Plan for today
Finish 3.3

Learning goals:

1. Be able to solve n-th order constant coefficient linear equations whose characteristic equation has
A. n distinct real roots
B. A repeated real root
C. Complex roots
2. Know Euler 's formula (very important!)

Reminders/announcements

1. Quiz this week, covers 2.5-3.3 the part discussed on Friday.
2. OH today $1-2$, tomorrow $8.30-9.30$ and $6-7 \mathrm{pm}$ (Unusual time)
3. Read the textbook!

Last time: Cost. col. linear homo. is

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{0} y^{(0)}=0
$$

$$
a_{n} r^{n}+a_{n-1} r^{n-1}+\ldots+a_{0} \cdot 1=0
$$

Char. equ:

If root of (2) $\Rightarrow y=e^{\sqrt{x}}$ is soln.
Goal find n lin. indep. building blocks, i.e. sols.
Cases: What do roots of (2) look like.

Case 1: n distinct real roots.
$\frac{\varepsilon x}{} y^{(3)}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0$
$r^{3}-6 r^{2}+11 r-6=0$, roots $1,2,3$

gen.soln:
In general: $y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}$
$c_{1} e^{r_{1} x}+\ldots+c_{n} e^{r_{n} x, r, \ldots r_{n}}$
found roots.
are the
roots of (2)

Case 2: Repeated real root.

$$
\begin{equation*}
y^{(4)}-3 y^{(3)}+3 y^{\prime \prime}-y^{\prime}=0 \tag{3}
\end{equation*}
$$

Chaw. eq:

$$
\begin{aligned}
& r^{4}-3 r^{3}+3 r^{2}-r=0 \\
& r\left(r^{3}-3 r^{2}+3 r-1\right)=0 \\
& \leftrightarrow r=0 \text { is a root! } \\
& r(r-1)^{3}=0
\end{aligned}
$$

$$
\Rightarrow r=1 \text { repeated root, }
$$

multiplicity 3
Con also check that 1 is a root
Ccoef of $r^{3}-3 r^{2}+3 r-1$ sum to

If r is repeated root, multiplicity k : part of gen. sol'n corresponding to r is

$$
\begin{aligned}
& \left(c_{1}+c_{2} x+c_{3} x^{2}+\ldots+c_{k} x^{k-1}\right) e^{r x} \\
& e^{r x}, x e^{n}, \ldots x^{k-1} e^{r x} \text { are lin. indep. }
\end{aligned}
$$

Gen. solon for (3):

$$
y=c_{1} \cdot e^{\prime \prime}+\frac{c_{2} e^{x}+c_{3} x e^{x}+c_{4} x^{2} e^{x}}{\text { part cor to } r=1}
$$

Ex: Char. eq'in: roots $3 \rightarrow$ unit 2

$$
1 \rightarrow \text { malt. } 1
$$

$$
y=c_{1} e^{3 x}+c_{2} x e^{3 x}+c_{3} e^{5 x}+c_{4} x e^{5 x}+c_{5} x^{2} e^{5 x}+c_{6} e^{x}
$$

Case 3: Complex roots.
Ex: $\quad y^{\prime \prime}+y=0$
$r^{2}+1=0 \Rightarrow r^{2}=-1$ no real roots, complex roots!

$r^{2}=-1$: no real roots, $r= \pm i$ are complex roots.
Q: Can we make sense of $e^{i x}, e^{-i x}$, if yes, are they solus of $y^{\prime \prime}+y=0$?

1: Make sense of $e^{(a+i b) x}$.
First look at $e^{i \theta}, \theta \in \mathbb{R}$

$$
\begin{aligned}
& e^{i \theta}=\underbrace{\sum_{k=0}^{\infty} \frac{(i \theta)^{k}}{k!}}_{\text {Tayqu Senies }}=1+\frac{i \theta}{1!}+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{1}}{3!}+\ldots \\
& \begin{array}{l}
i^{3}=-i \\
i^{4}=1
\end{array} \quad 1+\frac{i \theta}{1!}-\frac{\theta^{2}}{2!}-i \frac{v^{3}}{3!}+\ldots \\
& i^{4}=1 \\
& =\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}+\ldots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}\right) \\
& \Rightarrow e^{i \theta}=\cos (\theta)+i \sin (\theta) \text {. Euleis formula } \\
& e^{a+i b}=e^{a}(\cos (b)+i \sin (b))
\end{aligned}
$$

Polar form of a cplx \#:

$y=e^{(a+i b) x}$ is a complex valued franction. a, b fixed. Iuput is the $x \in \mathbb{R} \quad e^{(a+i b) x} e^{(a+i b) x} \in$ real variable x.

Next time: if $(a+i b)$ is a root of char. eq then $y=e^{(a+i b) x}$ is a $\operatorname{sol}^{\prime} u$.

