Plan for today:
finish 3.2
start 3.3

Learning goals

1. Given n linearly independent solutions of an nth order linear ode, be able to find any other solution as a linear combination of them
2. Be able to check linear independence of n functions using the Wronskian
3. Be able to find n linearly independent solutions of a linear constant coefficient ODE whose characteristic equation has n distinct real roots.

Reminders/Announcements

1. Read the textbook!
2. Solutions to quiz 2 will be posted after lecture
3. Quiz 3 next Thursday (content will be announced later today)

Last time: Linear independence.
fats f_{1}, \ldots, f_{n} on I lin. indep. if

$$
c_{1} f(x)+\ldots x c_{4} f_{4}(x)=0
$$

$$
\Rightarrow \quad c_{1}=\ldots
$$

Didn't see how to check lin. index, \rightarrow today.
Why care? Linearly index. facts \rightarrow
blocks for sols of linear ODE.
If y_{1}, \ldots, y_{n} are lin. ind. sols of
$y^{(n 7}+p_{1}(x) y^{n-1)}+. .+p_{0}(x) y=0$
then the general sol'n is

$$
y=c_{1} y_{1}+\ldots+c_{n} y_{n}
$$

[1)
sol's of 11 form an n-dimeter vector space,
$y_{1, \ldots,} y_{n}$ are a basis $]$

Wont to check lin. indep.

Wronskian: $y_{1, \ldots}, y_{n}$ defined on I
determinant.
If $y_{1} \ldots, y_{n}$ are sols to

$$
y^{(4)}+p_{1}(x) y^{(n-1)}+\ldots+p_{0}(x) y=0
$$

on interval I then:
\rightarrow If $y_{1,}, y_{n}$ lin. dep. then $\omega(x) \equiv 0$ on I
\rightarrow If $y_{1},, y_{n}$ lin. index. then $\omega(x) \neq 0$ everywhere on I.
Ex: (HW in 3.2)

$$
y^{(3)}-6 y^{\prime \prime}+11 y^{\prime}-6 y_{x}=0
$$

3 sols given: $y_{1}=e^{x}, y_{2}=e^{2 x}, y_{3}=e^{3 x}$ Want to solve IVP:

$$
\text { (2) w/ initial cond. }\left\{\begin{array}{l}
y(0)=1 \\
y^{\prime}(0)=2 \\
y^{\prime \prime}(0)=3
\end{array}\right.
$$

Do we have 3 good building blocks.? check livear indep.

$$
\begin{aligned}
w(x) & =\left|\begin{array}{ccc}
e^{x} & e^{2 x} & e^{3 x} \\
e^{x} & 2 e^{2 x} & 3 e^{3 x} \\
e^{x} & 4 e^{2 x} & 9 e^{3 x}
\end{array}\right| \\
& =e^{x} \cdot e^{2 x} \cdot e^{3 x}\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right| \\
& =e^{6 x}(1 \cdot(18-12)-1(9-4)+1(3-2)) \\
& =e^{6 x}(6-5+1)=2 e^{6 x} \neq 0
\end{aligned}
$$

\Rightarrow lin. indep.
So Ary Soin of (2)

$$
w\left(e^{x}, e^{x}, e^{2 x}\right)=\left|\begin{array}{ccc}
e^{x} & e^{x} & e^{2 x} \\
e^{x} & e^{x} & 2 e^{2 x} \\
e^{x} & e^{x} & 4 e^{2 x}
\end{array}\right|=0
$$

Solve IUP. $y(0)=1, y^{\prime}(0)=2, y^{\prime \prime}(0)=3$

$$
\begin{aligned}
& y(0)=c_{1}+c_{2}+c_{3}=1 \\
& y^{\prime}(x)=c_{1} e^{x}+c_{2} \cdot 2 e^{2 x}+c_{3} \cdot 3 e^{3}
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow y^{\prime}(0)=c_{1}+2 c_{2}+3 c_{3}=2 \\
y^{\prime \prime}(x)=c_{1} e^{x}+c_{2} \cdot 4 \cdot e^{2 x}+c_{3} \cdot 9 e^{3 x} \\
\Rightarrow y^{\prime \prime}(0)=c_{1}+4 c_{2}+9 c_{3}=3 \\
c_{1}+c_{2}+c_{3}=1 \\
c_{1}+2 c_{2}+3 c_{3}=2 \\
c_{1}+4 c_{2}+9 c_{3}=3 \\
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\end{gathered}
$$

det of this is $W\left(e^{x}, e^{2 x}, e^{3 x}\right)(0)$
So $\omega \neq 0$ means we can solve for $\left(c_{1}, c_{2}, c_{3}\right)$. (Exercise), II (sol'n below)

How did we find that $e^{x}, e^{2 x}, e^{3 x}$ are sols to $y^{(3)}-6 y^{\prime \prime}+11 y^{\prime}-6=0$?
coust. coed. linear, homog.
Take char. emu:

$$
\begin{gathered}
r^{3}-6 r^{2}+11 r-6=0 . \\
r \text { polynomial }
\end{gathered}
$$

If we can find 3 distinct real roots r_{1}, r_{2}, r_{3} then $e^{r_{1} x}, e^{r_{2} x}, e^{r_{3} x}$ will be lin. indep. sol's.

Tips for finding roots:

1. If $\quad a_{n} r^{n}+\ldots+a_{1} r+a_{0}=0, a_{j}$ all integers
and there is a rational root $\frac{P}{9}<$ integers common
then p divides a_{0}
q divides a_{n}.

$$
\underline{\varepsilon_{x}}: \frac{2}{3} \frac{4}{6} x
$$

$$
\left\{\begin{array}{l}
r^{3}-6 r^{2}+11 r-6=0 \\
a_{3}=1 \\
a_{0}=-6
\end{array}\right.
$$

If there is rational root $\frac{p}{q}: p$ divides -6

$$
\left\{\begin{array}{l}
q \text { divides } \angle \rightarrow q= \pm 1 \\
p= \pm 1, \pm 2, \pm 3, \pm 6
\end{array}\right.
$$

So it there is an integer root, one of?
Easiest possible root to check: 1 ; sum cool. \& see if they add up to 0 .

$$
\begin{gathered}
1^{3}-6 \cdot 2^{2}+11 \cdot 1-6=0 \\
1-6+11-6=0
\end{gathered}
$$

So 1 is a root!

Now $(r-1)$ divides $r^{3}-6 r^{2}+11 r-6$, use long division to write

$$
\begin{aligned}
v^{3}-6 v^{2}+11 r-6= & (r-1) \frac{Q(v)}{} \\
& \text { segre 2, } \\
& \text { find roots. } \\
& \text { (soin below) }
\end{aligned}
$$

1. Want to solve for c_{1}, c_{2}, c_{3} below.

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

Use row reduction (see p. 276-277) Form augmented matrix:
(1)
(2)
(3) $\left(\begin{array}{lll|l}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 2 \\ 1 & 4 & 9 & 3\end{array}\right)$

$$
\begin{gathered}
(2)-(1) \rightarrow(2) \\
(5)-(1) \rightarrow(3)
\end{gathered}\left(\begin{array}{lll|l}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 3 & 8 & 2
\end{array}\right)
$$

$$
(3)-3 \cdot(2) \rightarrow(3)\left(\begin{array}{rrr|r}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 2 & -1
\end{array}\right)
$$

$$
\text { so } \quad c_{1}+c_{2}+c_{3}=1
$$

$$
c_{2}+2 c_{3}=1
$$

$$
2 c_{3}=-1
$$

$$
\Rightarrow c_{3}=-\frac{1}{2}, \quad c_{2}=2, \quad c_{3}=-\frac{1}{2}
$$

So: seen $y=-\frac{1}{2} e^{x}+2 e^{2 x}-\frac{1}{2} e^{3 x} \quad$
2. Long division:

$$
\begin{array}{r}
r-5 \begin{array}{r}
r^{2}-5 r+6 \\
r-6 r^{2}+11 r-6 \\
\oplus-r^{3}+r^{2} \\
\oplus 5 r^{2}+11 r-6 \\
\oplus \frac{5 r^{2}-5 r}{6 r-6} \\
\oplus \frac{-6 r+6}{0}
\end{array}
\end{array}
$$

So: $\quad\left(r^{3}-6 r^{2}+11 r-6\right)=(r-1)\left(r^{2}-5 r+6\right)$

$$
\uparrow
$$

By quads. formula,
So roots are $r=2, r=3$.

$$
\left(r^{3}-6 r^{2}+11 r-6\right)=(r-1)(r-2)(r-3)
$$

So $r=1, r=2, r=3$ are 3 distinct roots
and $e^{x}, e^{2 x}, e^{3 x}$ are 3 lin. indep. sol's of

$$
y^{(3)}-6 y^{\prime \prime}+11 y^{\prime}-6=0
$$

