Plan f	or today:									
Finish	3.1				2.24					
Start 3	3.2				1.44					
	Contraction of the second	1000000		10000		A CONTRACTOR		11 1 1 1 1 1		

Learning goals:

Concepts: Characteristic Equation, linearly independent functions, existence and uniqueness, Method of reduction

Skills:

1. Be able to solve a homogeneous constant coefficient linear 2nd order ODE whose characteristic equation has two distinct real roots or one repeated root.

3.2, HW

- 2. Be able to use reduction of order to find a second linearly independent solution of a given 2nd
- order linear equation when one solution is known.
- 3. Given three linearly dependent functions, be able to write one as a linear combination of the rest

Reminders:

1. Read the textbook!

then
$$e^{r_1 \times}$$
, $e^{r_2 \times}$ where r_1 , r_2 are the
roots are 2 lin indep. sols.
 $\underline{\epsilon}_{x:}$ $2g'' + 3g' = 0$ (2)
 $2r^2 + 3r = 0$
 $(2r + 3)r = 0 = r^2 \circ r r^2 - \frac{3}{2}$
So : $g_1 = e^{\infty} = 1$, $g_2 = e^{-\frac{3}{2} \times}$ are lin. indep.
sols of (2). Any solin of (2) is
written as
 $y = c_1 + c_2 e^{-\frac{3}{2} \times}$
 $2nd \cos t:$ One repeated real root.
 $\underline{\epsilon}_{x:}$ $y'' - 4y' + 4y = 0$ (3)
 $r^2 - 4r + 4 = 0 \rightarrow (r - 21^2 = 0)$
 $r = 2$, repeated.
 $y = e^{2x}$ is one solin.
How do we find a second lin. indep. solin?
Inter Inde: method of veduction. Appears
in till 3.2
Coven linear eqin such as
 $y'' - 4y' + 4y = 0$ (4)
(coef may not be coust. for wellind of ved.)
and one solin is known.

(in our coye y, = e^{2x}) we can find a second lin. indep. sol'n by cetting y= V(x) y, (x) and finding v. => (v''y, +2v'y', +vy'') - 4(v'y, +vy') + 4vy = 0 $v'y_1 + 2v'y_1' - 4v'y_1 + v(y_1' - 4y_1' + 4y_1) = 0$ $v'' e^{2x} + 2v' \cdot 2e^{2x} - 4ve^{7x} = 0$ =) v'' = 0 =) $v = \alpha x + b$ So xe^{2x} e^{2x} are 2 lin. indep. sels. (ax+b)e²x, e²x lin. indup. it a70 So: it chan eoin hous a repeated root ro, then erox, xerox are two lin. indep. sols. Any soln is of form y= cie^{ro×} + c₂×e^{ro×} For Exams; If given const. cor). ey'n un repeated root can use who going through method of reduction

Ex: y⁽⁴⁾ + y⁽⁵⁾ = y sin(x) - ln(x) linear 4th order. Ex. & Uniqueness P.,-, Pn, f cont. on interval $\begin{array}{c} 1f \quad \alpha \in \mathbf{J} \quad b_{0} = b_{n-1} \quad (\mathbf{R} \quad then \quad the \quad 1VP \\ (\mathbf{y}^{(n)} + \mathbf{p}, (\mathbf{x}) \mathbf{y}^{(n-1)} + - + \mathbf{p}_{n} (\mathbf{x}) \mathbf{y} = f(\mathbf{x}) \\ \mathbf{VP} \quad (\mathbf{x}) = b_{0} \quad (\mathbf{x}) = b_{n-1} \quad (\mathbf{x}) \quad$ has a unique solu in all of I So $\Sigma \times :$ $\int x \cdot y \stackrel{(3)}{}_{+} + lu(x+1) \cdot y' = 2 \sin(x)$ $\int y \cdot (1) = 1$ $\int y'(1) = 2$ $\int y''(1) = 3$ $\int y''(1) = 2$ \int So $I = (O, \infty)$ largest int. where $\frac{ln(x+1)}{x}$, $2\frac{sin(x)}{x}$ cont. k 1 E I

6 Q: what are good building blocks that will produce all solis of 6 as linear combis? Building blocks; lin. indep. sols. Det'n: the fots fin, fn on interval I lin independent i f where ver we write cifi(x) + - + cufu(x) = O for all x EI ul cj coust. then necessarily ci=ci=ci=0 Othernize: lin. dependent; at least one can be written as a linear courb. of the rest. Er: Ge*, 3e³×, 2e*+ se³× lin. dependent: $(2e^{x} + 5e^{3x}) = \frac{1}{2}(4e^{x}) + \frac{5}{3}(3e^{3x})$