Plan for today:
Finish 3.1
Start 3.2

Learning goals:
Concepts: Characteristic Equation, linearly independent functions, existence and uniqueness, Method of reduction

Skills:

1. Be able to solve a homogeneous constant coefficient linear 2 nd order ODE whose characteristic equation has two distinct real/roots or one repeated root.
2. Be able to use reduction of order to find a second linearly independent solution of a given 2 nd order linear equation when one solution is known.
3. Given three linearly dependent functions, be able to write one as a linear combination of the rest

Reminders:

1. Read the textbook!

Const. Coef. Ind order linear homog.
al $+b y^{\prime \prime}+c y=0$
roust.
Consider $y=e^{r x}, r$ const.

(1) \Rightarrow| $a r^{2} e^{r x}+b r e^{r x}+c e^{r x}=0$ |
| :--- |
| |
| $\left(a r^{2}+b r+c\right) e^{r x}=0$ |

so if we can find r so that
wer2$+b r+c=0$ charactenstic Eqis
Hen $e^{r x}$ will be a sal'n to (1).
then $e^{r_{1} x}, e^{r_{2} x}$ where r_{1}, r_{2} are the roots are 2 lin. inder. sols.
ε_{x}

$$
\begin{aligned}
& 2 y^{\prime \prime}+3 y^{\prime}=0 \\
& 2 r^{2}+3 r=0 \\
& (2 r+3) r=0 \Rightarrow r=0 \text { or } r=-\frac{3}{2}
\end{aligned}
$$

So: $y_{1}=e^{o x}=1, y_{2}=e^{-\frac{3}{2} x}$ are lin. indep. sols of (2). Any sol'n of (2) is written as

$$
y=c_{1}+c_{2} e^{-\frac{3}{2} x}
$$

Ind case: One repeated real root.
Ex: $\quad y^{\prime \prime}-4 y^{\prime}+4 y=0$

$$
\begin{equation*}
r^{2}-4 r+4=0 \rightarrow(r-2)^{2}=0 \tag{3}
\end{equation*}
$$

$y=e^{2 x}$ is one sol'n.
How do we find a second lin. indep. sol'n?
Interlude: Method of reduction. Appears in HW 3.2
Crien Linear eqin such as

$$
\begin{equation*}
y^{\prime \prime}-4 y^{\prime}+4 y=0 \tag{4}
\end{equation*}
$$

(coed. may not be canst. for method of red.) and one solin is known.
(in our cape $y_{1}=e^{2 x}$) we can find a sec oud lin. inder sol'n by setting $y=v(x) y_{1}(x)$ and finding v.
play into (4)
(4)

$$
\begin{gathered}
\Rightarrow\left(v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right)-4\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)+4 v y_{1}=0 \\
v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}-4 v^{\prime} y_{1}+v\left(y_{1}^{\prime \prime}-4 y_{1}^{\prime}+4 y_{1}\right)=0 \\
v^{\prime \prime} e^{2 x}+2 v^{\prime} \cdot 2 e^{2 x}-4 v^{\prime} e^{2 x}=0 \\
\Rightarrow v^{\prime \prime}=0 \Rightarrow v=a x+b
\end{gathered}
$$

So $x e^{2 x}$, $e^{2 x}$ are 2 lin. indef. Sols. $(a x+b) e^{2 x}, e^{2 x}$ lin. indies, it $a \neq 0$
So: it char. eq'n has a repeated root] r_{0}, then $e^{r_{0} x}, x e^{r_{0} x}$ are two lin. indep. sols. Any solis is of form

$$
y=c_{1} e^{r_{0} x}+c_{2} x e^{r_{0} x}
$$

For Exams:
If given const. coil. eqंu wi repeated root can use who going through method of reduction
3.2 Higher order eq's, linear

$$
y^{(n)}+p_{1}(x) y^{(n-1)}+\ldots+p_{4}(x) y=f(x)
$$

$144 \neq 0$ nonhomog., if $f \equiv 0$ homog.
Ex: $y^{(4)}+y^{(3)}=y \sin (x)-\ln (x)$
linear 4th order.
Ex. \& Uniqueness
$p_{1,-1} p_{n}, \&$ cont. on interval I If $a \in I_{1} b_{0},-b_{n-1} \in \mathbb{R}$ then the IVP

$$
\operatorname{IVP}\left\{\begin{array}{l}
y^{(n)}+p_{1}(x) y^{(n-1)} \ldots+p_{n}(x) y=f(x) \\
y(a)=b_{0} \\
\vdots \\
y^{(n-1)}(a)=b_{n-1}
\end{array}\right.
$$

has a unique sol'n in all of I
So εx. $\left\{\begin{array}{l}x y^{(3)}+\ln (x+1) y^{\prime}=2 \sin (x) \\ y^{\prime}(1)=1 \\ y^{\prime}(1)=2 \\ y^{\prime \prime}(1)=3\end{array}\right.$
to find I where there is unique solon:
write: $y^{(3)}+\frac{\ln (x+1)}{x} y^{\prime}=2 \frac{\sin (x)}{x}$
So $I=(0, \infty)$ largest int. Where $\frac{\ln (x+1)}{x}, 2 \frac{\sin (x)}{x}$ cont. \& $1 \in I$

Superposition: If $y_{1, \ldots, y_{n}}$ sols to
then

$$
\begin{equation*}
y^{(n)}+p_{1}(x) y^{(n-1)}+\ldots+p_{n}(x) y=0 \tag{6}
\end{equation*}
$$

$$
\begin{aligned}
& y=c_{1} y_{1}+\ldots+c_{n} y_{n} . \\
& \text { aldo a sol. }
\end{aligned}
$$

is also a sol'n. linear comb.
Q: what are good building blocks thant will produce all sol's of (6) as linear comb's?

Building blocks: lin. indep. sols.
Defin: the fats $f_{1}, ., f_{n}$ on interval I lin. independent if whenever we write

$$
c_{1} f_{1}(x)+\ldots+c_{n} t_{4}(x)=0 \text { for all } x \in I
$$

ul c_{j} const. Hen necessarily $c_{1}=c_{2}=\ldots=c_{n}=0$
Othemise: lin. dependent; at least one can be written as a linear camb. of the rest.

Ex: $4 e^{x}, 3 e^{3 x}, \quad 2 e^{x}+5 e^{3 x} \quad \operatorname{lin}$. dependent:

$$
\left(2 e^{x}+5 e^{3 x}\right)=\frac{1}{2}\left(4 e^{x}\right)+\frac{5}{3}\left(3 e^{3 x}\right)
$$

