Plan for Today:
3.1

Learning goals:
Concepts: Linearly Independent Solutions, Wronskian, Characteristic Equation

Skills:

1. Be able to find the solution to an IVP for a linear 2 nd order ODE given two linearly independent solutions for the ODE
2. Be able to check if two solutions are linearly independent using the Wronskian

Reminders-Announcements

1. Read the textbook!
2. Office hours today and tomorrow
3. Quiz 2 grades posted.
$\frac{\text { Last time: } \quad y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0}{\text { Saw }}$

$$
\begin{cases}y^{\prime \prime}+y=0 & (L) \\ y\left(\frac{\pi}{4}\right)=1 & \\ y^{\prime}\left(\frac{\pi}{4}\right)=2\end{cases}
$$

can be solved by setting $y=c_{1} \sin (x)+c_{2} \cos (x)$
and finding c_{1}, c_{2}. What makes them good building blocks?

Q: Can we use any two solutions of a linear and order exc as building blocks to produce
any solution?

Ix: $\quad y_{1}=\sin (x) \quad, \quad \tilde{y}_{2}=3 \sin (x)$
Both solve $y^{\prime \prime}+y=0$
Can we solve (1) as a linear comb. of y_{1}, \tilde{y}_{2}^{2}

$$
\begin{aligned}
& c_{1} y_{1}\left(\frac{\pi}{4}\right)+c_{2} \tilde{y}_{2}\left(\frac{\pi}{4}\right)=1 \\
& c_{1} y_{1}^{\prime}\left(\frac{\pi}{4}\right)+c_{2} \tilde{y}_{2}^{\prime}\left(\frac{\pi}{4}\right)=2 \\
& c_{1} \frac{\sqrt{2}}{2}+c_{2} \cdot 3 \frac{\sqrt{2}}{2}=1 \\
& \left.c_{1} \frac{\sqrt{2}}{2}+c_{2} 3 \frac{\sqrt{2}}{2}=2\right\} \Rightarrow \text { cart } \\
& \text { find } \\
& \text { such } c_{1}, c_{2} .
\end{aligned}
$$

Defin: 2 functions f_{1}, f_{2} on an internal I are called linearly independent if:

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)=0 \text { on } I \Rightarrow c_{1}=c_{2}=0
$$

τ linear combination
(where c_{1}, c_{2} constants)
Equivalent: None of them is a const. multiple of the other.
If not linearly inder. \rightarrow linearly dependent.
Check. $\sin (x), \cos (x)$ lin. indef. bed. none is const. mull. of the other.
$\sin (x), 3 \sin (x)$ lin. dependent.

Tum: Let y_{1}, y_{2} be two linearly independent sols of the homogeneay

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

$p(x), q(x)$ cont. on an internal I.
If y is any soln to (2) then there are c_{1}, c_{2} such that

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) .
$$

"Any 2 lin. indep. sols are good building blocks"
$\left[\begin{array}{l}\text { Sols of (2) form a } 2 \text {-dinil vector space, } \\ \text { any } 2 \text { lin. index. sols are a basis }\end{array}\right]$
Ex: $\quad x^{2} y^{\prime \prime}-x y^{\prime}+y=0$

$$
\left.\begin{array}{l}
y_{1}=x \tag{3}\\
y_{2}=x \ln x
\end{array}\right\} \text { sols on } I=(0, \infty)
$$

y_{1}, y_{2} lin. independent (none of them cost. multiple of the other)
Find sol of (3) w/ $y(1)=2, y^{\prime}(1)=3$.
write $y=c_{1} y_{1}+c_{2} y_{2}$, find c_{1}, c_{2}.

$$
\begin{aligned}
y(1)= & c_{1} y_{1}(1)+c_{2} \cdot 0^{y_{2}(1)}= \\
y^{\prime}(1)= & c_{1} \cdot 1+c_{2} \cdot 1=3 \\
& y_{1}^{\prime}(1) \quad y_{2}^{\prime}(x)=\ln x+1
\end{aligned}
$$

Find:

$$
\begin{aligned}
& c_{2}=1 \\
& c_{1}=2
\end{aligned}
$$

A way to check linear independence:
Wronskian determinant.
Sup. $\quad y_{1}, y_{2}$ sols of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$

$$
y=c_{1} y_{1}^{(x)}+c_{2} y_{2}(x)
$$

when does y solve the IVP $y(a)=b$,

$$
y^{\prime}(a)=b_{2}
$$

Try to find c_{1}, c_{2}.

$$
\begin{aligned}
& y(a)=b_{1} \Rightarrow c_{1} y_{1}(a)+c_{2} y_{2}(a)=b_{1} \\
& y^{\prime}(a)=b_{2} \Rightarrow c_{1} y_{1}^{\prime}(a)+c_{2} y_{2}^{\prime}(a)=b_{2}
\end{aligned}
$$

known
untriown

$$
\left(\begin{array}{cc}
y_{1}(a) & y_{2}(a) \\
y_{1}^{\prime}(a) & y_{2}^{\prime}(a)
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{b_{1}}{b_{2}}
$$

Can find a unique pair of c_{1}, c_{2} exactly when

$$
\operatorname{det}\left(\begin{array}{cc}
y_{1}(a) & y_{2}(a)^{p} \\
y_{1}^{\prime}(a) & y_{2}^{\prime}(a)
\end{array}\right) \neq 0 \text {. }
$$

Wronskian determinant.

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right) & =\operatorname{det}\left(\begin{array}{cc}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right) \\
& =y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
\end{aligned}
$$

Thu: if y_{1}, y_{2} sols to

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

on $I_{1} p, q$ cont.

$$
\rightarrow y_{1}, y_{2} \frac{\text { lin. dep. on } I}{} \Rightarrow \begin{aligned}
& W\left(y_{1}, y_{2}\right) \equiv 0 \text { everywhere } \\
& \text { on } I .
\end{aligned}
$$

$\rightarrow y_{1}, y_{2}$ lin index. on $I \Rightarrow W\left(y_{1}, y_{2}\right) \neq 0$ everguhur on I.

Ex. W

$$
\begin{aligned}
&\left(\left.\begin{array}{cc}
\cos (x) \cdot \sin (x)) & = \\
\text { sols of } y^{\prime \prime}+y=0 & \sin (x) \\
\cos (x) & \cos (x)
\end{array} \right\rvert\,\right. \\
&=\left\lvert\, \begin{array}{lc}
-\sin (x) & \cos (x)+\sin ^{2}(x)=1
\end{array}\right.
\end{aligned}
$$

never 0 .
$\Rightarrow \cos (x), \sin (x)$ lin. indep.

$$
\begin{aligned}
w(x, x \ln x) & =\left|\begin{array}{cc}
x & x \ln x \\
x^{2} y^{\prime \prime}-1 s \\
x^{2}-x y^{\prime}+y= & 0 \\
1 & \ln x+1
\end{array}\right| \\
& =x \ln x+x-x \ln x \\
& =x \neq 0 \text { on }(0, \infty)
\end{aligned}
$$

? The ω of two lin. indpendent functions (not solutions of the same eqin) can vanish $\begin{gathered}\text { only at one pt. } \\ W(x, \sin (x))\end{gathered}=\left|\begin{array}{ll}x & \sin (x) \\ 1 & \cos (x)\end{array}\right|$

$$
\begin{aligned}
&=x \cos (x)-\sin (x) \\
& w(x, \sin (x))(0)=0, \text { but } x, \sin (x) \\
& \text { lin. indep. on }(-\infty, \infty) \text {, }
\end{aligned}
$$

but they are not sols of the same Ind order linear equ (no con tradiction).

Rent: if $y_{1}=c y_{2}$ (so y_{1}, y_{2}

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)= & \left|\begin{array}{ll}
y_{1}(x) & c y_{2}(x) \\
y_{1}^{\prime}(x) & c y_{2}^{\prime}(x)
\end{array}\right|= \\
& =c y_{1}(x) y_{2}^{\prime}(x)-c y_{1}^{\prime}(x) y_{2}(x) \\
& =0 .
\end{aligned}
$$

(how to see that lin. dependence \Rightarrow Wrouskian 0.)

