Plan for Today:
Start 3.1

Learning Goals:

1. Be able to recognize a 2 nd order linear ODE.
2. Know the terminology: homogeneous/nonhomogeneous second order ODE (!! Unrelated to homogeneous 1 st order equations in $\S 1.6!$)
3. What is the superposition principle?
4. What does the theorem of existence and uniqueness for IVPs for 2 nd order linear ODEs say?
5. What do solutions to linear homogeneous and order ODEs look like?

Reminders/announcements:
Quiz 2 closes in 1 hour
HW 13 will be extended

In the next few lessons, writing in green color will contain optional connections to linear algebra

[unrelated to homogeneous $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$]
If $F(x) \neq 0$ then (*) called non-homogeneaus/inhomogeneay
(2) non-homogeneocn.

$$
e^{x} y^{\prime \prime}+\cos (x) y^{\prime}+3 y=0
$$

homog. (the homog. eq associated to (*))
From now on: divide by $A(x)$

Seen: when soling reducible zeus order cis there were 2 free parameters.

$$
y^{\prime \prime}=0 \Rightarrow y^{\prime}=c_{1} \Rightarrow y=c_{1} x+c_{2}
$$

Expect: 2 pieces of info needed to specify a solus.

What 2 pieces of info are good? (what should an appropriate IVP look like to have existence \& uniqueness?
"Bad" info: $\left\{\begin{array}{l}y "+y=0 \\ y(0)=0, y(2 \pi)=0\end{array}\right.$
check: $\quad y=A \sin (x)$ solves IVP for any A.

$$
y^{\prime \prime}=-A \sin (x)=-y
$$

Prescribing values at different locations might not give a unique sol!

The "good "info
Given $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)$
p, q, f cont. on interval I.

$$
a \in I, b_{1}, b_{2} \in \mathbb{R}
$$

then there is a unique sain to $\$$ satisfying $\left\{\begin{array}{l}y(a)=b_{1} \\ y^{\prime}(a)=b_{2}\end{array}\right.$
and it is defined on all of I
(compare w/ $\varepsilon x . \& U_{n}$. the in 1.5)
(xx) + called an IVP for and order linear eq's.

Recall: lIst orber linear there was a formula for sol's. (integrating factor etc)

What do sol's look like?

1. Superposition principle.

Linear Homog. equ: $\quad y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$
ix: $\quad y^{\prime \prime}+y=0$
if y_{1}, y_{2} are sols to nomog. eqn, then $\quad c_{1} y_{1}+c_{2} y_{2}$ is also a sol'n.
$c_{1} c_{2}$ are constants! linear c_{1}, c_{2} are constants! combination

$$
\text { In ex: } \begin{aligned}
y_{1} & =\sin (x) \\
y_{2} & =\cos (x) \quad y_{2}^{\prime \prime}=\cos { }^{\prime \prime}=-\cos =-y_{2} \\
\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime \prime} & =\left(c_{1} \sin (x)+c_{2} \cos (x)\right)^{\prime \prime} \\
& =c_{1}(\sin (x))^{\prime \prime}+c_{2}(\cos (x))^{\prime \prime} \\
& =-c_{1} \sin (x)-c_{2} \cos (x) \\
& =-\left(c_{1} y_{1}+c_{2} y_{2}\right)
\end{aligned}
$$

so $c_{1} y_{1}+c_{2} y_{2}$ is a sol.
[superposition pr. says that the solutions of linear homoy. and order ODE form a vector space]

Sup. pr: if we have sone sols we can produce more.
Ex:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+y=0 \\
y\left(\frac{\pi}{4}\right)=1 \\
y^{\prime}\left(\frac{\pi}{4}\right)=2
\end{array} \quad\{\rightarrow \text { solus exists }\right.
$$

Try to create this sol'n as a linear comb. of $y_{1}=\sin (x), y_{2}=\cos (x)$.

$$
y=c_{1} \sin (x)+c_{2} \cos (x)
$$

What are the c_{1}, c_{2} for which satisfies IVP, if any?

$$
\begin{align*}
& y\left(\frac{n}{4}\right)=c_{1} \frac{\sqrt{2}}{2}+c_{2} \frac{\sqrt{2}}{2}=1 \tag{1}\\
& y^{\prime}=c_{1} \cos (x)-c_{2} \sin (x) \\
& \Rightarrow y^{\prime}\left(\frac{\pi}{4}\right)=c_{1} \frac{\sqrt{2}}{2}-c_{2} \frac{\sqrt{2}}{2}=2 \tag{2}
\end{align*}
$$

(1), (2) \Rightarrow

$$
\begin{aligned}
& 2 c_{1} \frac{\sqrt{2}}{2}=3 \Rightarrow c_{1}=\frac{3}{\sqrt{2}} \\
& 2 c_{2} \frac{\sqrt{2}}{2}=-1 \Rightarrow c_{2}=-\frac{1}{\sqrt{2}}
\end{aligned}
$$

So: $\quad y=\frac{3}{\sqrt{2}} \sin (x)-\frac{1}{\sqrt{2}} \cos (x)$ is my soln.!

Questions: Can we produce any soln to an IUP from linear combinations of a pair of sol's?
Are all pairs good enough?

