
y(t)= & \int v(t) d t \\
& =\int 160 \tan \left(-\frac{t}{5}+\frac{\pi}{4}\right) d t
\end{aligned} \\
& \qquad \begin{array}{l}
y(t)=800 \ln \left(\cos \left(\frac{\pi}{4}-\frac{t}{5}\right)\right)+c_{2} \\
\text { Find } c_{2}: \\
\Rightarrow \\
\Rightarrow c_{2}=400 \ln (2)
\end{array}
\end{aligned}
$$

So: highest we reach

$$
\begin{aligned}
& \qquad \begin{array}{l}
y\left(\frac{5 \pi}{4}\right)= \\
=400 \ln (\underbrace{\cos \left(\frac{\pi}{4}-\frac{\pi}{4}\right)}_{1})+400 \ln (2) \\
=400 \ln (2) .
\end{array}
\end{aligned}
$$

b) When arrow is going down.

$$
\left\{\begin{array}{ll}
y_{j} F_{R} & \frac{d v}{d t}=-32+\frac{v^{2}}{800} \\
v_{F_{G}} \text { gravity }
\end{array}, \quad \begin{array}{l}
d_{R}=\frac{v^{2}}{800} \\
\end{array}\right.
$$

Solve (exercise)

$$
\longrightarrow \text { Find: } v(t)=-160 \frac{1-e^{-2 t / 5}}{1+e^{-2 t / 5}} \xrightarrow{t \rightarrow \infty}-160
$$

| |
| :--- | :--- | :--- | :--- | :--- |
| time measured from the moment when limiting velocity. |
| arrow is at highest altitude |

Sol's of examples
1.

$$
\frac{d v}{d t}=-32-\frac{v^{2}}{800}
$$

$$
\frac{d u}{d t}=-32\left(1+\frac{v^{2}}{25600}\right) \rightarrow 32.800=25600=160^{2}
$$

$$
=-32\left(1+\left(\frac{v}{160}\right)^{2}\right)
$$

Separate vawables:

$$
\begin{aligned}
& \int \frac{d v}{1+\left(\frac{u}{160}\right)^{2}}=-\int 32 d t, \operatorname{set} \frac{v}{160}=z \\
& \int \frac{160 d z}{1+z^{2}}=-\int 32 d t \\
& \Rightarrow \arctan (z)=-\frac{1}{5} t+C \\
& \Rightarrow v=160 \tan \left(-\frac{t}{5}+c\right)
\end{aligned}
$$

2. $\frac{d v}{d t}=-32+\frac{v^{2}}{800}=-32\left(1-\frac{v^{2}}{25,600}\right)$

$$
\begin{aligned}
& \Rightarrow \int \frac{d v}{1-\left(\frac{v}{160}\right)^{2}}=\int-32 d t \Rightarrow \\
& \Rightarrow \int \frac{160 d z}{1-z^{2}}=-32 t+C \\
& \Rightarrow 160 \int \frac{1}{2} \frac{1}{1-z}+\frac{1}{2} \frac{1}{1+z} d z=-32 t+C
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 160\left(-\frac{1}{2} \ln |1-z|+\frac{1}{2} \ln |1+z|\right)=-32 t+c \\
& \Rightarrow \quad 80 \ln \left|\frac{1+z}{1-z}\right|=-32 t+c \\
& \Rightarrow \ln \left|\frac{1+z}{1-z}\right|=-\frac{2}{5} t+c_{1} \quad\left(c_{1}=\frac{c}{80}\right) \\
& \Rightarrow \quad \frac{1+z}{1-z}= \pm e^{c_{1}} e^{-\frac{2}{5} t} \\
& \Rightarrow \quad \frac{1+z}{1-z}=c_{2} e^{-\frac{2}{5} t} \quad\left(c_{2}= \pm e^{c_{1}}\right) \\
& \Rightarrow \quad z\left(c_{2} e^{-\frac{2}{5} t}+1\right)=c_{2} e^{-\frac{2}{5} t}-1 \\
& \Rightarrow \quad v=160 \frac{c_{2} e^{-\frac{2}{5} t}-1}{c_{2} e^{-\frac{2}{5} t}+1}
\end{aligned}
$$

Starting to measure time from the moment when the arrow reaches its highest altitude, $v(0)=0$.
so

$$
\begin{aligned}
& C_{2}-1=0 \Rightarrow C_{2}=1 \\
& v=160 \frac{e^{-\frac{2}{5} t}-1}{e^{-\frac{2}{5} t}+1}
\end{aligned}
$$

