Plan for Today:					
Start 3.1					
Learning Goals:					
	cognize a 2nd or				
			mogeneous second	order ODE (!! Unrelat	ed to
	s 1st order equa				
	superposition pri		A HID C		
				r 2nd order linear ODl	Es say?
5. What do solu	itions to linear h	omogeneous Zno	d order ODEs look	like?	
Reminders/anno	uncements:				
Quiz 2 closes in ?	l hour				
HW 13 will be ex	tended				
In the next few le	essons, writing in	green color will	contain optional	connections to linear a	lgebra
(1. 3					
-Cu 3					
3.1	2nd orde	r ODE.		y" + 3y'= 3	
(3 1:0		- 0 - 10 - 1 - 1	2 2.1 -	do BRE	
Until	now:	redución	e mas e	. Ove	
		G, (y", y',	4)=0 5%	: 4" - 47 = 9	>
) - ()	0 30	+
		G2(4/4)	$x) = 0$ ϵx :	xy + 3y = 5	S
Tolow!	Diverse	2	dos ODF	U	
188491		(1)			
	A(x	14" + B (x)4 + C(x)	y = F(x) (*)
5		2	, טַ	<u> </u>	
ξ γ :		6			
	ex	4 + cos(x)4' + 34	= 3 ln(x)	
) "	J)	= 3 ln(x)	
Vou	<u>e</u> x:	y + :	>4=0		
		U			
T1	.1	E(1) = =		11 (14)	
(erund	ogy: 11	r W/= C	IN (then DE	15
called	a home	reneval	2 nd order	Payear ODF	
		0	Lua Siger		

Eunrelated to	homogeneous	dy = 8 (4)]	
IP FOD #0 then	(called ne	on-homogeneou	/inhomogeneous
non-homogene	oug.		
e y +	cos(x)y/+3y the homog. eq'n	=0	(C))
housey. (t	the homog, equ	associated t	6 (1)
From non on:	divide by A	(x)	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+ P(x)y' + q	(x)y = f(x)	
Control of the Contro	13/A C		
Seen: when so	olving reducible ere 2 dree => y'= C	le Zus orde	r cis
there ve	ere 2 dree	parameters.	
Sugget: 2		-, g - g	Sacre
Expect: 2 p	ieces of judo	what	specify
What 2 pieces of	info are good?	? (what she	ald cus
appropriate IVP	Plook like.	to have exi	stence &
unique mess?)			
	y" + y = 0	- 0	
	y(0) = 0, $y(2n)$		Δ
check:	y = A Sin(x) y'' = -A sin(x)	solves IVP fo	or any A.
	values at dif		s might
not give a	unique solu!	•	

The good in fo y'' + p(x)y' + q(x)y = f(x)P, q, f conf. on interval I. $a \in I$, $b, b_2 \in TR$ then there is a unique salin to satisfying Sy(a) = b, \ y'(a) = b₂ and it is defined on all of I (compare w/ Ex. & Un. term in 1.5) the called an IVP for End order linear eg's. Pecall: 1st orber linear there was a formula for sol's. (integrating factor etc) What do sol's look like? 1. Superposition principle. Linear Homog. equ: y'' + p(x)y' + q(x)y = 0If y_1 , y_2 are sols to homog. equ,

then $C_1y_1 + C_2y_2$ is also a solu. C., cz are constants! combination

In ex: y,= siu(x) $y_2 = \cos(x)$ $y_2'' = \cos'' = -\cos = -y_2$ (c, y, + c, y,)"= (c, sin(x) + c, cos(x))" = c, (sin(x))" + c, (cos(x))" = - c, sin(x) - c2 EOS(x) = - (c, y, + czyc) so qq, tagz is a solu Superposition pr. says that the solutions of linear homog. End order ODE form a vector space Sup. pr: if we have some sols we can produce more. Ex: $\begin{cases} y'' + y = 0 \\ y'(\frac{\pi}{4}) = 1 \end{cases}$ solu exists bec. of theorem Try to create this soly as a linear comb. of y=sin(x), yz=cos(x). What we the c_1, c_2 for which satisfies IVP, if any?

	y(==) = c y' = c => y'($C_{1} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\pi}{4} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\pi}{4} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\pi}{2} \end{bmatrix}$	$ \begin{array}{ccc} c_2 & \frac{\sqrt{2}}{2} & = & 1 \\ z & sin(x) & & \\ - & c_2 & \frac{\sqrt{2}}{2} & = & 2 \end{array} $	(L) (2)
0,0 -	=> 2 c	$\frac{\sqrt{z}}{z} = 3$ $c_{2}\sqrt{z} = -1$	$\Rightarrow \begin{vmatrix} c_1 = \frac{3}{\sqrt{2}} \\ c_2 = -\frac{3}{\sqrt{2}} \end{vmatrix}$	2
80:	ઝ = -	3 V2 sin(x)	- 1 cos (x)	is my
Questions:	our	IVP from	ue any sol	n to binations
	of a Are	pair of s	ols? good enough?	
		200 x 2		